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ABSTRACT 

The paper considers policies with annual premiums and discusses four 
types of life insurance reserves calculations: curtate, fully continuous, dis- 
counted continuous, and semicontinuous. It is shown that when appropriate 
corrections are made, each method gives the same reserve; this is as expected 
in view of the equality of the actual cash flows. The paper concludes with 
consideration of the methods used in making a practical year-end valuation. 

1. INTRODUCTION 

Actuaries can use several alternative reserving methodologies in valuing 
the same life insurance policy. The text by Tullis and Polkinghorn [4] lists 
in tables on pages 47 and 48 four types of reserves: 
(1) Curtate 
(2) Fully continuous 
(3) Discounted continuous 
(4) Semicontinuous. 
Also indicated are five items that need to be considered in calculating a 
reserve: 
(a) Refund of unearned premium on death 
(b) Nondeduction of deferred premium on death 
(c) Immediate payment of claims reserve 
(d) Deferred premium asset 
(e) Unearned premium liability. 
In this paper only annual premium policies are considered, so (b) and (d) 
are not relevant. 

The actuary also has a choice between using midterminal reserves and 
mean reserves. Thus a reserve can be calculated in many ways. However, 
the actual timing and amount of benefits and premiums are fixed by the 
terms of the policy. Thus if all appropriate corrections are taken into account, 
then the reserve calculated under all methods should be the same. Indeed 
reserves could be calculated directly, taking into account all benefits and 
premiums and the exact days on which they are paid with appropriate 
probabilities. 
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Some of the methods and reserve items fisted above exist because in 
previous decades actuaries needed to simplify calculations and to use labor- 
saving grouping or "binning" techniques. Very common is the technique 
whereby policies are binned by policy year and then assumed to have the 
average policy issue date for that bin. The following examples assume a 
December 31, 1997 valuation date: 

Policy Year Assumed 
Issue Date at Dec. 31, 1997 Issue Date 

November 18, 1997 June 30/July 1, 1997 
January 19, 1997 June 30/July 1, 1997 
August 3, 1995 June 30/July 1, 1995 
October 9, 1993 June 30/July 1, 1993 

If the valuation date is December 31, then the binning by policy year is 
equivalent to binning by calendar year of issue. For the above valuation date 
of December 31, 1997, all policies issued in calendar year 1996 will be 
allocated to the bin of policies in policy year 2 at valuation. Then they may 
for some purposes be assumed to have been issued on June 30, 1996 or July 
1, 1996 with probability 0.5 for each of the two dates. For nonannual pre- 
miums, this may be an approximation that adequately allows for the mid- 
policy year premium. Half of the policies are assumed at valuation to be 
about to pay a premium, and half are assumed to have just paid a premium. 
This amounts to an approximation to the integration of quantities with use 
of a uniform distribution of issue dates. A more accurate technique would 
be to perform seriatim valuations using actual premium due dates. 

2. TERMINAL RESERVES 

Consider an annual premium whole life insurance policy with the follow- 
ing benefits at the moment of death a fraction s of a year since the last 
policy anniversary: 
(a) $1, plus 
(b) a refund of unearned premium, calculated as 

P(A x)a~_ . 

The average refund of unearned premium can be approximated as half the 
gross premium, but here it is assumed, following Boermeester [1] and Scher 
[3], that the above theoretically accurate refund is paid. It will be shown 
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that if this refund is assumed, then each of the three types of reserves (1), 
(3), and (4) above can be adjusted to produce the same terminal reserve 
,f'(,~x), for the annual premium policy defined above. Here "terminal re- 
serve" means, as usual, that calculated immediately before the annual pre- 
mium due date. 

The policy considered in the fully continuous case (2) is different in that 
only benefit (a) above is paid. 

Discont inued Continuous Type 

In verifying that the terminal reserves all equal tV(Ax), we first study the 
discounted continuous type (Table 1). 

Let us consider the amount of annual net valuation premium in the dis- 
counted continuous case for the policy with benefits (a) and (b) defined 
above. A direct approach to determination of this premium is the same as 
that used in deriving Equation (2.8) below in the curtate case; logically if 
the same benefits are paid, then the same annual premium must result. 

