RECORD OF SOCIETY OF ACTUARIES 1982 VOL. 8 NO. 4

REPORT ON THE " 1979 BUILD AND BLOOD PRESSURE STUDY" SUPPLEMENTARY OBSERVATIONS

Speaker: EDWARD A. LEW. Collaborator: JOSEPH A. WILBER*

Our remarks are intended to present the findings of a supplementary study of the material assembled for the Build and Blood Pressure Studies of 1979. This supplementary study was made to answer a number of specific questions raised by medical directors and actuaries of life insurance companies as well as by some prominent physicians and research scientists. Much of the information developed has major impact on medicine and public health. Some of it will shortly receive extensive publicity in medical and public health journals.

Build Study
First we address ourselves to the questions raised about underweight and overweight.

1. The Build Study 1979 up-dated the information needed to underwrite underweights and overweights more accurately, but referred only briefly to optimal weights. Optimal weights are of major importance in the practice of medicine because physicians are called upon to advise people how much they should weigh. They are also of great interest to drug manufacturers and to many organizations such as Weight Watchers. Until recently the several large intercompany investigations of build constituted virtually the sole source of statistical information on the subject. These investigations have since 1931 indicated clearly that the: lowest mortality occurs at weights somewhat below average in both sexes. In 1960 Metropolitan Life published a set of desirable weight tables based on the Build and Blood Pressure Study of 1959. These tables have been widely used by the medical profession as a standard. Their validity has recently been borne out by the 1950-76 experience in the Framingham Study and the detailed evidence will soon be published in the Journal of the American Medical Association. Another paper prepared for this journal will attest to the great value for medicine of life insurance company statistics on build.
2. The findings of life insurance company investigations that optimal weights lie at weights somewhat below average and that even a small degree of overweight is associated with increased mortality have been challenged in the last two or three years by a Dr. Reubin Andres of the National Institute for Aging and by a few others. They cited papers purporting to show that the lowest mortality may occur either near average weight or even at

[^0]weights above average. However, the studies cited have paid little attention to the health status of the subjects, having generally covered short periods of time, have often dealt with older persons only and in many instances have pertained to special groups with ethnic socio-economic and personal characteristics markedly different from those of middle class Americans in ostensibly good health. Moreover, these studies have, with few exceptions, been based on rather small numbers.
3. The supplementary study here reported on, considered together with the American Cancer Society's Study of 750,000 men and women according to variations in weight and with the 26 Year Follow-Up of the Framingham Study, indicates clearly that even though optimal weights may have increased in absolute terms, they remain definitely at levels somewhat below average weights, up to about age 60 or 70 . More specifically they show that-
a. The range of weights associated with the lowest mortality depends on the proportion of individuals in impaired health, because persons underweight by reason of illness may experience the lowest mortality at weights considerably above average.
b. The length of the observation period significantly affects the levels of mortality associated with underweight and overweight. Studies of short duration overstate the excess mortality in underweights and understate the excess mortality in overweights.
c. The age distribution of a population also affects the mortality levels associated with underweight and overweight. The optimal weights at the older ages have been found to be closer to average weight.
d. The socio-economic, ethnic and personal characteristics of the subjects also have a pronounced influence on mortality by weight.
4. A slight or even moderate degree of underweight may reflect a naturally wholesome mode of living, springing from disciplined diet and exercise, or it may be an early symptom of underlying disease not manifested by other symptoms. Inasmuch as persons applying for life insurance are screened for the more serious medical impairments, insured underweights represent essentially a healthy population. Furthermore, in conducting mortality studies of build among insured lives it has been customary to exclude individuals who would have been issued substandard insurance for any reason other than build. Hence, experience among insured lives reflects the effects on mortality of variations in weight apart from the effects of other impairments, except for smoking habits concerning which life insurance companies did not until recently obtain information.

It is obvious that in order to measure accurately the effects on mortality of underweight by itself, it is necessary to study populations free from preexisting conditions such as may affect health significantly. It is also necessary to take the duration of the observations into account, inasmuch as the extra mortality associated with underweight is more pronounced in the years immediately following the beginning of a study, whereas the effects of overweight are usually deferred for ten years or longer. It is advisable to analyze mortality among underweights by age, because it is difficult to screen elderly persons for preexisting conditions or obscure
pathological status, so that populations at the older ages are likely to include higher proportions of individuals with undetected health impairments.

