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1. Introduction

Pricing insurance risks is a significant and challenging problem. Inappropriately de-

termined premiums, whether too high or too low, may result in insolvency of insurance

policies, failure of business lines, and even bankruptcy of entire insurance enterprizes. Nat-

urally, therefore, the problem has given rise to an active research area and, consequently,

to numerous debates as to what pricing functionals, widely known as premium calcula-

tion principles (pcp’s), should or should not be used in one situation or another (see, e.g.,

Gerber, 1979; Goovaerts et al., 1984; Kaas et al., 1994; Wang, 1996; Young, 2004; Denuit

et al., 2005; Pflug and Römisch, 2007). Generally, actuarial pcp’s are functionals (see

Bühlmann, 1980)

π : X → [0,∞]

from the set X of all non-negative random variables X (representing, e.g., risks or losses)

to the interval of all non-negative extended real numbers. Another way of looking at

the actuarial pricing functionals is to treat them as functionals from the set F of the

cumulative distribution functions (cdf’s) FX of X ∈ X . These two points of view high-

light the fact that the actuarial price π[X] depends on X ∈ X only via the cdf FX , a

property which is known in the literature as objectiveness (see, e.g., Denuit et al., 2005)

or conditional state independence (see, e.g., Bülmann, 1980, 1984).

The objectiveness property, however, precludes the decision maker from taking into

account factors such as insurer’s financial position and attitude, general condition of

economy, dependence on other risks: these may, and indeed do, influence the price of

risks (see, e.g., Bülmann, 1980, 1984; Deprez and Gerber, 1985). Hence, in the present

paper we give a particular attention to pricing functionals

Π : X × X → [0,∞],

where the first coordinate X in the pricing functional value Π[X,Y ] is the risk under

consideration and the second coordinate Y is insurer’s overall risk or, generally, any

random variable that influences the price of X. In addition to the properties inherited

from π : X → [0,∞], and depending on the economic context under consideration, the

pricing functional Π may be required, or desired, to satisfy additional properties, some

of which we discuss later in this paper. We note that since Π : X × X → [0,∞] is a
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generalization of π : X → [0,∞], it is natural to require that, for all X ∈ X ,

Π[X,X] = π[X], (1.1)

which we call the compatibility property of the actuarial and economic pricing functionals.

Constructing actuarial and economic pricing functional has been an interesting and

fruitful area, and in the following sections we shall provide a number of functionals ac-

companied with several references. Recently, Furman and Zitikis (2008a) have shown that

a large number of actuarial pricing functionals available in the literature can be unified

into one actuarial weighted pricing functional, which we denote by

πw : X → [0,∞]

and define by the formula πw[X] = E[Xw(X)]/E[w(X)]. Furthermore, Furman and

Zitikis (2007, 2008e) argue that the functional πw allows for a convenient departure from

conditional state independence and thus facilitates introducing the economic weighted

pricing functional

Πw : X × X → [0,∞]

defined by the formula Πw[X,Y ] = E[Xw(Y )]/E[w(Y )]. Clearly, the economic pricing

functional Πw is compatible with the actuarial functional πw in the sense of equation (1.1).

The rest of the paper is organized as follows. In Section 2 we further elaborate on

the notion and properties of the actuarial pricing functional πw and also relate them

to weighted and distorted distributions, as well as to distorted premiums. In Section 3

we explore a technique for computing actuarial weighted pricing functionals πw in the

context of log-exponential family (LEF) of distributions. In Section 4 we discuss the

economic weighted pricing functional Πw. In Section 5 we explore axiomatic properties

of general pricing functionals Π and specialize them to the weighted pricing functional

Πw. Then we turn our attention into developing techniques for computing Πw[X,Y ],

given a joint distribution of the pair (X, Y ). In Section 6 we connect the functional Πw

to general Stein-type decompositions of covariances. As a consequence, in Section 7 we

arrive at a weighted insurance pricing model (WIPM), which we view as an insurance

counterpart of the well-known capital asset pricing model (CAPM) in finance. Then,

based on the notion of weighted distributions, in Section 8 we discuss ways for computing
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the generalized economic weighted pricing functional

Πv,w : X × X → [0,∞],

which is defined by the formula Πv,w[X, Y ] = E[v(X)w(Y )]/E[w(Y )]. Section 9 concludes

the paper with a summary of main contributions.

2. Weighted distributions and actuarial weighted pricing functionals

As we have already hinted above, not every functional π : X → [0,∞] is admissible

for pricing risks. Indeed, pricing functionals are always subjected to constraints, which

depend on the situation at hand and/or decision maker’s aims. For example, common

sense suggests and mathematics confirms that in order to avoid insolvency, the pricing

functional value π[X] should not be smaller than the net premium E[X] for every X ∈ X .

This relationship between π[X] and E[X] is known in the literature as the (non-negative)

loading property.

In general, constructing loaded pricing functionals is not difficult. An obvious route for

achieving this goal is by adding to the net premium E[X] a constant or, say, a fraction

of the mean E[X], the variance Var[X], or the standard deviation Var1/2[X] (see, e.g.,

Chapter 5 in Gerber, 1979). A considerable number of other differently constructed

actuarial pricing functionals can be found in, e.g., Goovaerts et al. (1984), Kaas et al.

(1994), Wang (1996), Young (2004), Denuit et al. (2005), Pflug and Römisch (2007).

Naturally, we discuss only some pricing functionals without attempting to give a detailed

account of the research area or literature.

We proceed with one of the most general and widely considered methods for construct-

ing loaded actuarial pricing functionals. It starts with the tail representation
∫∞
0

FX(x)dx

of the net premium E[X]. By lifting up the de-cumulative distribution function (ddf)

FX = 1− FX with a function g such that g(t) ≥ t for all t ∈ [0, 1], we obtain the loaded

pricing functional πg : X → [0,∞] defined by the formula (see Denneberg, 1994; Wang,

1995, 1996; Wang et al., 1997; Wang, 1998)

πg[X] =

∫ ∞

0

g(FX(x))dx. (2.1)

The distortion function g : [0, 1] → [0, 1] is usually right-continuous and such that

g(0) = 0 and g(1) = 1, in addition to the already noted bound g(t) ≥ t, which is

automatically satisfied if the function g is assumed, or chosen, to be concave. Under
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these conditions, we define the ‘distorted’ cdf Fg,X(x) = 1 − g(FX(x)), which in turn

implies the representation

πg[X] =

∫ ∞

0

F g,X(x)dx. (2.2)

Hence, with Xg denoting a random variable with the cdf Fg,X , the right-most integral of

equation (2.2) can be written as the expectation E[Xg], thus implying that πg[X] = E[Xg].