A somewhat different argument is used here to derive the annual net 
valuation premium for benefits (a) and (b) in the discounted continuous case. 
Let us postulate that the annual premium under the discounted continuous 
case is P(Ax)a~q. Then in each policy year (except the year of death), the 
value at the policy anniversary of that year's premium equals the discounted 
value P(A~)a~ of the continuous premium for benefit (a) in the fully contin- 
uous case. At the policy anniversary preceding death, the discounted value 
of the fully continuous premium for benefit (a) is P(A~)rq. But we have 

/5(,~)~ _ (1 + i)-'~(~)a~_ = /5(,~x)a ~. (2.1) 

Thus we have equality at each policy anniversary of 
• The discounted value of the year's premiums paid for benefit (a) in the 

fully continuous case 
• The discounted value of the excess of the postulated discounted contin- 

uous premium over the required benefit (b). 
Thus we have verified our postulated annual premium,/5(,~x)~, which can 
now be used as the valuation net premium for a policy with benefits (a) and 
(b) under the discounted continuous case. 

The choice of refund benefit, P_(A_~)a~--~_ (Scher [3]), is confirmed by its 
leading to the desirable premium P(A~)a~]. 

In determining the reserve corresponding to the refund, we consider the 
values of continuous payments of/5(,~) per annum: 



TABLE 1 

ADJUSTMENTS TO N E T  PREMIUMS 

OO 

'I~pe Basic 

1 ) Curtate A.... z 

2) Fully Continuous ,4...~ 

3) Discounted Continuous fi,, _ 
- - a i l  
a., 

¢) Semicontinuous .fi..~ 

+ + 

+ 0  + 0  

+ 0  + 0  

P<,~)C,~ - A. )  + 0  + 
8//. 

Net Premium 
n 

Immediate Payment 

Refund on Death of Claims Corrected Refer To 
I I | 

P(A~)(A,, - A , )  Equation (2.8) ,~. - -  A x 

a,, 

= P(A)a,q 

= P(A.)  

= P ( A ) c ~  

Equation (2.4) 
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Origin for 
Discounting 

Age x + t 

Age x + t 

A g e x +  t 

A g e x +  t 

Commencement 
of Payments 

Age x + t 

Death 

End of year 
of death 

Death 

Termination 
of Payments 

oo 

(2o 

oo 

End of year 
of death 

Discount~l Value 

P(A ~) 
B 

f,(a ~) :t ~+, 
8 

:(d ~) 
- -  A~+ t 
8 

/SfA') (,4.+,-A.+,) 
B 

Thus the value of this premium refund feature is P(A:) (A:+t-A~+,) I~ ,  as 
indicated in the above table (see also Scher [3]). 

oc Then the terminal reserve, ,V x , under the discounted continuous method 
is the reserve considering the value of  the main $1 benefit, the annual pre- 
miums and the refund benefit: 

_ - P(A,,) [/~+t _ A~+, ] ,VOC = :i+, - G+,P(A~)a~ + 

:(L) 
= A~+, - G + , P ( A , , ) a ~  + - - - i f -  [1 - a G + ,  - 1 + da,,+,] 

= A~+, - :(A~)G+, 

= ,I7(fi, ~). (2.2) 

Thus with the "correct" choice of refund of unearned premium on deaih, 
the terminal reserve at a policy anniversary under the discounted continuous 
method equals that under the fully continuous method. 

The relevant abbreviations used in this paper are: 
DC = discounted continuous 
SC = semicontinuous 
PR = (unearned) premium refund 
IM = immediate payment of  claims 
CU = curtate 
ACC = accurate. 

B. S e m t c o n t i n u o u s  T y p e  

For a whole life insurance, the semicontinuous annual premium is given 
by P(Ax) = dJ / i~ .  Assume that, again, the refund of unearned premium on 
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death a period s after the policy anniversary is/5(,4x)a~_. The net annual 
premium required to pay for the refund benefit is, using the analysis of Table 
2 and of Scher [3], 

p(~ i eR  ) = 1_ P ( A x ) ( ~ i  x - ax) (2.3) 

Hence the total annual premium is 

p~c=  ~i~ + p(~ipR ) 

1 ] P(A~)(,4~, - A x) 

= ~ [ ~ a ~ +  1 - S a x -  1 + d a ~ ] ~ / / ~ a ~  

= P(Ax)a~. (2.4) 

Thus the total premium under the semicontinuous method is the same as 
that under the discounted continuous method. This is reasonable since the 
benefits are the same and equality of the present value of the premiums is 
satisfied in view of the premium refund feature. Thus the addition to the 
reserve in respect of the premium refund feature is 

1 - - 
V(fi~ PR) = -g P(A x)(Ax+, - A x+t) - P(fii eR)ti x+t 

= -1P(/L~) [ ~x+' - Ax+' - //~'+---zt (fi'~ - A'~) ] B  //x 

1 - - 

= g P(Ax) [,V(,4~) - ,V~] (2.5) 
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The total terminal reserve under the semicontinuous case is then given by 
1 - - 

, Vsc  = Ax+, - P(/ tx)t i:+,  + -~ P ( A x )  [Y('4x) - ,V.] 

