The Distribution of The Total Dividend Payments
in a MAP Risk Model
with Multi-Threshold Dividend Strategy

Jingyu Chen

Department of Statistics and Actuarial Science
Simon Fraser University

44th ARC, Madison, 2009

This is the joint work with Dr. Yi Lu, SFU




Outline of Topics

© Introduction

@ Differential Approach

e Layer-Based Recursive Approach
@ Numerical Example

© Conclusion




Introduction

Sample Surplus Process

Surplus U(t) ——  premiums
--- claims
premium rate = ¢
u
ruin
0
Time t




Introduction

The Classical Risk Model

The surplus process {U(t); t > 0} with U(0) = u, s.t.
dU(t) = cdt — dS(t), t>0.

@ Premiums are collected continuously at a constant rate ¢

A sequence of non-negative claim amounts r.v.{X,;n € N*}

Number of claims up to time ¢, N(t) ~ Poisson(At)

Aggregate claim amounts up to time t, S(t) = Z,’Yitl) Xn
e Time of ruin 7 =inf{t > 0: U(t) < 0}




Introduction

MAP Risk Model

MAP (&, Dy, D)
@ Initial distribution, &
@ Intensity matrix, Dg + Dy
@ Intensity of state changing without claim, Dy(i,j) >0, j # i
@ Intensity of state changing with claim, Dy(i,j) >0
@ The diagonal elements of Dy are negative values, s.t.
Do+D;=0

Special cases: classical risk model, Sparre-Andersen risk
model, Markov-modulated risk model

Reference: Badescu et al. (2007), Badescu (2008), Ren (2009),
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Various Dividend Strategies
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Multi-Threshold MAP Risk Model

Thresholds: 0 = bg < by < --- < b, < bpy1 =00

@ Premium rate ¢, for by_1 < u< by, k=1,--- ,n+1
c=caq>0>--->c>chp1 >0

Time of ruin 75 = inf{t > 0: Up(t) < 0}

Surplus process {Ug(t); t > 0} satisfies

dUB(t) = cxdt — dS(t), b1 < UB(t) < by

@ Claim amounts distribution f; ;, F;; and Laplace
transformation f; j(s)




Introduction

Expected Discounted Dividend Payments

e D(t) is the aggregate dividends paid by time t
@ Define e
D,g= / e %dD(t), u>0,
J0O
to be the present value of dividend payments prior to ruin,
given the initial surplus u

@ Define
V,'(U; B) = ]E,'[Duyg‘UB(O) = U], i€ E,

to be the expected present value of dividend payments prior to
ruin, given the initial surplus u and the initial phase i € E




Introduction
Expected Discounted Dividend Payments

@ The piecewise vector function of the expected present value of
the total dividend payments prior to ruin

Vi(u; B) 0<u< by,
V(u;B) = Vi(; B) b <u<by, k=2,---,n,
\7n+1(u; B) b, <u<oo.

o Vi(u; B) = (Vii(u; B), -+, Vini(u; B))T
for by_i1 <u<bgand k=1,--- ,n+1




Differential Approach

Differential Approach

@ Typical approach in various risk models
o Integro-differential equations are involved

@ Can be derived and solved analytically for some families of
claim amounts distribution

@ Mainly in Gerber-Shiu discounted penalty function
Techniques can be applied to the dividend payments problems

@ Lin and Sendova (2008), classical risk model
Lu and Li (2009), Sparre Andersen risk model




Differential Approach

Integro-Differential Equation for V,(u; B)

o Condition on the events occurring in a small time interval
[0, A]
e No change in the MAP state
e A change in the MAP state accompanied by no claim arrival

o A change in the MAP state accompanied by a claim arrival;
Claim amounts may vary

e Two or more events occur




Differential Approach

Integro-Differential Equation for V,(u; B)

@ Integro-differential equation, for bx_1 < u < by
- - - ru—by_1 ~
Vi B) = 5Vi(ui B) ~ DoVidwi ) = [ M)V~ xi B)dbe 74 )
J0O

P — —b_
where i k(u) = (¢ = c&) + 22774 D1(i.)) Zlel‘ uu_b// YV i(u — x; B)dF; j(x)

@ Solution

_ _ 1 [u—b— .
Vie(u; B) = v (u — bg—1) Vi(bk—1; B) — - / Vi (t)Fk(u — t)dt
k Jo

where v (u — by_1) = L1 { [(s — %) I+ é(DO + Af(s))} 71}




Differential Approach

Recursive Expression for Vi (u; B)