The loading property of the distortion pricing functional can therefore be rewritten as the

bound E[Xg] ≥ E[X] for all X ∈ X .

Wang et al. (1997) have observed that if the general pricing functional π satisfies certain

axioms, then the functional becomes the distorted pricing functional πg for a distortion

function g. For additional information on the axioms as well as for their critique, we refer

to, for example, Young (2004), Denuit et al. (2005), and references therein.

There are loaded actuarial pricing functionals that do not admit representation (2.1) for

any distortion function g, and we refer to Denuit et al. (2005) for examples. Some pricing

functionals such as Esscher’s and modified variance do not obviously imply reformulations

in the form of πg. However, note that the two aforementioned actuarial pricing functionals

(i.e., Esscher’s and modified variance) can be easily expressed as

πw[X] =
E[Xw(X)]

E[w(X)]
(2.3)

for some weight functions w. Indeed, with w(x) = etx and w(x) = x, we have the Esscher

and modified variance pricing functionals, respectively. In general, equation (2.3) defines

the functional

πw : X → [0,∞],

which Furman and Zitikis (2008a) call the weighted pricing functional, assuming that the

weight function w is non-negative and non-decreasing to ensure the loading property.

For example, the conditional tail expectation (CTE) E[X|X ≥ F−1
X (p)] defines a

weighted pricing functional πw with w(x) = 1{x ≥ F−1
X (p)}, where 1 is the indicator

function and F−1
X (p) is the p-th quantile of the cdf FX . Interestingly, the distortion pric-

ing functional πg also falls into the class of weighted pricing functionals πw, provided that

the distortion function g is differentiable and FX is continuous. Indeed, we easily check

the equation

πg[X] = E[Xg′(FX(X))], (2.4)
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which has been extensively utilized by Tsanakas and Barnett (2003), Tsanakas and Desli

(2003), Tsanakas (2004), Tsanakas and Christofides (2006), Tsanakas (2008). The right-

hand side of equation (2.4) is a weighted pricing functional. Indeed, choose w(x) =

g′(FX(x)) as the weight function and note that E[w(X)] = 1 due to E[w(X)] =
∫ 1

0
g′(t)dt

and the boundary conditions g(0) = 0 and g(1) = 1. For a set of examples of the actuarial

weighted pricing functional πw : X → [0,∞], see Table 2.1.

Actuarial pricing functionals w(x) πw[X]

Net const E[X]

Modified variance x E[X] + Var[X]/E[X]

Size-biased xt E[X1+t]/E[Xt]

Esscher etx E[XetX ]/E[etX ]

Aumann-Shapley etFX(x) E[XetFX(X)]/E[etFX(X)]

Kamps 1− e−tx E[X(1− e−tX)]/E[(1− e−tX)]

Excess-of-loss 1{x ≥ t} E[X|X ≥ t]

Distorted g′(FX(x)) E[Xg′(FX(X))]

Proportional hazard pF
p−1

X (x) pE[XF
p−1

X (X)]

Conditional tail expectation 1{x ≥ xp} E[X|X ≥ xp]

Modified tail variance x1{x ≥ xp} E[X|X ≥ xp] + Var[X|X ≥ xp]/E[X|X ≥ xp]

Table 2.1. Examples of the actuarial weighted pricing functional πw : X →
[0,∞] for various weight functions w with the notation xp = F−1

X (p). Both

t ∈ [0,∞) and p ∈ (0, 1] are fixed parameters.

We have already noted above that πg[X] can be written as the expectation E[Xg] of

the ‘distorted’ random variable Xg. Likewise, the weighted pricing functional value πw[X]

can be expressed as the expectation E[Xw] of a ‘weighted’ random variable Xw, whose

cdf is

Fw,X(x) =
E[1{X ≤ x}w(X)]

E[w(X)]

(see, e.g., Patil and Rao, 1978; Patil et al., 1988; Rao, 1997; Patil, 2002). The Fubini

theorem implies that πw[X] is equal to the integral
∫∞
0

Fw,X(x)dx, and so we have the

equation

πw[X] = E[Xw]. (2.5)
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Consequently, the loading property can be written as the bound E[Xw] ≥ E[X] for all

X ∈ X . The weighted pricing functional πw is loaded whenever the non-negative weight

function w is non-decreasing (see Lemmas 1 and 3 in Lehmann, 1966). Note also that in

view of the equation

πw[X] = E[X] +
Cov[X,w(X)]

E[w(X)]
, (2.6)

the loading property πw[X] ≥ E[X] is equivalent to the non-negativity of the covariance

Cov[X, w(X)]. In later sections equation (2.6) will play other important roles. For recent

results concerning the non-negativity of covariances, we refer to Zucca (2008).

We conclude this section with notes related to equation (2.4) that has been frequently

used for deriving statistical inferential results for πg[X]. Namely, assuming that FX

is continuous, the right-hand side of equation (2.4) can be written as the expectation

E[F−1
X (U)g′(1 − U)], where U is the uniform on [0, 1] random variable. The expecta-

tion, which is equal to
∫ 1

0
F−1

X (t)ψ(t)dt with the ‘score’ function ψ(t) = g′(1 − t), is the

asymptotic mean of an L-statistic (see, e.g., Serfling, 1980). Hence, the well developed

asymptotic theory of these statistics (see, e.g., Serfling, 1980) can now be utilized to derive

desired statistical inferential results concerning πg[X]. For further details on the topic,

we refer to Jones and Zitikis (2003, 2005, 2007), Jones et al. (2006), Brazauskas et al.

(2007), Brazauskas et al. (2009). Schechtman and Zitikis (2006) elaborate on the differ-

ence between the expectations E[F−1
X (U)g′(1−U)] and E[Xg′(FX(X))] for discontinuous

cdf’s FX . Brazauskas et al. (2008) develop statistical inferential results concerning the

conditional tail expectation E[X|X ≥ F−1
X (p)].

3. Actuarial weighted functionals and the log-exponential family

Before generalizing πw : X → [0,∞] into an economic pricing functional, which is

the subject matter of the next section, we first provide several hints and techniques for

calculating πw[X].

Given a sufficiently large data set, we can estimate πw[X] non-parametrically by, for

example, replacing the cdf F in a formula for πw[X] by the empirical cdf Fn. But this

non-parametric approach may not be always adequate. If so, then assuming a parametric

distribution of X, one would then need to express πw[X] in terms of the distribution
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parameters, which we denote by θ1, . . . , θk, and then replace each parameter by an em-

pirical estimator, such as the maximum likelihood estimator or some other one (see, e.g.,

Brazauskas et al., 2009).