=:ix+ /ix :ix[ ~ Ax ] 
- a--~ ax+, + ~a  ~ ax+t - a-~ iix+, - ax+,  + I 

fi" ~ F "" 1 ii ,, + , 
Ax+, fix a-,,+, + / t : ,  L- a:+, + - - -  ax  aa~ a a ~ : ,  

+ iix+ t 1 - -  d(ix+ t + Cix+_i..~t d~x+t] 
a x aax anti x aa~ J 

= ,f'(,~x) (2.6) 

That the terminal reserve under the semicontinuous case equals that under 
the fully continuous case is intuitively reasonable. The benefits have equal 
value "4x, and the annual premiums are set up so that, including the refund 
benefit, they are level and equal in present value. 

{7. C u P t a t e  T y p e  

The curtate premium is the standard Px=Ax l i~x .  Again assume that the 
refund of unearned premium on death is made of amount/5(,4x)al--~_. The 
premium for the refund benefit is again p(•eR),  given by Equation (2.3). For 
the curtate type only, since A x is used rather than Ax, an additional premium 
is required for the immediate rather than end of year payment of claims, of 
amount 

pjx ~ = ,4x - Ax (2.7) 
/ix 

Thus, taking into account also the premium for the refund of unearned pre- 
mium on death, the total net annual premium is: 

p c u  = A_..~ + p ( ~ e R )  + A~ - A x 

ii x tix 

Ax + P(Ax) (A~  - A x) 
= - -  

tix ati  x 

= P ( a x ) a ~ ,  (2.8)  



462 TRANSACTIONS, VOLUME XLVII 

where use has been made of Equations (2.3) and (2.4). There is an associated 
additional reserve: 

tV~M = ~+,  _ Ax+, _ ptM ax+t 

= , V ( ~ . )  - ,Vx .  

Hence the total curtate reserve is 

~(,~ ~) 
tV cu = A~+, - P~ if .+, + ~ [ t V ( . 4 ~ )  - ,Vx] 

+ [,v(,,ix) -,vj 

P(a, )  [,v(,~,) - ,v,] = ,v ( /L )  + ~ - -  

= , f ' (ax), 

(2.9) 

(2.1o) 

where the curtate has been reduced to the semicontinuous case and then 
Equation (2.6) has been used. 

1). Summary Tables a n d  N u m e r i c a l  Examples 

Table 1 summarizes the calculation of the annual premium when there 
is immediate payment of claims and a refund of unearned premium 
P(,4x)a~- on death. As would be expected,_the premium produced under 
all the methods considered is the same: P(Ax)a ~ annually in advance, or 
P('4x) continuously. This equality is seen to be a consequence of the equality 
of the cash flows and assumptions under all the methods. 

Table 2 summarizes the calculation of the terminal reserve. Again, under 
all four methods the terminal reserve taking account of the immediate pay- 
ment of claims and of the refund benefit is ,IT(A~). 

"Basic" net premiums and "basic" terminal reserves are mentioned in 
Tables 1 and 2, respectively. These are for "basic" policies, which differ 
between the four methods as follows: 
(1) Curtate: benefit of $1 at the end of the year of death 
(2) Fully continuous: benefit of $1 immediately on death 
(3) Discounted continuous: benefit of $1 and premium refund of 

P(A)a~_,  both immediately on death 
(4) Semicontinuous: benefit of $1 at the end of the year of death. 
Tables 3 and 4 give a numerical example of the calculation of the terminal 
reserve at duration 10 Of a whole life policy issued at age 40. Mortality is 



TABLE 2 

A D J U S T M E N T S  T O  T E R M I N A L  R E S E R V E S  

(1) Curtate 

(2) Fully Continuous 
(3) Discounted Continuous 

(4) Semicontinuous 

Basic 

A , + ,  - -  P.a~+, 

A~+,- p(~.)e.+, 
A . + , -  e.+,p(A.)~ 

L+,- e(L)a,+, 

Terminal  Reserve 

Refund on Death 

1 - - 

+ -~ e(A.)f,v(~.) - ,  vA 
+0 

+ P(~')s (;L+, - a~+,) 

l - - 
+ ~ P(A.)[Y(Ax) - t V . ]  

Immediate Payment 
of Claims 

+,v(A.) - ,  v. 

