The Distribution of The Total Dividend Payments in a MAP Risk Model with Multi-Threshold Dividend Strategy

Jingyu Chen

Department of Statistics and Actuarial Science
Simon Fraser University

44th ARC, Madison, 2009

This is the joint work with Dr. Yi Lu, SFU

Outline of Topics

(1) Introduction
(2) Differential Approach
(3) Layer-Based Recursive Approach
(4) Numerical Example
(5) Conclusion

Sample Surplus Process

The Classical Risk Model

- The surplus process $\{U(t) ; t \geq 0\}$ with $U(0)=u$, s.t.

$$
d U(t)=c d t-d S(t), \quad t \geq 0
$$

- Premiums are collected continuously at a constant rate c
- A sequence of non-negative claim amounts r.v. $\left\{X_{n} ; n \in \mathbb{N}^{+}\right\}$
- Number of claims up to time $t, N(t) \sim \operatorname{Poisson}(\lambda t)$
- Aggregate claim amounts up to time $t, S(t)=\sum_{n=1}^{N(t)} X_{n}$
- Time of ruin $\tau=\inf \{t \geq 0: U(t)<0\}$

MAP Risk Model

$\operatorname{MAP}\left(\vec{\alpha}, \mathbf{D}_{\mathbf{0}}, \mathbf{D}_{\mathbf{1}}\right)$

- Initial distribution, $\vec{\alpha}$
- Intensity matrix, $\mathbf{D}_{\mathbf{0}}+\mathbf{D}_{\mathbf{1}}$
- Intensity of state changing without claim, $D_{0}(i, j) \geq 0, j \neq i$
- Intensity of state changing with claim, $D_{1}(i, j) \geq 0$
- The diagonal elements of $\mathbf{D}_{\mathbf{0}}$ are negative values, s.t. $\mathrm{D}_{\mathbf{0}}+\mathrm{D}_{1}=\mathbf{0}$
- Special cases: classical risk model, Sparre-Andersen risk model, Markov-modulated risk model

Reference: Badescu et al. (2007), Badescu (2008), Ren (2009),

Various Dividend Strategies

Various Dividend Strategies

Various Dividend Strategies

Multi-Threshold MAP Risk Model

- Thresholds: $0=b_{0}<b_{1}<\cdots<b_{n}<b_{n+1}=\infty$
- Premium rate c_{k} for $b_{k-1} \leq u<b_{k}, k=1, \cdots, n+1$ $c=c_{1}>c_{2}>\cdots>c_{n}>c_{n+1} \geq 0$
- Time of ruin $\tau_{B}=\inf \left\{t \geq 0: U_{B}(t)<0\right\}$
- Surplus process $\left\{U_{B}(t) ; t \geq 0\right\}$ satisfies

$$
d U_{B}(t)=c_{k} d t-d S(t), \quad b_{k-1} \leq U_{B}(t)<b_{k}
$$

- Claim amounts distribution $f_{i, j}, F_{i, j}$ and Laplace transformation $\hat{f}_{i, j}(s)$

Expected Discounted Dividend Payments

- $D(t)$ is the aggregate dividends paid by time t
- Define

$$
D_{u, B}=\int_{0}^{\tau_{B}} e^{-\delta t} d D(t), \quad u \geq 0,
$$

to be the present value of dividend payments prior to ruin, given the initial surplus u

- Define

$$
V_{i}(u ; B)=\mathbb{E}_{i}\left[D_{u, B} \mid U_{B}(0)=u\right], \quad i \in E
$$

to be the expected present value of dividend payments prior to ruin, given the initial surplus u and the initial phase $i \in E$

Expected Discounted Dividend Payments

- The piecewise vector function of the expected present value of the total dividend payments prior to ruin

$$
\vec{V}(u ; B)= \begin{cases}\vec{V}_{1}(u ; B) & 0 \leq u<b_{1}, \\ \vec{V}_{k}(u ; B) & b_{k-1} \leq u<b_{k}, \quad k=2, \cdots, n, \\ \vec{V}_{n+1}(u ; B) & b_{n} \leq u<\infty .\end{cases}
$$

- $\vec{V}_{k}(u ; B)=\left(V_{1, k}(u ; B), \cdots, V_{m, k}(u ; B)\right)^{\top}$ for $b_{k-1} \leq u<b_{k}$ and $k=1, \cdots, n+1$

Differential Approach

- Typical approach in various risk models
- Integro-differential equations are involved
- Can be derived and solved analytically for some families of claim amounts distribution
- Mainly in Gerber-Shiu discounted penalty function Techniques can be applied to the dividend payments problems
- Lin and Sendova (2008), classical risk model Lu and Li (2009), Sparre Andersen risk model

Integro-Differential Equation for $\vec{V}_{k}(u ; B)$

- Condition on the events occurring in a small time interval [0, h]
- No change in the MAP state
- A change in the MAP state accompanied by no claim arrival
- A change in the MAP state accompanied by a claim arrival; Claim amounts may vary
- Two or more events occur