Expressing πw[X] in terms of the parameters may, however, be challenging and for

this reason we next discuss several efficient ways for solving the problem. We start with

an earlier derived equation πw[X] = E[Xw], which suggests that if we determine the

distribution of the weighted random variable Xw, then calculating the expectation E[Xw]

would be a standard exercise. To proceed, we further restrict ourselves to only those

weight functions w that are of the form

w(x) = xc

for some constant c > 0. Then there is a large class of parametric cdf’s such that for

any member FX of the class the corresponding weighted cdf Fw,X is also a member of the

class, although with different parameters. Namely, let FX be an absolutely continuous

cdf with the density (pdf) fX of the form

fX(x; θ1, θ2, . . . , θk, a) =
xh(θ1,θ2,...,θk)a(x; θ2, . . . , θk)∫∞

0
yh(θ1,θ2,...,θk)a(y, θ2, . . . , θk)dy

, (3.1)

where x 7→ a(x; θ2, . . . , θk) is a non-negative function that does not depend on θ1, and

h(θ1, θ2, . . . , θk) is such that

h(θ1, θ2, . . . , θk) + c = h(θ∗1,c, θ2, . . . , θk) (3.2)

for some θ∗1,c = g(θ1, θ2, . . . , θk, c) and a function g. Under these assumptions, which are

more detailed than in the paper by Patil and Ord (1978), we check that if a cdf F has

pdf (3.1), then the size-biased cdf

Fc,X(x) =
E[1{X ≤ x}Xc]

E[Xc]

also belongs to the same parametric family. The following examples, most of which follow

Patil and Ord (1978), illustrate the above general class of distributions.

Example 3.1. The gamma random variable X ∼ Ga(γ, α) has the pdf

αγxγ−1

Γ(γ)
e−αx1{x > 0},

which can be written as fX(x; γ, α, a) with h(γ, α) = γ and the function a(x) = x−1e−αx1{x >

0}. We have the equation h(γ, α)+c = h(γ∗, α) with γ∗ = γ+c. Hence, Xc ∼ Ga(γ+c, α).
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Example 3.2. The Pareto random variable X ∼ Pa(α, β) has the pdf

αβα

xα+1
1{x ≥ β},

which can be written as fX(x; α, β, a) with h(α, β) = −α and a(x) = x−11{x ≥ β}. We

have the equation h(α, β) + c = h(α∗, β) with α∗ = α− c. Hence, Xc ∼ Pa(α− c, β).

Example 3.3. The log-normal random variable X ∼ LogN(µ, σ2) has the pdf

1

x
√

2πσ
exp

{
− 1

2σ2
(log x− µ)2

}
1{x > 0},

which can be written as fX(x; µ, σ2, a) with h(µ, σ2) = µ/σ2 and the function a(x) =

x−1 exp{−(log x)2/(2σ2)}1{x > 0}. We have the equation h(µ, σ2) + c = h(µ + cσ2, σ2)

with µ∗ = µ + cσ2. Hence, Xc ∼ LogN(µ + cσ2, σ2).

Example 3.4. The inverse gamma random variable X ∼ IGa(γ, α) has the pdf

αγ

Γ(γ)xγ+1
e−α/x1{x > 0},

which can be written as fX(x; γ, α, a) with h(γ, α) = −γ and a(x) = x−1e−α/x1{x > 0}.
We have the equation h(γ, α) + c = h(γ∗, α) with γ∗ = γ− c. Hence, Xc ∼ IGa(γ− c, β).

The above general class of distributions can further be extended into the log-exponential

family (LEF) of cdf’s denoted by FX(x; λ, ν) and defined by the equation

FX(dx; λ, ν) = exp{λ log x− κ(λ)}ν(dx),

where λ is a parameter, ν is a measure, and κ(λ) = log
∫∞

0
xλν(dx) is the normalizing

constant. Note that the pdf fX of equation (3.1) is a member of LEF with the parameter

λ = h(θ1, θ2, . . . , θk) and the measure ν(dx) = a(x)dx.

To illustrate the convenience of working with the LEF random variable X, we next

calculate the excess-of-loss premium E[X|X ≥ x]. We have that

E[X|X ≥ x] =
1

FX(x; λ, ν)

∫

[x,∞)

xeλ log x−κ(λ)ν(dx)

=
eκ(λ+1)−κ(λ)

FX(x; λ, ν)

∫

[x,∞)

e(λ+1) log x−κ(λ+1)ν(dx)

=

∫∞
0

xλ+1ν(dx)∫∞
0

xλν(dx)

FX(x; λ + 1, ν)

FX(x; λ, ν)
. (3.3)
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For example, when X ∼ Ga(γ, α), which is a member of the LEF, then the first ratio on

the right-hand side of equation (3.3) is equal to γ/α. Since FX(x; λ + 1, ν) is the gamma

distribution Ga(γ + 1, α), we therefore have that

E[X|X ≥ x] =
γ

α

G(x; γ + 1, α)

G(x; γ, α)
,

where G(x; γ, α) denotes the gamma ddf. Setting x = F−1
X (p) in the above formula, we

obtain the corresponding one for the actuarial CTE pricing functional derived by Lands-

man and Valdez (2005) within the framework of the exponential family of distributions

(see Jørgensen, 1997).

Unlike the gamma distribution, the Pareto distribution Pa(α, β) is not a member of the

just noted exponential family, but it nevertheless belongs to the LEF as we have noted

in an earlier example. Hence, when X ∼ Pa(α, β), we can proceed with equation (3.3).

The first ratio on the right-hand side of the equation is equal to αβ/(α − 1), where we

assume that α > 1 for the expectation E[X] to be finite. Since FX(x; λ + 1, ν) is the

Pareto distribution Pa(α− 1, β), we have the equation

E[X|X ≥ x] =
αβ

α− 1

P (x; α− 1, β)

P (x; α, β)
, (3.4)

where P (x; α, β) denotes the Pareto ddf. The right-most ratio of equation (3.4) is equal

to x/β. Interestingly, this linear form of the function x 7→ E[X|X ≥ x] is a characteristic

property of the Pareto distribution (see, e.g., Arnold, 1983).

We conclude this section with a general note that in spite of the popularity of the

exponential family, which has been used in several actuarial research areas including

credibility theory, risk modeling and pricing (see, e.g., Landsman and Valdez, 2005, and

references therein), this paper seems to be the first one to introduce the log-exponential

family into the actuarial context.