+0 
+0 

+0 

Corrected 

= ,  V ( A , )  

= , - -V(A.) 

= ,  - -V(AA 

= ,  f;(~.) 

Refer to 

Equation (2.9 

Equation (2.2 
Equation (2.2 

Equation (2.6 
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that of the Illustrative Life Table of Bowers et al. [2, p. 72]. Thus the qx are 

calculated by integration of the Makeham law 

ix x = A + B c x (2.11) 

with constants A=0.00078, B=0.00005 and c=10  °'°4. For the current pur- 
pose and to facilitate calculation of the continuous functions, a step form of 
the force of mortality was used. Thus the qx, which agree with those of 
Bowers et al. [2], were used to calculate a force of mortality assumed con- 
stant within each year of age. Thus the force of mortality used to calculate 
the ,~ and Ix~ was slightly different from that given by (2.11) and indeed is 
a form of weighted average of (2.11) within each year of age. 

TABLE 3 

NUMERICAL EXAMPLES OF NET PREMIUMS 

Net Premium per Thousand (Issue Age 40) 

Immediate Payment 
Type Basic Refund on Death of Claims Corrected 

(1) Curtate 10.8882 0 .0649 0 .3259 11.2789 
(2) Fully Cont inuous  11.6107 + 0  + 0  11.6107 
(3) Discounted Cont inuous  I 1.2789 + 0  + 0  ! 1.2789 
(4) Semicont inuous  11.2140 0 .0649 + 0  11.2789 

Relevant Values: 
1000A 4o = 161.3242 
1000,~4o = 166.1528 

/i4o = 14.81661 

a4o = 14.3103 
1000/5(,g,4o ) = 11.6107 

i = 0.06 
8 = 0 .0582689  

3. RESERVES AT DECEMBER 31 VALUATION 

~L A c c u r a t e  R e s e r v e  

Figure 1 illustrates the reserve of an annual premium policy. An accurate 
calculation could be made at any date of the discounted value of benefits 
less the discounted value of future premiums, where timings are treated 
exactly to the day. The solid line illustrates the path of an exact reserve so 
calculated. It shows jumps when premiums are payable, and it has a slight 
curve in the period between premiums. Whether the path rises or falls be- 
tween premiums depends on the relative importance of interest and the cost 
of insurance. 
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TABLE 4 

NUMEmCAL EXAMPLES OF TERMINAL RESERVES 

465 

Terminal Reserve per Thousand (Issue Age 40; Duration I0) 

Immediate Payment 
Type Basic Refund on Death of Claims Corrected 

(1) Curtate 104.5974 0.6259 3.141 ! 108.3644 
(2) Fully Continuous 108.3644 0 0 108.3644 
(3) Discounted Continuous 106.8770 1.4874 0 108.3644 
(4) Semicontinuous 107.7385 0.6259 0 108.3644 

Relevant Values: 
1000A 5o = 249,0475 
10(O,45o = 256,5122 
t~so = 13.2668 
aso = 12.7596 
1000/5(/i4o) = 11.2139 
1000~o~'(,44o ) = 108,3644 
1000toV(,44o ) = 107.7385 

Reserve 
t-1 

FIGURE I 

RESERVE AS A FUNCTION OF TIME 

V + P  

V 
t-1 

! 