Table 1 presents the findings of the American Cancer Society study as to the differences in mortality by weight between ostensibly healthy persons and persons in impaired health. Persons in impaired health were those who at entry into the study were sick, had a history of heart disease, stroke or cancer, or had lost 10 or more pounds in the preceeding twelve months. The remaining population was considered as ostensibly healthy. The table indicates that the lowest mortality among ostensibly healthy men was at weights 5 to 10 percent below average and in ostensibly healthy women at weights 10 to 20 percent below average. Among men in impaired health the optimum weights were in the range 10 to 20 percent overweight while among women in impaired health the optimum weights were close to average.

Table 2 shows the corresponding findings in the 26 Year Follow-up of the Framingham Study. The table indicates that among healthy subjects, defined essentially by the same criteria as those used for standard ordinary life insurance, the optimum weights for both sexes combined were in the range 5 to 15 percent underweight, whereas among subjects in impaired health (men and women combined) the optimum weights were among those 5 to 15 percent overweight. The optimum weights in the entire Framingham Study population are difficult to discern.

Table 3, drawn from the Build Study 1979, demonstrates clearly that among underweights of both sexes mortality is relatively high in the early durations, but declines steadily with time elapsed to nearly normal after 15 years. Among overweights mortality is relatively low in the early durations and increases to distinctly higher levels in men after 15 years but to a much lesser extent in women.

Table 4 presents the corresponding experience for both sexes combined in the 26 Year Follow-up of the Framingham Study, separately for the healthy subjects and for the entire Framingham Study population. It indicates that among the healthy subjects and the subjects in impaired health the mortality of underweights was rather high in the early years and decreased sharply with the passage of time. Among healthy overweights the mortality was relatively low in the early durations but increased significantly at the longer durations. However, among overweights in impaired health mortality was relatively high in the early durations and decreased with the passage of time.

Table 5 shows the experience according to variations in weight by age in the American Cancer Society's Study. It indicates that optimal weights occur at weights below average in healthy men up to age 70 and in healthy women up to age 80 and that only at the advanced ages are the optimal weights closer to average or even somewhat above average weights.

Table 6, drawn from the Build Study 1979, shows the corresponding experience among insured lives by age. It indicates that among men under 50 the optimal weights lie in the range 5 to 15 percent underweight, but that ages 50 and older the optimum weights lie closer to average. Among women the optimum weights are found in the weight range 5 to 15 percent underweight virtually at all ages (20 through 69).
5. It is now reasonably well established that smokers tend to be leaner than non-smokers. Inasmuch as smokers are subject to distinctly higher mortality than non-smokers, the effects of variations in weight on mortality can be confounded with and obscured by the effects of smoking.

The American Cancer Society's Study was large enough to permit analysis of the experience by weight separately for those smoking 20 or more cigarettes a day, those who never smoked and others. This analysis demonstrated that in each smoking habits classification, optimal weights were found at weights somewhat below average up to age 70 .

This analysis is presented in Table 7. The essential findings were summarized in the original paper about the American Cancer Society's Study, as follows:
"Male and female non-smokers registered the lowest mortality from all causes combined in virtually all weight index categories, whereas male and female smokers of 20 or more cigarettes per day recorded by far the highest mortality from all causes in all weight index categories. Among those in the under 80 and $80-89$ weight index categories the mortality of smokers of 20 or more cigarettes per day was nearly double that of nonsmokers; among those in the 130-139 and 140 plus weight index categories, the excess mortality among overweight smokers of 20 or more cigarettes per day ranged from 30 to 40% in males, but from 60 to 70% in females."

Table 7 indicates clearly that the lowest mortality among both men and women who never smoked occurred in the weight index category 80-89 for ages up to 70 in men and up to 80 in women. The lowest mortality among men smokers was found at slightly greater weights, but for the most part at below average weights. The lowest mortality in women smokers was generally in the weight index category $80-89$ for ages up to 70 .
6. A separate analysis focussed on the effects of socio-economic status on mortality by weight. It showed that mortality among male underweights in five large "mass market" companies was 13 to 20 percentage points higher than that in five companies catering to a more selected clientele. The corresponding differential among male overweights was only 6 to 13 percentage points. Other mortality investigations of build have also shown that overweight carries with it higher mortality at the lower socio-economic levels.
7. The significance of various degrees of underweight and overweight can be highlighted by considering the reductions in 25 year temporary life expectancies associated with them. Table 8 shows such temporary life expectancies for men and women at ages 40,50 and 60 , assuming normal mortality to follow recent (1975-79) death rates among employed persons covered by group life insurance and extra mortality associated with various degree of underweight and overweight as observed in the Build Study 1979. The 25 year temporary life expectancies more nearly reflect the actual experience in the Build Study 1979 and do not involve major extrapolations such as would be required to compute total life expectancies.