4. Departing from conditional state independence

The actuarial weighted pricing functional πw : X → [0,∞] can naturally be extended

(see Furman and Zitikis, 2007) beyond conditional state independence using the functional

Πw : X × X → [0,∞]
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defined by the formula

Πw[X,Y ] =
E[Xw(Y )]

E[w(Y )]
.

We call Πw the economic weighted pricing functional. With appropriately chosen weight

functions w, the functional Πw reduces to a number of special economic pricing functionals,

some of which are recorded in Table 4.1.

Economic pricing functionals w(y) Πw[X, Y ]

Net const E[X]

Modified covariance y E[X] + Cov[X,Y ]/E[Y ]

Size-biased yt E[XY t]/E[Y t]

Esscher ety E[XetY ]/E[etY ]

Aumann-Shapley etFY (y) E[XetFY (Y )]/E[etFY (Y )]

Kamps 1− e−ty E[X(1− e−tY )]/E[(1− e−tY )]

Excess-of-loss 1{y ≥ t} E[X|Y ≥ t]

Distorted g′(F Y (y)) E[Xg′(F Y (Y ))]

Proportional hazard pF
p−1

Y (y) pE[XF
p−1

Y (Y )]

Conditional tail expectation 1{y ≥ yp} E[X|Y ≥ yp]

Modified tail covariance y1{y ≥ yp} E[X|Y ≥ yp] + Cov[X,Y |Y ≥ yp]/E[Y |Y ≥ yp]

Table 4.1. Examples of the economic weighted pricing functional Πw : X ×
X → [0,∞] for various weight functions w with the notation yp = F−1

Y (p). Both

t ∈ [0,∞) and p ∈ (0, 1] are fixed parameters.

Note that some weight functions w in Table 4.1 are independent of any cdf and other

ones are dependent on the cdf of Y . To make a distinction between the two cases may turn

out to be crucial, especially when ordering risks, comparing economic weighted pricing

functionals corresponding to different ‘background’ risks Y , developing statistical infer-

ence. Hence, we may sometimes need to indicate the dependence of the weight function

w on the cdf FY by writing wFY
or wY instead of the simple w. In turn, we may need to

use the more detailed notation

ΠwY
[X,Y ] =

E[XwY (Y )]

E[wY (Y )]
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for the earlier introduced Πw[X,Y ], if a confusion is possible. To get an insight into the

aforementioned statistical inferential results and with them associated need for using wFY

instead of just w, we refer to Brazauskas et al. (2008) where the CTE pricing functional is

estimated in the case X = Y , and also to Schechtman et al. (2008) where not necessarily

equal X and Y are considered. We note in this regard that Schechtman et al. (2008)

deal with E[X1{Y ≤ F−1
Y (p)}], which is the ‘dual’ version of E[X|Y ≥ F−1

Y (p)].

There are good reasons for considering even a more general economic pricing functional

Πv,w : X × X → [0,∞] defined by augmenting Πw with a function v : [0,∞) → [0,∞)

as follows: Πv,w[X,Y ] = E[v(X)w(Y )]/E[w(Y )]. Obviously, when v(x) = x, then Πv,w

reduces to Πw. Furthermore, when v(x) = 1{x ≤ y}, then Πv,w[Y, Y ] becomes the

weighted cdf Fw(y). The function v(x) = xt emerges when considering conditional tail

variance and higher order moments. The economic pricing functional Πv,w is of course

compatible with the corresponding actuarial weighted pricing functional πv,w : X → [0,∞]

defined by

πv,w[X] =
E[v(X)w(X)]

E[w(X)]
.

The latter formula can be traced back to Remark 1 in Heilmann (1989). Note that the

functional πv,w is loaded when both functions v and w are non-decreasing (see Lemma 1(i &

iii) and Lemma 3 in Lehmann, 1966). Same conditions on v and w, in addition to positive

quadrant dependence of X and Y , imply the loading property for the general economic

pricing functional Πv,w. For positively quadrant and other types of dependence structures,

we refer to, for example, Lehmann (1966), Mari and Kotz (2001), and references therein.

We conclude this section with several interpretations of Πv,w[X, Y ] which are of course

also applicable to Πw[X, Y ] since the latter is Πv,w[X, Y ] with v(x) = x. First, Πv,w[X, Y ]

can be viewed as the (only) solution of the following minimization problem:

Πv,w[X, Y ] = arg min
a

E[(v(X)− a)2w(Y )].

Second, Πv,w[X,Y ] can be viewed as the mean of the regression function r(y) = E[v(X)|Y =

y] with respect to the weighted distribution Fw,Y , that is,

Πv,w[X, Y ] = E[r(Yw)],

where Yw is a random variable with the cdf Fw,Y . Note that when v(x) = x−E[X], then

r(y) is the centered regression function rX|Y (y) = E[X − E[X]|Y = y], which will play
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an important role in Section 6 below. Third, analogously to equation (2.6), we have

Πv,w[X, Y ] = E[v(X)] +
Cov[v(X), w(Y )]

E[w(Y )]
, (4.1)

where the ratio on the right-hand side can be thought of as the safety loading due to the

risk X ‘surrounded’ by the background risk Y . When the two risks are uncorrelated, the

loading is of course equal to zero.

5. Axiomatic properties of economic pricing functionals

Axiomatic properties of actuarial pricing functionals have been extensively studied in

the literature (see, e.g., Gerber, 1979; Goovaerts et al., 1984; Kaas et al., 1994; Wang

et al., 1997; Artzner et al., 1999; Young, 2004; Denuit et al., 2005; Pflug and Römisch,

2007). The literature discussing properties of economic pricing functionals is less volumi-

nous, although it has been actively developing (see, e.g., Denault, 2001; Hesselager and

Andersson, 2002; Dhaene et al., 2003; Goovaerts et al., 2003; Venter, 2004; Kalkbrener,

2005; Kim, 2007; Meucci, 2007; Pflug and Römisch, 2007).

In this section we formulate a number of properties that the economic pricing functional

Π may be desired or required to satisfy, depending on circumstances or aims of the decision

maker. Specifically, let {X1, . . . , XK} denote a pool of risks with the partial aggregate

risk S∆ =
∑K

k∈∆ Xk, where ∆ ⊆ {1, . . . , K}. The overall risk is S = X1 + · · ·+XK , which

is of course S∆ with ∆ = {1, . . . , K}. We are interested in properties that the functional

(Xk, S) 7→ Π[Xk, S] or, more generally, (S∆, S) 7→ Π[S∆, S] may be desired to satisfy. We

start with the already noted non-negative loading and other simple properties, and then

focus on more advanced ones by first formulating them for Π and then specializing to Πw.