@ Define vector function \7k(u) for u > by_1

u—by_1

Vi) = vic(t — b1)Vic(bi_1) — ik /0 Vi (£)F(u — t)dt

@ Restrict to bx_1 < u < by, compare with \7k(u; B)
Vie(u; B) = Vie(u) + vic(u — by_1)@k(B),  bx—1 < u < by
o Continuity condition at bx_1, k=1,--- ,n
#41(B) = Vi(bi) = Viera(bi) + vi(bx — bx—1)7(B)
e Final boundary condition when k =n+1

Tnt1(B) = Va(bn) = Vs1(bn) + Vn(bn — bn—1)7n(B) = 0




Layer-Based Recursive Approach

Layer-Based Recursive Algorithm

e Computational disadvantage of the recursive algorithm based
on integro-differential equations

o Constant vectors can only be solved in the last layer
e Infeasible to compute for large number of layers

@ Layer-based approach

e Condition on the exit times of the surplus out of each layer
o Calculate successively for increasing number of layers

The (k — 1)-layer model

The k-layer model < )
Classical one-layer model

Reference: Albrecher and Hartinger (2007)




Layer-Based Recursive Approach

Sample Path of One-Layer Model with Dividend Payments

Surplus Uy ,(t) ——  premiums
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Layer-Based Recursive Approach

Time Value of Upper Exit

e Define 7*(u, a, b) = inf{t > 0: U(t) ¢ [a, b]|U(0) = u}
o Define

_ J7*(u,a,b) if U(T*(u,a,b))
7 (u2,b) = {oo if U(r*(u, a, b)) < a

() if U(t*(u,a,b))=b

T wab)= {r*(u, a,b) if U(r*(u,2,b)) < a

o Laplace transform of 7,7 (u,0, b)
st (u ;
Bijk(u,b) =E {e 5 ’O’b)l[J(T;(u,o,b)):j]|J(0) = /]

given initial phase i and reaching b in phase j

Reference: Gerber and Shiu (1998), Albrecher and Hartinger (2007)




Layer-Based Recursive Approach

Time Value of Upper Exit

For § > 0 and k € N*, we have

o

B, = 1, ifu>b
By 0, ifu<o
Q@ For0<u< by
Bl b) = { B e by )Bulbis ) 5 b
© Forbe 1 <u<b
Bi(u,b) = By(u—bx_1,b— bx_1)+ My(u— by_1)

—Byk(u— bx_1,b— br_1)My(b — bi_1)

@ Parallel results in matrix form

Reference: Albrecher and Hartinger (2007)




Layer-Based Recursive Approach

Sample Path for 0 < u < by
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Layer-Based Recursive Approach

Sample Path for u > by

Surplus Ug(t)

——  premiums
--- claims
~ -
Ug (Tk (b, b)) =by_y — |U1,k (Hx(‘-“ bk-l))|
0
Typ@—br_4) Time t




Layer-Based Recursive Approach

Expected Discounted Dividend Payments

@ ForO0<u<by_4
Vi(u; B) = Vi_1(u; B) + By_1(u, be—1) | Vic(bk—1; B) — Vi—1(bk—1; B)
@ For u> by_1

—

Vi(u; B)
= Vik(u—be1) +E [e_aTl’k(u_bk_l)Vk(bkfl — |Ur, k(1,4 (u — br—1)); B)]




“Contagion” Example

Numerical Example

State A: standard claims, \y =1, 1/8; =1/5
State B: additional infectious claims, A, = 10, 1/6, =3
State A — B, a4 = 0.02; State B — A, ag =1

D; =

M
0

0
A1+ Ao >7D0_<

—QA — /\1 aA

op —ap — A1 — A2

Thresholds (0, 20, 40, o), premium rates (2,1.5,1)

u 0=01 06=0.01 §=0.001 Badescu etal. (2007)
0 158.99  323.23 356.68 N/A

10 350.55  457.58 500.95 503.00

30 417.19  671.02 692.82 692.60

50 688.25  802.29 821.50 842.07

70 814.98  926.93 942.78 968.82

)




Conclusion

Conclusion

o Differential approach is applicable to the MAP risk model
@ Moment generating function and higher moments

@ Layer-based approach provides an alternative method
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