The figures show that in the case of men the reductions in longevity over a 25 year period are generally less than a year for overweights in the range 15 to 35 percent above average as well as for underweights in the range 15 to 35 percent under average, in the case of women the corres-
ponding reductions in longevity are generally half a year or less.

Blood Pressure

Next, we comment on the questions arising from the findings of the Blood Pressure Study 1979.

1. This study provided highly pertinent statistics on the effects on mortality of treatment for high blood pressure. These statistics support strongly the evidence from clinical studies that antihypertensive treatment can be very beneficial.

There was no really effective treatment for high blood pressure during the period covered by the Build and Blood Pressure Study 1959. Increasingly effective antihypertensive drugs came to be used more and more widely in the late 1960's and early 1970's, so that the Blood Pressure Study 1979 reflects the beneficial effects of the new drugs only to a limited extent. It is safe to conjecture that materially greater reductions in mortality associated with hypertension have taken place after the close of the Blood Pressure Study 1979.

It needs to be kept in mind that the findings of this study relate to a highly selected group of insured men. These men, whose blood pressures were lowered by treatment to normotensive levels, experienced virtually normal mortality. More generally, these carefully selected male risks who had been treated for hypertension before applying for life insurance experienced mortality corresponding to their post-treatment blood pressures. This may appear puzzling at first glance, since it implies that any pretreatment damage to heart and blood vessels was reversed by treatment, a result considered to be improbable in the light of our knowledge of the pathological changes in hypertension. The only reasonable explanation is that the individuals treated for hypertension who were accepted for insurance were those who by and large had not suffered any heart or blood vessel damage, while those found to have significant heart or blood vessel damage were either very highly rated or rejected outright.
2. Other analyses dealt more intensively with the mortality on low blood pressures.

The extensive data in the Blood Pressure Study 1979 indicate clearly that the lower the blood pressure the lower the mortality experienced. However, the gains in longevity resulting from lowering blood pressures below 115 mm systolic or below 75 mm diastolic are very small. This is indicated in Figures 1 and 2.
3. One of the questions raised pertained to the mortality of lean hypertensives. Detailed tabulations showed that hypertensives who were underweight had experienced somewhat higher mortality than corresponding hypertensives who were overweight.

Particulars of this experience are presented in Table 9.

Elevated blood pressure associated with leanness may be a more serious condition than elevated blood pressure associated with obesity, which is contrary to prevailing impressions and current underwriting practice. It is possible that hypertension associated with obesity represents a different
and milder disease than that associated with underweight. Alternately, the higher mortality in lean hypertensives may reflect a sizeable proportion of underweights in whom this condition is a symptom of undetected illness. It appears unlikely that variations in arm size between lean and obese individuals which sometimes distort blood pressure readings could account for the differential in mortality between lean and obese hypertensives.
4. Another question related to the mortality experience for unusual combinations of systolic and diastolic pressures. It was found that mortality in isolated systolic hypertension, that is elevated systolic pressure with near normal diastolic pressure, was associated with increased mortality at ages 40 and older comparable to that in combined systolic-diastolic hypertension. This is indicated in Table 10.

Little is known about isolated systolic hypertension, except that it is fairly common at ages over 50 and that it is associated with an increased risk of cardiovascular disease. There is no information whether treatment of isolated systolic hypertension would be as effective as for other kinds of hypertension, because virtually all major clinical investigations of hypertension have reported their findings in reference to diastolic pressures only.
5. An analysis of the experience between the five large "mass market" companies and the five companies catering to a more select clientele indicated that the mortality among both normotensive men and men with bordering blood pressures was 15 to 30 percentage points higher in the mass market companies than in the more selected clientele companies. The corresponding differential for men with definite hypertension was quite small.
6. The value of an ECG in underwriting elevated blood pressure is indicated by the experience presented in Table 11 for hypertension in the pressure of a normal or somewhat abnormal ECC. The table indicates that when systolic and diastolic pressures are both slightly elevated the mortality experienced was lower whenever an ECG was obtained as compared with the experience where no ECG was obtained. This was true even when the ECG was somewhat abnormal, but it should be kept in mind that cases with serious ECC findings were excluded from the investigation.
7. The significance of various degrees of hypertension can be highlighted by considering the reductions in 25 year temporary life expectancies associated with them. Table 12 shows such temporary life expectancies for men and women at ages 40,50 and 60 , assuming normal mortality to follow recent ($9975-79$) death rates among employed persons covered by group life insurance and extra mortality associated with various degrees of hypertension as observed in the Blood Pressure Study 1979.