5.1. Non-negative loading and no-unjustified loading. The economic pricing functional Π

is (non-negatively) loaded if the bound

Π[Xk, S] ≥ E[Xk] (5.1)

holds for all pairs (Xk, S). In the context of the economic weighted pricing functional

Πw, we have bound (5.1) when Xk and w(S) are positively correlated. This happens

when, for example, Xk and S are positively quadrant dependent and the function w is

non-decreasing (see Lemma 1(iii) and Lemma 3 in Lehmann, 1966).
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Note that when Xk = c0 (a constant), then bound (5.1) reduces to Π[c0, S] ≥ c0.

However, it is reasonable to require that the price of a constant risk is equal to the risk

itself. This leads to the no-unjustified loading property:

Π[c0, S] = c0. (5.2)

The economic weighted pricing functional Πw obviously satisfies this property.

5.2. Full-additivity and consistency. It is often natural to require that the sum of the

prices of individual risks is equal to the price of the aggregate risk:

K∑

k=1

Π[Xk, S] = Π[S, S]. (5.3)

Functionals Π satisfying equation (5.3) are called fully additive. Note that the right-hand

side of equation (5.3) is equal to π[S] due to the assumed compatibility of the economic

and actuarial pricing functionals.

A more general condition than the full additivity is that of consistency, which means

∑

k∈∆

Π[Xk, S] = Π[S∆, S] (5.4)

for every subset ∆ ⊆ {1, . . . , K}. The economic weighted pricing functional Πw is obvi-

ously fully additive and consistent.

5.3. No-undercut and consistent no-undercut. The economic pricing functional Π satisfies

the no-undercut property if

∑

k∈∆

Π[Xk, S] ≤ Π[S∆, S∆] (5.5)

for every subset ∆ ⊆ {1, . . . , K}. When Π is fully additive, then the no-undercut property

becomes equivalent to

Π[S∆, S] ≤ Π[S∆, S∆] (5.6)

for every ∆ ⊆ {1, . . . , K}. In general, we say that the (fully-additive or not) economic

pricing functional Π satisfies the consistent no-undercut property if bound (5.6) holds

for every ∆ ⊆ {1, . . . , K}. Since the weighted pricing functional Πw is fully additive,

the no-undercut and consistent no-undercut properties coincide and can be written with

appropriately specified weight functions as follows:

ΠwS
[S∆, S] ≤ ΠwS∆

[S∆, S∆]. (5.7)
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Verification of bound (5.7) might be a challenging task. Furman and Zitikis (2008b)

noted a sufficient condition, which states that if the function

r(x) =
E[wS∆

(S∆)| S∆ = x]

E[wS(S)| S∆ = x]

is non-decreasing, then bound (5.7) holds. This sufficient condition has proved particularly

useful when w does not depend on any cdf. To illustrate the point, we specialize the

condition to the case when the sums S∆ and S{∆ are independent. Under this assumption,

and also assuming that w does not depend on any cdf, the function r reduces to

r(x) =
w(x)

E[w(x + Z)]
, (5.8)

where Z = S − S∆. For example, let w(x) = 1{x ≥ t}, which gives the economic

excess-of-loss pricing functional. Then we have r(x) = 1{x ≥ t}/P[Z ≥ t − x], which

is a non-decreasing function. Next, let w(x) = xt, which yields the economic size-

biased pricing functional. In this case we have r(x) = 1/E[(1 + x−1Z)t], which is a

non-decreasing function. When w(x) = 1 − exp{−tx}, then we have the economic

Kamps pricing functional. The corresponding function r is increasing because its de-

rivative r′(x) = te−tx(1− at)/(1− ate
−tx)2 is positive, where at = E[e−tZ ]. Finally, when

w(x) = exp{tx}, then we have the economic Esscher pricing functional with r(x) ≡ c, a

constant.

When the weight function w depends on FY , the aforementioned sufficient condition of

Furman and Zitikis (2008b) is frequently either too strong to yield an appropriate result

or too difficult to verify. For this reason, Furman and Zitikis (2008b) have used brute

force calculations to show that, for example, the economic CTE pricing functional satisfies

consistent no-undercut whereas the MTCov pricing functional violates it.

5.4. Translativity. The general economic pricing functional Π is (positively) sub-translative,

translative, and super-translative if, with the sign ./ standing for ≤ , = and ≥ respec-

tively, we have that

Π[Xk + a, S + a] ./ a + Π[Xk, S] (5.9)

for every constant a ≥ 0. In the case of Πw, statement (5.9) reduces to

Πw[Xk, S + a] ./ Πw[Xk, S]. (5.10)
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Consequently, for the economic Esscher pricing functional, we have statement (5.10) with

the sign ./ standing for ‘=’. We also have the equality ‘=’ for the economic CTE pricing

functional since S + a ≥ F−1
S+a(p) is equivalent to S ≥ F−1

S (p). The equality ‘=’ also

holds for the economic distorted pricing functional since F S+a(S + a) = F S(S). In more

complex cases, relationships (5.10) can be checked by establishing the monotonicity of

r(x) =
E[w(S)|Xk = x]

E[w(S + a)|Xk = x]
. (5.11)

Furman and Zitikis (2008b) have used this observation to analyze the Kamps pricing

functional.

5.5. Homogeneity. The economic pricing functional Π is (positively) sub-homogeneous,

homogeneous, and super-homogeneous if, with ./ standing for ≤ , = and ≥ respectively,

we have that

Π

[
bXk,

∑

i 6=k

Xi + bXk

]
./ b Π[Xk, S] (5.12)

for every b > 0. For the weighted pricing functional Πw, statement (5.12) reduces to

Πw[Xk, S + (b− 1)Xk] ./ Πw[Xk, S]. (5.13)

Relationship (5.13) can be checked using the above noted technique with an appropriately

defined function r or using some ad hoc calculations.

5.6. Additivity. The economic pricing functional Π is (positively) sub-additive, additive

and super-additive if, with ./ standing for ≤ , = and ≥ respectively, we have

Π[Xk + Y, S + Y ] ./ Π[Xk, S] + Π

[
Y,

∑

i6=k

Xi + Y

]
(5.14)

for every Y ∈ X . Note that property (5.14) can be viewed as a generalization of the

earlier discussed translativity property: set Y = a.

6. Stein-type covariance decompositions

We have so far concentrated mainly on the axiomatic basis of the economic weighted

pricing functional Πw. From the applications point of view it is important to be able to

calculate the functional given a bivariate distribution of (X,Y ) and a weight function w.