~ )ecember 31 valuation t - l+s  since issue 

I I I 

t -1  t t + l  

Exact reserve 

Mean reserve 

Midterminal reserve 
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B. I n t e r p o l a t e d  R e s e r v e  

Generally the valuation will be at a date, typically December 31, between 
premium payment dates. In other words, as shown on Figure 1, we are 
required to calculate the reserve at a point on the curved path of the accurate 
reserve V acc Assume that December 31 falls at time t - l + u  since policy - - J r  • 

issue at age x. In other words, valuation is a fractional year u after the start 
of the t-th policy year. Then the accurate reserve is given by: 

vacc = ~+ ,+ .  D~+t pcu 
, - l + . - .  - -  a x +  , ( 3 . 1 )  

D x + t - i + u  

To ease calculations, it has been traditional to perform a linear interpolation: 

I]ACC " ( 1  - -  U ~ x + t _  1 "~- U A x + t  I - i + u  • x 

_ p c u  [ (1  - u ) ( a . + , _  1 - 1)  + u / /x+t ]  

= (1 - u)[,_,I:'(.4,) + ecu] + u,fZ(A A (3.2) 

= MVt_l+ . 

where 

MV,_~+, = (1 - u)[,_~l?(,4~) + pcu] + u, f'(,4~) (3.3) 

is a mean reserve not necessarily with equal weights of one-half. This for- 
mula (3.2) corresponds to following the interpolation defined by the dotted 
line in Figure 1. 

Alternatively the interpolated reserve can be expressed as: 

Va_ cc MTV,_,+, + (1 - u)P cu (3.4) t--I+u x 

where 

MTVt_I+ . = (1 - u),_tV(Ax) + ut V(A,) (3.5) 

is a (weighted) midterminal reserve. The term ( 1 - u ) P  cu is then identified 
as an unearned premium reserve addition to the midterminal reserve. 

The assumption can be made of uniform distribution of policy anniver- 
saries within the calendar year. Then at December 31, 1999, for example, 
policies then in their t-th policy year were issued between January 1, 1999-  
t + l  and December 31, 1999- t+1 .  If we make the assumption of uniform 
distribution of policy anniversaries within the calendar year, then we can 
approximate all the policies as having a June 30/July 1, 1 9 9 9 - t +  1 issue 
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date. Then u = 1 /2  and we  recover the famil iar expressions for the mean and 

midterminal  reserves 

1 - -  1 MV,_,+,, 2 = ~ [ ,_,V(A.)  + pcu] + ,f,(.~x) (3.6) 

1 1 - -  
MTVt_,+,/2 = ~ ,_,fz(fi,.) + ~ ,V(A.) (3.7) 

4. MODAL PREMIUMS 

The intent of this paper was to illustrate the interrelationship of the various 
reserving methodologies and to highlight the steps used in deriving reserve 
values in practice. The discussion has been in terms of annual premiums. 
There is nothing in the early stages of the above analysis to prevent us from 
counting time in intervals 1/m rather than of one year. The annual premium 
pCU = P(Ax)~ would be replaced by P(,4 x)al/--~, and, for example, Equation 
(2.6) would be modified to give, for k integer, 

v S C  = A x + t - l + k / m  - -  p ( m )  (Ax)  ;4(m) ~ x + t - -  I +k/m t - I  +k/m x 

1 -  - 
+ He (Ax) [ ,- ,+.mY ( L )  -- , - ,+ .mVj  

= ,_ l+k /mV(A, ) .  (4.1) 

Then the interpolation Equation (3.2) could be set up for 0 < w < 1 and 0 
----- k < m as 

VA~ CC " (l -- W)[t_l+k/m~/(Ax) t- l+(k+w)Im x 

+ P(A~)aD-~] + w t_l+(k+l)/mV(Ax). (4.2) 

However, in practice, it is more common to interpolate between the annual 
values ,_lV(,~,) and ,V(/[~), even if premiums are modal. Thus we are led 
into discussion in a future paper of the treatment of deferred premiums and 
the nondeduction of deferred premium on death. 

5. CONCLUSION 

The accurate reserve held for a policy depends only on the future cash 
flows, their probabilities and the assumptions used. The various reserving 
methods lead to the same reserve if the appropriate adjustments are made. 
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The algebraic demonstrations of  this paper and of Scher [3] can provide 
greater clarity when considering this intuitively reasonable equivalence of 
the reserving models. 
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DISCUSSION OF PRECEDING PAPER 

ELIAS S.W. SHIU AND SERENA TIONG: 

Dr. Sharp is to be thanked for this paper, clarifying the equivalence of 
various reserve methodologies. The purpose of this discussion is to supple- 
ment this fine exposition using the notion of apportionable annuity-due and 
apportionable premium presented in the textbook Actuarial Mathematics [1]. 
We consider the case in which premiums are payable m times a year. 