The figures show that the reductions in longevity over a 25 year period are quite substantial for men with blood pressures as low as 140 systolic with 85 diastolic, ranging from . 8 year at age 40 to 1.5 years at age 60, and increase sharply with rise in blood pressure as well as with age; in the case of women the corresponding reductions in longevity for blood pressures below 160 systolic with 95 diastolic are generally less than a year.

Methodology

Insofar as methodology of medico-actuarial studies is concerned, the supplementary study indicates that it is essential to begin with initially healthy populations in order to reach meaningful conclusions about the mortality associated with specific characteristics found mainly among ostensibly healthy people. It is also highly important to check for possible confounding factors such as smoking or the effects of certain life styles.

The Build and Blood Pressure Studies 1979 and the supplementary study demonstrate the economics and effectiveness of a capably staffed central bureau for compiling medico-actuarial statistics. These studies were carried out by the Ad Hoc Committee on a New Build and Blood Pressure Study working through the instrumentality of the Center for Medico-Actuarial Statistics established in the Medical Information Bureau.

Acknowledgements

Dr. Wilber and I want to take this opportunity to express our grateful appreciation of the thoughtful assistance given us by John R. Avery, Director of the Center for Medico-Actuarial Statistics.

SELECTED BIBLIOGRAPHY

Build

1. Goldblatt, P.B., Moore, E., and Stunkard, A.S.

Social Factors in Obesity
JAMA 192 1039-1044 1965
2. Oken B., Hartz, A., Giefer, E., and Rimm, A.

Relationship between Socio Economic Status and Obesity Preventive Medicine Vol. 6, pp, 447-453 1976
3. Lew, E.A., and Garfinkel, L.

Variations in Mortality by Weight Among 750,000 Men and Women
Journal of Chronic Diseases Vol. 32, pp. 563-576 Aug. 1979
4. Build Study 1979

Society of Actuaries 1980
5. Bray, G.A. (Editor)

Obesity in America
NIH Publication 79-359 November 1979
6. Garrison, R.J., Feinberg, M., Castelli, W.P. and McNamara, P.M. Cigarette Smoking as a Confounder of the Relationship Between Relative Weight and Long Term Mortality in the Framingham Study JAMA in press

Blood Pressure

1. National Center for Health Statistics

Characteristics of Persons with Hypertension US 1974
Moss, A.J. and Scott, G.
Vital and Health Statistics Series 10, No. 121
DHEW Publication PHS 79-1549 1978
2. Roberts, J.

Blood Pressure Levels of Persons 6-74 Years US 1971-74
Vital and Health Statistics Series 11, No. 203
DHEW 1977
3. Hypertension Detection and Follow-up Program Cooperative Group Five Year Findings of the HDFP

1. Reduction in Mortality of Persons with High Blood Pressure Including Mild Hypertension JAMA 242 2562-71 1979
2. Mortality by Sex, Race and Age JAMA 242, 2572-77 1979
3. Blood Pressure Study 1979

Society of Actuaries 1981
5. Viewpoints on the Treatment of Hypertension Rafter, J.G., Lew, E.A., Alderman, M.H., Kass, E.H. Transactions of the Association of Life Insurance Medical Directors 1981

TABLE 1

Variations in Mortality by Weight and Health Status

American Cancer Society
$\left.\begin{array}{llll}\text { Weight Classification }\end{array} \quad \begin{array}{c}\text { Mortality Ratios in relation to death rates } \\ \text { of those } 90-109 \% \text { of average weight }\end{array}\right\}$

TABLE ?

Variations in Mortality by Weight and Health Status
 Framingham Study (26 yrs)

Weight Classification	Mortality Ratios in Relation to Mortality of Insured Lives		
	Healthy Persons	Impaired Lives	Total
	Males and Females	Males and Females	Males and Females
25\% or more underweight	139\%		176\%
15-25\% underwe ight	106	210\%	131
5-15\% underweight	68	183	96
5\% underweight to 5\% overweight	70	164	98
5-15\% overweight	72	128	95
15-25\% overweight	112	137	126

TABLE 3

Variations in Mortality by Weight and Duration

Build Study 1979

	Mortality Ratios		
	Duration $1-5$	Duration $6-10$ $\frac{\text { Duration }}{11-15}$	Duration $16-22$