In general, this poses a challenging problem. For results and related discussions, mainly

in the context of the economic CTE pricing functional, we refer to Panjer and Jing (2001),

Panjer (2002), Landsman and Valdez (2003), Cai and Li (2005), Furman and Landsman
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(2005, 2006b), Chiragiev and Landsman (2007), Vernic (2008), Dhaene et al. (2008),

Furman and Zitikis (2008a, 2008b), and references therein.

In this section we discuss a general technique that helps with the task. For this, we

first rewrite the economic weighted pricing functional in the form

Πw[X,Y ] = E[X] +
Cov[X,w(Y )]

E[w(Y )]
, (6.1)

which generalizes the earlier noted equation (2.6). Next we observe that in a number of

situations the covariance Cov[X, w(Y )] can be split into the product of two components:

Cov[X, w(Y )] = C(FX,Y )D(w,FX , FY ), (6.2)

where C(FX,Y ) does not depend on weight function w, and D(w,FX , FY ) does not depend

on the joint cdf FX,Y .

To illustrate the point, assume that (X,Y ) follows a bivariate normal distribution and

the weight function w is differentiable. Then Stein’s lemma (see Stein, 1981) says that

Cov[X,w(Y )] = Cov[X, Y ]E[w′(Y )]. (6.3)

Thus, decomposition (6.2) holds with C(FX,Y ) = Cov[X, Y ] and D(w, FX , FY ) = E[w′(Y )].

In fact, it is more in line with our following considerations to write C(FX,Y ) as the ratio

Cov[X, Y ]/Var[Y ] and D(w, FX , FY ) as the product Var[Y ]E[w′(Y )]. Equation (6.3),

when applied on the right-hand side of equation (6.1), gives

Πw[X, Y ] = E[X] + Cov[X,Y ]
E[w′(Y )]

E[w(Y )]
, (6.4)

which accomplishes the desired separation of the weight function w from the dependence

structure, which is condensed in the covariance Cov[X, Y ]. If, for example, the weight

function is w(y) = y, which gives rise to the economic MCov pricing functional, then the

ratio E[w′(Y )]/E[w(Y )] is equal to 1/E[Y ], and thus Πw[X,Y ] = E[X]+Cov[X, Y ]/E[Y ].

If the weight function is w(y) = ety, in which case we have the Esscher pricing functional,

then the ratio E[w′(Y )]/E[w(Y )] is equal to t, and thus Πw[X, Y ] = E[X]+ t ·Cov[X,Y ].

Decomposition (6.3) holds only when the pair (X, Y ) is bivariate normal and the weight

function w differentiable. However, any of the two conditions may not be realistic, or may

simply be violated, depending on the problem at hand. Landsman (2006), Landsman and

Nešlehová (2008) have succeeded in relaxing the normality assumption by establishing an
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analog of Stein’s lemma for bivariate elliptical distributions, which are symmetric. How-

ever, most insurance risks are positively skewed and non-negatively supported. Moreover,

imposing the differentiability on w may simply be impossible, as is the case with the weight

functions w(y) = 1{y ≥ t}, w(y) = 1{y ≥ F−1
Y (p)}, and w(y) = y1{y ≥ F−1

Y (p)} corre-

sponding to the excess-of-loss, conditional tail expectation, and modified tail covariance

pricing functionals, respectively (see Table 4.1).

It turns out that neither bivariate ellipticity of (X, Y ) nor differentiability of w are nec-

essary for deriving Stein-type decompositions that suit our purpose. Indeed, as noted by

Furman and Zitikis (2008c,d), the possibility of separating the joint distribution of (X,Y )

from the weight function w is actually based not on a particular bivariate distribution but

on a particular form of the centered regression function rX|Y (y) = E[X − E[X]|Y = y].

Namely, assume that the function admits the decomposition

rX|Y (y) = C(FX,Y )q(y, FX , FY ), (6.5)

where C(FX,Y ) is a constant that does not depend on w, and y 7→ q(y, FX , FY ) is a function

that does not depend on the joint cdf FX,Y . Note in passing that E[q(Y, FX , FY )] = 0.

Under assumption (6.5), it is straightforward to check that decomposition (6.2) holds with

D(w, FX , FY ) = E[w(Y )q(Y, FX , FY )].

Equation (6.5) is satisfied for a number of symmetric and non-symmetric bivariate

distributions and also for non-differentiable weight functions. To illustrate, consider the

case when (X, Y ) is bivariate normal but the function w may not be differentiable. Then

equation (6.5) holds with C(FX,Y ) = Cov[X, Y ]/Var[Y ] and q(y, FX , FY ) = y − E[Y ].

Hence, we have that

Cov[X, w(Y )] = Cov[X, Y ]
Cov[Y, w(Y )]

Var[Y ]
. (6.6)

Unlike Stein’s equation (6.3), equation (6.6) does not require differentiability of w and

can therefore be utilized to evaluate, for example, the economic CTE pricing functional.

Indeed, using equations (6.1) and (6.6) with w(y) = 1{y ≥ F−1
Y (p)}, we obtain that

CTEp[X,Y ] = E[X] + Cov[X, Y ]
fY (F−1

Y (p))

1− p
. (6.7)

Equation (6.7) has been established using direct calculations by Panjer and Jing (2001),

Panjer (2002).
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For corresponding results in the elliptical case, we refer to Landsman and Valdez (2003).

We only note here that when the pair (X, Y ) follows the bivariate elliptical distribution

E2(µ,B, ψ) (see, e.g., Fang et al., 1987, for details), then equation (6.5) holds with

C(FX,Y ) =
βX,Y

β2
Y

,

where βX,Y is an off-diagonal entry and β2
Y is a diagonal entry of the positive definite

matrix B. In the normal case we have βX,Y = Cov[X,Y ] and β2
Y = Var[Y ].

To demonstrate that the above general idea works with non-symmetric distributions,

let (X, Y ) follow the bivariate Pareto distribution of the second kind Pa2(II)(µ, θ, a) (see

Arnold, 1983). Then equation (6.5) holds with C(FX,Y ) = Cov[X, Y ]/Var[Y ], which can

be rewritten as

C(FX,Y ) =
θ1

aθ2

,

where the parameters have the same meaning as on p. 603 of Kotz et al. (2000).

For another example, assume that (X,Y ) follows the bivariate gamma distribution

Ga2(α,β,γ) of Mathai and Moscopoulos (1991). We easily check that equation (6.5)

holds with C(FX,Y ) = Cov[X, Y ]/Var[Y ], which can be rewritten as

C(FX,Y ) =
α0β1

(α0 + α2)β2

,

where the parameters have the same meaning as in Corollary 1 on p. 143 of Mathai and

Moscopoulos (1991). We conclude this example with a note that the bivariate gamma

distribution can be utilized for modeling risks when individual underlying risks are in-

dependent but their observable outcomes are contaminated by a background risk, thus

making the observations dependent. For theory and applications concerning the (multi-

variate) gamma distribution, we refer to Mathai and Moscopoulos (1991).