1. Integer Functions 

For a real number t, let LtJ denote the f loor of t, which is the greatest 
integer less than or equal to t, and let [t] denote the ceiling of t, which is 
the least integer greater than or equal to t. If T=T(x)  denotes the random 
variable of the future lifetime of a life now aged x [ 1, p. 46], then LTJ is K, 
the curtate-future-lifetime of (x) [1, p. 48], and rT] is the time until the end 
of the year of death of (x). Because 12T is the time, measured in months, 
until the death of (x), we see that [12T1 is the time, measured in months, 
until the end of the month of death of (x), and hence r12T1/12 is the time, 
measured in years, until the end of the month of death of (x). Similarly, 
[-52T7/52 gives the time, measured in years, until the end of the week of 
death of (x), and so on. See Figure 1. Thus we have, for each positive integer 
m, 

A(x m) = E[vrmrq~m], (D. 1.1) 

= t [~r--fff~q~J, (D.1.2) 

and 
a(,, ) (m) 

= E [a L~r---fff-]~ ]. (D.1.3) 

In Exercise 5.14 of Actuarial Mathematics [ 1], rmTq /m  is denoted as K + J  m. 
For two positive numbers s and t, we define 

t mod s = t - sLtlsJ (D.1.4) 

and 

t pad s = sr t /s]  - t. (D.1.5) 

See Figure 2. The quantity " t  mod s" is the (non-negative) remainder when 
t is divided by s, while "t  pad s" is the least non-negative addition to t so 

469 
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FIGURE 1 

THE GRAPH OF THE FUNCTION ['2t']/2 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 t 

that the result is divisible by s. The term mod, short for modulo, is standard 
mathematical usage. In defining pad, we are "borrowing from computer 
science, in which the term padding means the adding of blanks or nonsig- 
nificant characters to the end of a block or record in order to bring it up to 
a certain fixed size" [4, p. 572]. Note that Graham, Knuth and Patashnik [2, 
p. 83] use the term "mumble"  for our "pad," and they write: "But of course 
we 'd  need a better name than 'mumble. '  If  sufficient applications come 
along, an appropriate name will probably suggest itself." 

Note that, if t is not divisible by s, that is, if 

t mod s g: 0, 

then 

t mod s + t pad s = s. (D.1.6) 
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t pad 1/4 

0.25 

F I G U R E  2 

THE GRAPH OF THE FUNCTION t pad  114 

0.00 t 0.25 0.50 0.75 1.00 1.25 

2. Apporttonable Annuity-Due 
Let s be a positive number, not necessarily an integer; we define 

/i~,,, ) = 1 -- O s 
d(m) • (D.2.1) 

.. (,n) 
This definition extends the usual definition for a,- 1 , where s is a positive 
integer; with m = l ,  (D.2.1) can be found in Exercise 5.32.a of Actuarial 
Mathematics [1]. Then 

E[d(r-1 ")] = a~ ") (D.2.2) 

is the single premium for an apportionable life annuity-due of 1 per year 
payable in installments of 11m at the beginning of each m-th of a year while 
(x) survives (compare [1, Section 5.9]). It follows from (D.2.1) that 

" - o (D.2.3) a ~  = 

Taking expectations and applying (D. 1.2) and (D.2.2) yields 

a~m~ a~m~ E[v  T ..(-) , - = a ~ ] .  (D.2.4) 

The amount of refund at T, the time of death of (x), is 
..(rn) 
a ~ .  (D.2.5) 
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From (D.1.5), we have 
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rmrq 1 
- T = T pad--;  (D.2.6) 

m m 

it is the time between death and the next payment date. 
It follows from (D.2.1) that 

d(,,,) a~ (D.2.7) 

1 
- - -  a~q. (D.2.8) 

rnal/-7- ~ 

Hence expression (D.2.5), the amount of refund at the time of death, can be 
rewritten as 

which is [1, (5.9.5)]. 