Men 15-69

$25-35 \%$ underweight	127%	119%	114%	105%
$15-25$ underweight	110	103	99	93
$5-15$ underweight	98	97	92	93
5% underweight to				
5% overweight	94	96	95	95
$5-15 \%$ overweight	103	103	109	111
$15-25 \%$ overweight	106	114	123	131

Women 15-69

$25-35 \%$ underweight	167	128	134	90
$15-25$ underweight	114	105	102	107
$5-15$ underweight	92	90	94	94
5 underweight to 5% overweight	91	94	97	97
$5-15 \%$ overweight	95	99	103	102
$15-25 \%$ overweight	106	103	113	112

TABLE 4

Variations in Mortality by Weight and Duration

Framingham Study 26 Yr . Follow-UD

	Mortality Ratios			
	In Relation to Mortality of Insured Lives			
	Healthy Lives In Framingham Study		Total Population In Framingham Study	
	$\frac{\text { Duration }}{1-14}$	$\frac{\text { Duration }}{14-26}$	$\frac{\text { Duration }}{1-14}$	$\frac{\text { Duration }}{14-26}$
Over 25\% underweight	243\%	107	585\%	129
15-25\% underweight	145	112	165	118
5-15 underwe ight	102	57	147	77
5\% underweight to 5\% overweight	93	63	138	84
5-15\% overweight	67	73	110	90
15-25\% overweight	97	118	144	119

TABLE 5

Variations in Mortality by Weight and Age
 American Cancer Society - Healthy Lives

Weight Classifications

	$\begin{aligned} & \text { Ages } \\ & 40-49 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ages } \\ & 50-59 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ages } \\ & 60-69 \end{aligned}$	$\begin{gathered} \text { Ages } \\ 70-79 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ages } \\ 80^{-}-89 \\ \hline \end{gathered}$
Men					
. 80 of average weight	1.09	1.24	1.24	2.31	1.40
. $80-.89$	1.01	1.02	1.06	1.12	1.05
. $90-1.09$	1.00	1.00	1.00	1.00	1.00
1.10-1.19	1.24	1.18	1.12	1.06	1.11
1.20-1.29	1.63	1.34	1.23	1.08	
1.30-1.39	1.81	1. 64	1.38	1.30	
$1.40+$	2.19	2.09	1.85	1.41	

Women

.80 of average weight	1.20	1.19	1.19	1.20	1.21
$.80-.89$.94	.02	.96	.97	1.07
$.90-1.09$	1.00	1.00	1.00	1.00	1.00
$1.10-1.19$	1.09	1.18	1.27	1.08	.95
$1.20-1.29$	1.38	1.34	1.37	1.15	.99
$1.30-1.39$	1.51	1.64	1.59	1.34	
$1.40+$	2.02	2.09	1.85	1.65	

TABLE 6

Variations in Mortality by Weight and Age
Build Study 1979

Weight Classifications

TABLE 7

					TABL				
				merican	Cancer	ociety	Study		
		Death	ates	Weight	Class	cation	and Sm	ing Hab	its
Under	80	80-8		90-1	$\begin{aligned} & \text { eight } \\ & 9 \\ & \hline \end{aligned}$	dex 109		120	29
qX	MR								
3.3	182\%	1.4	75\%	1.8	100\%	2.4	136\%	2.5	139\%
5.1	133	3.6	95	3.8	100	4.5	119	6.9	131
10.1	103	8.7	88	9.8	100	12.5	127	13.5	137
27.1	106	24.9	98	25.4	100	31.8	125	32.0	126
70.6	109	67.6	104	64.8	100	72,1	111	81.3	126
		148.3	104	142.0	100	160.6	113		
	117		92		100		124		145
5.3	143\%	4.3	118\%	3.7	100\%	5.1	137\%	6.3	171\%
10.3	107	9.6	100	9.6	100	11.7	121	14.9	155
24.0	124	19.9	103	19.4	100	22.4	116	24.1	124
53.9	127	45.5	108	42.3	100	44.7	106	54.7	129
116.4	143	91.5	112	81.4	100	84.2	103	84.6	
258.1	161	201.2	126	160.1	100				
	120		102		100		118		142
		2.7	117\%	2.3	100\%	3.1	137\%	4.6	203\%
5.9	107\%	5.8	106	5.5	100	7.2	130	9.0	164
16.2	124	13.8	105	13.0	100	15.1	116	18.3	140
40.8	128	34.3	107	32.0	100	34.8	109	36.6	114
98.7	140	81.4	115	70.3	100	73.9	104	73.0	104
164.3	116	143.4	101	141.0	100	150.3	106		
	122		106		100		119		141