7. The weighted insurance pricing model

The covariance decomposition discussed in the previous section is well suited for de-

veloping a pricing methodology for insurance risks analogously to the celebrated capital

asset pricing model (CAPM) in finance (see Sharpe, 1964; Lintner, 1965; Mossin, 1966).

Intuitively, the CAPM relates the expected return E[Ri] on asset i to the expected return

E[Rm] on the entire market portfolio m using the equation

E[Ri] = rf + βi,m(E[Rm]− rf ), (7.1)
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where rf is the riskless rate of return and βi,m is a proportionality coefficient known as

‘beta’ and assumed to be of the form

βi,m =
Cov[Ri, Rm]

Cov[Rm, Rm]
(7.2)

(see Sharpe, 1964; Lintner, 1965; Mossin, 1966; Owen and Rabonovitch, 1983). Interest-

ingly, while the model initially incorporates investor’s utility function, the above pricing

equation does not seem to rely on the function. This is indeed true under certain as-

sumptions on the form of investor’s utility function and/or the class of distributions of

(Ri, Rm). In particular, it has been shown that the CAPM equation holds independently

of the investor’s utility when the pair (Ri, Rm) follows symmetric distributions such as

the bivariate normal or, more generally, bivariate elliptical (see, e.g., Fama, 1970; Owen

and Rabinovitch, 1983; Hamada and Valdez, 2008).

Recently, Furman and Zitikis (2008d) have demonstrated that the CAPM is also valid

for a class of bivariate distributions spanning well beyond the symmetric ones. Making

use of this finding, we now initiate an insurance pricing model, which imitates the CAPM

in its implications and also contributes to the computational tractability of the economic

weighted pricing functional Πw.

To elucidate our main line of reasoning, we start assuming bivariate normality, then

rewrite πw[Y ] in the form E[Y ] + Cov[Y, w(Y )]/E[w(Y )] and, finally, using equations

(6.1) and (6.6), we obtain that

Πw[X, Y ]− E[X] =
Cov[X,Y ]

Var[Y ]

Cov[Y, w(Y )]

E[w(Y )]

=
Cov[X,Y ]

Var[Y ]

(
πw[Y ]− E[Y ]

)
. (7.3)

Equation (7.3) implies that in order to calculate Πw[X, Y ], the only serious problem is

to know how to calculate πw[X], but we have already discussed the topic in Section 3.

The remaining quantities, that are the mean, the variance, and the covariance on the

right-hand side of equation (7.3), are parameters of the bivariate normal distribution and

therefore are either known or estimated from data. As a corollary to equation (7.3), we

have, for example, the following convenient formula for calculating the economic CTE

pricing functional:

CTEp[X, Y ] = E[X] +
Cov[X, Y ]

Var[Y ]

(
CTEp[Y ]− E[Y ]

)
.



22

Equation (7.3) implies that the ratio of Πw[X, Y ] − E[X] and πw[Y ] − E[Y ] does not

depend on the weight function w, which is in line with the CAPM idea and also elucidates

the main idea of the weighted insurance pricing model. Generally, if the pair (X,Y )

possesses a linear regression function

rX|Y (y) = C(FX,Y )
(
y − E[Y ]

)
, (7.4)

then we have that

Πw[X,Y ] = E[X] + C(FX,Y )
(
πw[Y ]− E[Y ]

)
. (7.5)

We call equation (7.5) the weighted insurance pricing model (WIPM). It literally means

that the economic premium due to the risk X in the pool of risks exceeds the net premium

E[X] by a term which is proportional to the safety loading of the pool’s overall risk Y .

In view of the fact that the validity of WIPM is based only on the linearity of the

centered regression function rX|Y (y), the WIPM holds for a large number of bivariate dis-

tributions. For example, elliptical, Pareto and gamma distributions have linear regression

functions. Pearson’s bivariate distributions, of which the Pareto of the second kind is a

member, are also characterized by linear regression functions (see Kotz et al., 2000). The

already noted bivariate gamma distribution is a member of a large class of distributions

constructed using the so-called trivariate reduction method (see Mardia, 1970). Necessary

and sufficient conditions for these distributions to have linear regression functions have

been discussed by Fix (1949).

The WIPM has another interesting application. Namely, suppose that we are interested

in comparing the safety loadings of two risks, X∗ and X∗∗. Using the WIPM equation,

the ratio of the loadings Πw[X∗, Y ] − E[X∗] and Πw[X∗∗, Y ] − E[X∗∗] is the ratio of the

coefficients C(FX∗,Y ) and C(FX∗∗,Y ). This ratio is free of the weight function w and can

therefore be readily evaluated, given bivariate distributions of (X∗, Y ) and (X∗∗, Y ).

8. Computing pricing functionals via weighted distributions

We have so far investigated the actuarial and economic weighted pricing functional πw

and Πw, and demonstrated their tractability in a variety of situations. In this section we

analyze the general economic pricing functional Πv,w that has been introduced at the end

of Section 1.
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The functional Πv,w is based on two weight functions, v and w, and it is therefore more

difficult to separate the two from FX,Y than to separate just w from FX,Y as we have

done in the case of Πw. To make the task fruitful, throughout this section we therefore

restrict ourselves to the case when X1, . . . , XK are independent although not necessarily

identically distributed risks, or losses, and discuss a technique for calculating Πv,w[X, Y ]

when X = Xi and Y =
∑K

k=1 ckXk, where ck are non-negative constants. The technique

hinges on the observation that under the above assumptions the expectation E[v(Xi)w(Y )]

can be written in the form

E[v(Xi)w(Y )] = E[v(Xi)]E

[
w

(
ciXi,v +

∑

k 6=i

ckXk

)]
,

where the ‘weighted’ random variable Xi,v is independent of the other ones and has the

‘weighted’ cdf

FXi,v
(x) =

E[v(Xi)1{Xi ≤ x}]
E[v(Xi)]

. (8.1)

Consequently, we have the formula

Πv,w[Xi, Y ] =
E[v(Xi)]

E[w(Y )]
E

[
w

(
ciXi,v +

∑

k 6=i

ckXk

)]
, (8.2)

and thus the computability of Πv,w[Xi, Y ] mainly hinges on our successful determination

of the cdf of the random variable Xi,v which we have discussed in detail in Section 3.