1 
rna~-7-~ a ~ ,  (D.2.9) 

3. Apport tonable  P r e m i u m  

Apportionable premiums are treated in Section 6.5 of Actuarial Mathe- 
matics [1]. Consider the equivalence principle [1, p. 162]: 

E[present value of net premiums] = E[present value of benefits]. (D.3.1) 

The provision for premium refund can be accounted for on the left-hand 
side of (D.3.1) or on its right-hand side. In the former approach, we have 
the equation 

pImj(fi~) a~,~j = fi,~, (D.3.2) 

while, in the latter, 

piml(fi, x ) ..(m) ,~eR,= ax = '4x + --x , (D.3.3) 

where/ix eR'= denotes the single premium for the premium-refund benefit. The 
notation ~eR~, is due to Scher [3]; with m= 1, it is written as Ax eR in Scher 
[3] and in Actuarial Mathematics [1], and as ~PR in the paper. Because the 
amount of premium refund at the time of death is 
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a ~ ,  (D.3.4) 

,~eR,,, = plml(.~x ) E r r ..(") • (D.3.5) to a tf,,r]/,,)_rll. 
Applying (D.2.4) to (D.3.5) yields 

A~ R'" = Pl"l(,~x)[/i ~) - a / ' l l ,  (D.3.6) 

verifying that equations (D.3.2) and (D.3.3) are equivalent. 
Putting s=T in (D.2.8) and taking expectations, we have 

1 
/i~ "l = ~ ax. (D.3.7) 

mal/-~ 

Substituting (D.3.7) into (D.3.2) yields 

P'm~(Ax) = ma~/---~/5(,~,). (D.3.8) 

With m= 1, the right-hand side of (D.3.8) simplifies as 

ti~q/5(,4,), (D.3.9) 

which is the "corrected" net premium in the paper. In other words, the 
"corrected" net premium in the paper is the apportionable premium 
pl,l(,;,~) in Actuarial Mathematics [1]. Substituting (D.3.8) and (D.2.8) (with 
s=([mTq/m)-T) into (D.3.4) shows that the amount of premium refund can 
also be written as 

(D.3.10) P(A ) 
which, with m= 1, is the "unearned premium" 

in the paper. 
It follows from (D.3.3) that 

(D.3.11) 

(D.3.12) 

Hence the net level annual premium for the premium-refund benefit, payable 
m times per year, is 
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,,~PR,m 
(m) -PR m - -x P ( A , ' ) =  ..2NV 

ax 

= p ~ ' J ( / i = )  - W)(AD, (D.3.13) 

(D.3.16) 

then 

which, for m = l ,  is (2.3) in the paper; see als0 Exercise 6.17 of Actuarial 
Mathematics [1]. 

4. Reserves  

It follows from (D.3.14), (D.3.15), and a derivation similar to the one on 
page 207 of Actuarial Mathematics [1] that, if t is a positive number divisible 
by 1/m, that is, if 

t mod --1 = 0 ,  
m 

,VlmJ(/i,) = ,V(Ax). (D.4.1) 

_ _ ~,= - AcE) 
= P ( A D  a~,.-~ , 

Substituting (D.3.15) into the right-hand side of (D.3.13), we obtain 

d (m) 
P(')(~i=~='=) = T p(~=) - #m)(a=)  

which generalizes (6.5.9) of Actuarial Mathematics [1] and (2.4) in the 
paper. 

Putting s = T in (D.2.7) and taking expectations, we have 

8 
ii~ '~j = d(m) d=, (D.3.14) 

which is [1, (5.9.7)]. Applying (D.3.14) to (D.3.2) and rearranging yields 

d (m) 
pl,~,(~=) = ~ /5( ,~=) .  (D.3.15) 
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Also, extending the proof on page 208 of Actuarial Mathematics [1], we 
have 

,v<">(,4p '~,'') = ,f,'(/i,<) - ,v<'>(,4,,) 
= ,vi,,,~(j.D - ,v~"~(,{<). (D.4.2) 

5. Interpolation 
Let s be a positive number not divisible by 11m; suppose that we are to 

estimate the reserve at time s, sVl"l(Ax), by linear interpolation. The reserve 
at time Fms]lm is 

r~l,,,,vt"J(.4:) = r.,.m.,Q(~iD (D.5.1) 

by (D.4.1). The reserve at a moment after time LmsJ/m, that is, after the 
payment of (1/m)Pl"i(A,), is 

L,~j,mV"I(,4:) + _l P~'~(:ix) = L,~j,,.Q(,4x) + P(,4.)a,,-7-~ (D.5.2) 
m 

by (D.4.1) and (D.3.8). Then 

{ ( ' )  . . . .  
~Vl'~l(A~) ~ m s pad m [L'~J/'~V(Ax) + p(A~)a,,--~] 

= d-ms] - ms)[L,~j,mV(A~) + ~(,~)a,,--~l 

+ (ms - LmsJ)r,.,1/,.Q(/i,), (D.5.3) 

which is (4.2) in the paper. An alternative linear-interpolation formula is: 

,Vl"l(/7,~) --~ (s pad 1)L,jVl"i(/l ~) + (s mod 1)rdVl"l(/i~) 

+ (spad l ) plml(Ax), (D.5.4) 

which is Exercise 7.24.b of Actuarial Mathematics [1]. 