Integro-Differential Equation for $\vec{V}_{k}(u ; B)$

- Integro-differential equation, for $b_{k-1} \leq u<b_{k}$
$c_{k} \vec{V}_{k}^{\prime}(u ; B)=\delta \vec{V}_{k}(u ; B)-\mathbf{D}_{0} \vec{V}_{k}(u ; B)-\int_{0}^{u-b_{k-1}} \boldsymbol{\Lambda}_{\mathbf{f}}(x) \vec{V}_{k}(u-x ; B) d x-\vec{\gamma}_{k}(u)$
where $\gamma_{i, k}(u)=\left(c-c_{k}\right)+\sum_{j=1}^{m} D_{1}(i, j) \sum_{l=1}^{k-1} \int_{u-b_{l}}^{u-b_{l-1}} V_{j, l}(u-x ; B) d F_{i, j}(x)$
- Solution

$$
\begin{aligned}
& \qquad \vec{v}_{k}(u ; B)=\mathbf{v}_{k}\left(u-b_{k-1}\right) \vec{v}_{k}\left(b_{k-1} ; B\right)-\frac{1}{c_{k}} \int_{0}^{u-b_{k-1}} \mathbf{v}_{k}(t) \vec{\gamma}_{k}(u-t) d t \\
& \text { where } \mathbf{v}_{k}\left(u-b_{k-1}\right)=\mathcal{L}^{-1}\left\{\left[\left(s-\frac{\delta}{c_{k}}\right) \mathbf{I}+\frac{1}{c_{k}}\left(\mathbf{D}_{0}+\boldsymbol{\Lambda}_{\hat{\mathbf{f}}}(s)\right)\right]^{-1}\right\}
\end{aligned}
$$

Recursive Expression for $\vec{V}_{k}(u ; B)$

- Define vector function $\vec{V}_{k}(u)$ for $u \geq b_{k-1}$

$$
\vec{V}_{k}(u)=\mathbf{v}_{k}\left(u-b_{k-1}\right) \vec{v}_{k}\left(b_{k-1}\right)-\frac{1}{c_{k}} \int_{0}^{u-b_{k-1}} \mathbf{v}_{k}(t) \vec{\gamma}_{k}(u-t) d t
$$

- Restrict to $b_{k-1} \leq u<b_{k}$, compare with $\vec{V}_{k}(u ; B)$

$$
\vec{V}_{k}(u ; B)=\vec{V}_{k}(u)+v_{k}\left(u-b_{k-1}\right) \vec{\pi}_{k}(B), \quad b_{k-1} \leq u<b_{k}
$$

- Continuity condition at $b_{k-1}, k=1, \cdots, n$

$$
\vec{\pi}_{k+1}(B)=\vec{V}_{k}\left(b_{k}\right)-\vec{V}_{k+1}\left(b_{k}\right)+v_{k}\left(b_{k}-b_{k-1}\right) \vec{\pi}_{k}(B)
$$

- Final boundary condition when $k=n+1$

$$
\vec{\pi}_{n+1}(B)=\vec{V}_{n}\left(b_{n}\right)-\vec{V}_{n+1}\left(b_{n}\right)+\mathbf{v}_{n}\left(b_{n}-b_{n-1}\right) \vec{\pi}_{n}(B)=\overrightarrow{0}
$$

Layer-Based Recursive Algorithm

- Computational disadvantage of the recursive algorithm based on integro-differential equations
- Constant vectors can only be solved in the last layer
- Infeasible to compute for large number of layers
- Layer-based approach
- Condition on the exit times of the surplus out of each layer
- Calculate successively for increasing number of layers

The k-layer model $\Leftarrow\left\{\begin{array}{l}\text { The }(k-1) \text {-layer model } \\ \text { Classical one-layer model }\end{array}\right.$
Reference: Albrecher and Hartinger (2007)

Sample Path of One-Layer Model with Dividend Payments

Time Value of Upper Exit

- Define $\tau^{*}(u, a, b)=\inf \{t \geq 0: U(t) \notin[a, b] \mid U(0)=u\}$
- Define

$$
\tau^{+}(u, a, b)= \begin{cases}\tau^{*}(u, a, b) & \text { if } U\left(\tau^{*}(u, a, b)\right)=b \\ \infty & \text { if } U\left(\tau^{*}(u, a, b)\right)<a\end{cases}
$$

and

$$
\tau^{-}(u, a, b)= \begin{cases}\infty & \text { if } U\left(\tau^{*}(u, a, b)\right)=b \\ \tau^{*}(u, a, b) & \text { if } U\left(\tau^{*}(u, a, b)\right)<a\end{cases}
$$