To illustrate how equation (8.2) works in special cases, let v(x) = xν and w(x) = 1{x ≥
t} for some fixed c > 0 and t > 0. Then from the equation we have that

E

[
Xν

i

∣∣
K∑

k=1

ckXk > t

]
= E[Xν

i ]
F ciXi,ν+

∑K
k 6=i ckXk

(t)

F∑K
k=1 ckXk

(t)
, (8.3)

where the size-biased (see Patil and Rao, 1978) random variable Xi,ν is independent of

X1, . . . , XK and has the ‘weighted’ cdf defined by equation (8.1) with v(x) = xν . Equation

(8.3) has been utilized by Furman and Zitikis (2008a,b), where we also find other references

dealing with the equation.

Given distributions of the random variables X1, . . . , XK , we can calculate the νth mo-

ment of Xk as well as the ddf of
∑K

k=1 ckXk using standard techniques. The ddf of

ciXi,ν +
∑K

k 6=i ckXk can also be calculated using standard techniques, provided that we

know the distribution of Xi,ν , which we have discussed in Section 3. Note in this regard
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that equation (8.3) and LEF related considerations in Section 3 provide laconic proofs of

results by Furman and Landsman (2005) (see, also, Hürlimann, 2001).

Although equation (8.2) is valid for independent risks, it can be applied more generally,

when the risks possess certain dependence structures, such as the one in the background

economy model (see, e.g., Gollier and Pratt, 1996; Heaton and Lucas, 2000; Tsanakas,

2008). Specifically, assume that there is a background risk Z0 and also independent but

not necessarily identically distributed individual risks Z1, . . . , ZK . Assume that all the

risks are independent. The background economy model implies that the individual risks

Z1, . . . , ZK have been contaminated by the background risk Z0 and the following random

variables Xi = ρiZ0+Zi have been observed, where ρi is the share of contamination on the

individual risk Zi by the background risk Z0. Hence, even though we are dealing with the

pool {X1, . . . , XK} of dependent risks, under the above assumptions the overall portfolio

risk Y =
∑K

k=1 ckXk is nevertheless the linear combination
∑K

k=0 dkZk of independent risks

Z0, Z1, . . . , ZK , where d0 =
∑K

k=1 ckρk and di = ci for all 1 ≤ i ≤ K. When v(x) = x,

then we have

Πw[Xi, Y ] = ρiΠw

[
Z0,

K∑

k=0

dkZk

]
+ Πw

[
Zi,

K∑

k=0

dkZk

]
. (8.4)

Since Z0, Z1, . . . , ZK are independent, the two values of the pricing functional Πw on the

right-hand side of equation (8.4) can, for example, be handled using equation (8.2).

9. Summary

In this paper we have explored the role of weighted distributions and the encompassing

nature of weighted pricing functionals in insurance and finance. Many well known actu-

arial and economic pricing functionals have been shown to be special cases of weighted

pricing functionals. Moreover, via a straightforward and natural reformulation of weighted

pricing functionals in terms of covariances, we have established a link between economic

weighted pricing functionals and the celebrated capital asset pricing model, which has in

turn inspired us to suggest a weighted insurance pricing model. Various techniques of

computation of actuarial and economic weighted pricing functionals have been discussed

in detail and illustrated on a number of specific pricing functionals and parametric families

of distributions.
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Bühlmann, Hans. 1984. The General Economic Premium Principle. ASTIN Bulletin

14(1): 13–21.

Cai, Jun, and Haijun Li. 2005. Conditional Tail Expectations for Multivariate

Phase-type Distributions. Journal of Applied Probability 42(3): 810–825.

Chiragiev, Arthur, and Zinoviy Landsman. 2007. Multivariate Pareto Portfolios:

TCE-based Capital Allocation and Divided Differences, Scandinavian Actuarial Journal

2007(4): 261–280.

Denault, Michel. 2001. Coherent Allocation of Risk Capital. Journal of Risk 4(1):

7–21.

Denneberg, Dieter. 1994. Non-additive Measure and Integral. Dordrecht: Kluwer.

Denuit, Michel, Jan Dhaene, Marc Goovaerts, and Rob Kaas. (2005). Ac-

tuarial Theory for Dependent Risks: Measures, Orders and Models. Chichester: Wiley.



26

Deprez, Olivier and Hans Gerber. (1985). On Convex Principles of Premium

Calculation. Insurance: Mathematics and Economics 4: 179 - 189.

Dhaene, Jan, Marc J. Goovaerts, and Rob Kaas. 2003. Economic Capital

Allocation Derived from Risk Measures. With Discussion by Eddy Van den Borre and

Authors’ Reply. North American Actuarial Journal 7(2): 43–59.

Dhaene, Jan, Luc Henrard, Zinoviy Landsman, Antoine Vandendorpe, and

Steven Vanduffel. 2008. Some Results on the CTE-based Capital Allocation Rule.

Insurance: Mathematics and Economics 42(2): 855–863.

Fama, Eugene F. 1970. Efficient Capital Markets: A Review of Theory and Empirical

Work. Journal of Finance 25(2): 383–417.

Fang, Kai-Tai, Samuel Kotz, and Kai-Wang Ng. 1987. Symmetric Multivariate

and Related Distributions. London: Chapman and Hall.

Fix, Evelyn. 1949. Distributions which Lead to Linear Regressions. In: Proceedings

of the Berkeley Symposium on Mathematical Statistics and Probability 79–91, Berkeley

and Los Angeles: University of California Press.

Furman, Edward, and Zinoviy Landsman. 2005. Risk Capital Decomposition for

a Multivariate Dependent Gamma Portfolio. Insurance: Mathematics and Economics

37(3): 635–649.

Furman, Edward, and Zinoviy Landsman. 2006a. Tail Variance Premium with

Applications for Elliptical Portfolio of Risks. ASTIN Bulletin 36(2): 433–462.

Furman, Edward, and Zinoviy Landsman. 2006b. On some Risk-Adjusted Tail-

Based Risk Measures. Journal of Actuarial Practice 13: 175–191.
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Heilmann, Wolf-Rüdiger. 1989. Decision Theoretic Foundations of Credibility

Theory. Insurance: Mathematics and Economics 8(1): 77–95.

Hesselager, Ole, and Ulrik Andersson. 2002. Risk Sharing and Risk Capital

Allocation (Working Paper). Ballerup, Denmark: Tryg Insurance.

Hürlimann, Werner. 2001. Analytical Evaluation of Economic Risk Capitals for

Portfolio of Gamma Risks. ASTIN Bulletin 31(1): 107–122.
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