6. Endowment Insurance 
For two real numbers s and t, let sat denote the minimum of s and t. 

Replacing rmT]/m by (~mT]/m)An and T by TAn, we can extend the 
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analysis above from whole life insurance to n-year endowment insurance. 
For example, in place of (D.I.I), (D.I.2), and (D.1.3), we have 

and 

A(,,) E[o6mrq/,~)/',~], 

• . ( m )  1 ~  r~i ( m )  1 
a x:~ = ~ t  ~ J ,  

(m) (ra) 
ax:,q = E [ a ~ ] ,  

(D.6.1) 

(D.6.2) 

(D.6.3) 

and 

s~,,) = (1 + i y -  1 
i~m) (D.7.2) 

With m = l ,  (D.7.1) can be found in Example 5.13.b and Exercise 5.31.a of 
A c t u a r i a l  M a t h e m a t i c s  [ 1 ]. Then 

3~) = E[a~")]. (D.7.3) 

It follows from (D.7.1) and (D.7.2) that 
a(r__]m) (m) 

- aLmr--7]~ = v r ~ .  (D.7.4) 

Taking expectations and applying (D.7.3) and (D. 1.3) yields 

o~m) ~") E [ v r s ~ ] .  (D.7.5) a x - a x = 

The adjustment payment at time T is ~m) S ~ .  From (D. 1.4), we have 

LmTJ 1 
T - -  - T rood --; (D.7.6) 

m m 

it is the time between the last payment date before death and the date of 
death. 

- -  o t  

a ~  ~ _ 1 i 7g)" (D.7.1) 

respectively. 

7. Complete Annuit ies-Immediate 

Parallel to the notion of the apportionable annuity-due is that of the com-  

p le te  annui ty - immedia te ;  see [1, Section 5.9]. Let t be a positive number, 
not necessarily an integer; we define 
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Let n be a positive number divisible by 1/m. Replacing T by TAn and 
[mT]lm by (~mT]lm)An in (D.7.3) and (D.7.4), we have 

o (m) 
a#.~ = E [ a ~ ]  (D.7.7) 

and 

a ~  -- ~ ( m ~  .~- UT/k.ns(|m)/~)_~_mTj)/,m]l. (9.7°8)  

Observe that 

f r  LmTJIm A [d.mTJIm) A 
n = 0  

Let I(-) denote the indicator function, 

{1 i f A i s t r u e  
I(A) = if A is false. 

Since s~ m) = 0, the right-hand side of (D.7.8) can be simplified as 

v r <,,o I(T < n). S T-d.mTJ/m) l 
Hence it follows from (D.7.8), (D.7.7), and (D.6.3) that 

~,~ _ (m)  T (m)  a ~  = E[v s ~  I(T < n)]. 

Also, note that 

..Ira} i(m) a j~_  
o(m) d(m) a~.'~ 

= (1 + i) lira 

if T <  n 
if T--- n" 

(D.7.9) 

(D.7.10) 
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(AUTHOR'S REVIEW OF DISCUSSION) 

KEITH SHARP: 

Dr. Shiu and Ms. Tiong are to be thanked for the useful extensions and 
alternative viewpoints given in their discussion. They were unaware of my 
unpublished paper on the case of modal premiums,* and there is some over- 
lap. Their analysis, however, adds a thorough theoretical base to the devel- 
opment. The use of the pad and modulus terminology and the corresponding 
notation provides an elegant structure for their analysis. The apportionable 
annuity-due is indeed the concept corresponding to the "refund of unearned 
premium" practice. Clarification of the relationship between the underlying 
mathematics and the approximations used in practice will be a valuable 
outcome of this work. 

*Sharp, K.P. "Reserves for Policies With Modal Premiums," Research Report 95-15. Waterloo, 
Ont.: University of Waterloo Institute of Insurance and Pension Research, 1995. 