- Laplace transform of $\tau_{k}^{+}(u, 0, b)$

$$
B_{i, j, k}(u, b)=\mathbb{E}\left[e^{-\delta \tau_{k}^{+}(u, 0, b)} \mathbf{1}_{\left[J\left(\tau_{k}^{+}(u, 0, b)\right)=j\right]} \mid J(0)=i\right]
$$

given initial phase i and reaching b in phase j

Reference: Gerber and Shiu (1998), Albrecher and Hartinger (2007)

Time Value of Upper Exit

For $\delta>0$ and $k \in \mathbb{N}^{+}$, we have
(1)

$$
\begin{array}{ll}
\mathbf{B}_{k}=\mathbf{1}, & \text { if } u \geq b \\
\mathbf{B}_{k}=\mathbf{0}, & \text { if } u<0
\end{array}
$$

(2) For $0 \leq u<b_{k-1}$

$$
\mathbf{B}_{k}(u, b)= \begin{cases}\mathbf{B}_{k-1}(u, b), & \text { if } b \leq b_{k-1} \\ \mathbf{B}_{k-1}\left(u, b_{k-1}\right) \mathbf{B}_{k}\left(b_{k-1}, b\right), & \text { if } b \geq b_{k-1}\end{cases}
$$

(3) For $b_{k-1} \leq u \leq b$

$$
\begin{aligned}
\mathbf{B}_{k}(u, b)= & \mathbf{B}_{1, k}\left(u-b_{k-1}, b-b_{k-1}\right)+\mathbf{M}_{k}\left(u-b_{k-1}\right) \\
& -\mathbf{B}_{1, k}\left(u-b_{k-1}, b-b_{k-1}\right) \mathbf{M}_{k}\left(b-b_{k-1}\right)
\end{aligned}
$$

- Parallel results in matrix form

Reference: Albrecher and Hartinger (2007)

Sample Path for $0 \leq u \leq b_{k-1}$

Sample Path for $u \geq b_{k-1}$

$21 / 25$

Expected Discounted Dividend Payments

- For $0 \leq u \leq b_{k-1}$

$$
\vec{V}_{k}(u ; B)=\vec{V}_{k-1}(u ; B)+\mathbf{B}_{k-1}\left(u, b_{k-1}\right)\left[\vec{V}_{k}\left(b_{k-1} ; B\right)-\vec{V}_{k-1}\left(b_{k-1} ; B\right)\right]
$$

- For $u \geq b_{k-1}$

$$
\begin{aligned}
& \vec{V}_{k}(u ; B) \\
= & \vec{V}_{1, k}\left(u-b_{k-1}\right)+\mathbb{E}\left[e^{-\delta \tau_{1, k}\left(u-b_{k-1}\right)} \vec{V}_{k}\left(b_{k-1}-\left|U_{1, k}\left(\tau_{1, k}\left(u-b_{k-1}\right)\right)\right| ; B\right)\right]
\end{aligned}
$$

"Contagion" Example

- State A: standard claims, $\lambda_{1}=1,1 / \beta_{1}=1 / 5$
- State B : additional infectious claims, $\lambda_{2}=10,1 / \beta_{2}=3$
- State $\mathrm{A} \rightarrow \mathrm{B}, \alpha_{\mathrm{A}}=0.02$; State $\mathrm{B} \rightarrow \mathrm{A}, \alpha_{B}=1$
- $\mathbf{D}_{\mathbf{1}}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{1}+\lambda_{2}\end{array}\right), \mathbf{D}_{\mathbf{0}}=\left(\begin{array}{cc}-\alpha_{\boldsymbol{A}}-\lambda_{1} & \alpha_{\boldsymbol{A}} \\ \alpha_{B} & -\alpha_{B}-\lambda_{1}-\lambda_{2}\end{array}\right)$
- Thresholds $(0,20,40, \infty)$, premium rates $(2,1.5,1)$

u	$\delta=0.1$	$\delta=0.01$	$\delta=0.001$	Badescu et al. (2007)
0	158.99	323.23	356.68	N/A
10	350.55	457.58	500.95	503.00
30	417.19	671.02	692.82	692.60
50	688.25	802.29	821.50	842.07
70	814.98	926.93	942.78	968.82

Conclusion

- Differential approach is applicable to the MAP risk model
- Moment generating function and higher moments
- Layer-based approach provides an alternative method

Reference

- Albrecher, H. and Hartinger, J. (2007) A risk model with multilayer dividend strategy. NAAJ, 11(2):43-64.
- Badescu, A. (2008) Discussion of "The discounted joint distribution f the surplus prior to ruin and the deficit at ruin in a Sparre Andersen model". NAAJ, 12(2):210-212.
- Badescu, A. et al. (2007) On the analysis of a multi-threshold Markovian risk model. SAJ, 4:248-260.
- Gerber, H. and Shiu E. (1998) On the time value of ruin. NAAJ, 2(1):48-72.
- Lin, X.S. and Sendova, K.P. (2008) The compound Poisson risk model with multiple thresholds. IME, 42:617-627.
- Lu, Y. and Li. S. (2009) The discounted penalty function in a multi-threshold Sparre Andersen model. (submitted)