$\frac{\text { Males }}{\text { Age }}$ Group
Never Smoked
$30-39$
$40-49$
$50-59$
$60-69$
$70-79$
$80-89$
All Ages
20 or more
Cigarettes
per day
$30-39$
$40-49$
$50-59$
$60-69$
$70-79$
$80-89$
All Ages
others
$30-39$
$40-49$
$50-59$
$60-69$
$70-79$
$80-89$
All Ages

TABLE 7
American Cancer Society Study
Death Rates by Weight Classification and Smoking Habits

웅

$\stackrel{\infty}{\stackrel{4}{m}} \underline{\sim}$	$\underset{\sim}{\sim}$	
Ounm		のo
$\stackrel{\bullet}{\bullet}$		$\dot{\sim} \dot{\sim}$

Females	Under 80	
Age Group	q×	MR
Never Smoked		
30-39	1.3	102\%
40-49	2.8	112
50-59	5.5	100
60-69	17.6	116
70-79	55.5	122
80-89	139.8	113
All Ages		110
20 or more Cigarettes per day		
30-39	3.0	134\%
40-49	5.9	115
50-59	13.8	139
60-69	24.9	105
70-79	69.3	131
80-89		
All Ages		125
Others		
30-39	2.2	134\%
40-49	4.6	137
50-59	9.5	138
60-69	25.3	146
70-79	59.1	119
80-89		
All Ages		138

25 Year Temporary Life Expectancies
REDUCTIONS IN 25 YEAR TEMPORATY LIFE EXPECTANCY ASSOCIATED WITH UNDERWEIGHT AND OVERWEIGHT
Employed persons covered by group life insurance 1975-79

Age 40	Age 50	Age 60
	Males	
110\%	120\%	130\%
95	105	115
125	115	105
140	130	120
170	160	150
	Females	
120\%	130\%	140\%
110	110	105
115	110	105
125	120	
140	135	

TABLE 8 Age $40 \quad$ Age $50 \quad$ Age 60
1.4 years
.7 year
.2 year
.9 year
2.2 years
1.3 years
.1 year
.1 year

Age 40	Age 50
	Males
. 1 year	. 6 year
. 1 year	. 2 year
.3 year	. 4 year
.5 year	.9 year
1.2 years	1.7 years
	Females
. 1 year	. 5 year
. 1 year	. 1 year
. 1 year	. 1 year
.2 year	.3 year
.3 year	. 4 year

Weight
$25-35 \%$ under
$15-25 \%$ under
$25-25 \%$ over
$35-45 \%$ over
$25-35 \%$ under
$15-25 \%$ under
$15-25 \%$ over
$25-35 \%$ over
$35-45 \%$ over

TABLE 9

Mortality Experience Among Underweight

 and Overweight HypertensivesBlood Pressure Study 1979
Men Aged 15-69

Underwe ight			Overweight		
25-35\%	15-25\%	5-15\%	5-15\%	15-25\%	25-35\%
Mortality Ratios					

Systolic Pressure

$148-157$	237%	188%	168%	164%	169%	223%
$158-167$	292	222	210	197	206	231
$168-177$	324	198	203	212	283	234
$178-187$	421	219	230	243	291	280

Diastolic Pressure

$88-92$	216	148	142	136	134	136
$93-97$	435	184	158	174	151	249
$98-102$	329	219	210	193	174	254
$103-107$		351	271	277	239	371

TABLE 10
Mortality Experience Among Systolic and Diastolic Hypertensives

Blood Pressure Study 1979

Men Aged 15-69

	Mortality Ratios	
Ages $15-39$	Ages $40-69$	
Isolated Systolic $158-167 / 82-87$	149	208
Isolated Diastolic $128-137 / 98-102$	150	145
Combined Systolic and Diastalic 158-167 /98-102	265	223

1979 BUILD AND BLOOD PRESSURE STUDY

TABLE 11

MORTALITY IN HYPERTENSION WITH ECG

Excluding ECG with Serious Findings

Men Aged 15-69

Blood Pressure	No ECG	With ECG	With Somewhat Abnormal ECG
	Mortality Ratio	Mortality Ratio	Mortality Ratio
Systolic under 138			
Diastolic unver 83	93\%	91\% (1333)	125\% (215)
83-97	115	111 (395)	95 (48)
98 and over	160		
Systolic 138 and over			
Diastolic under 83	145	113 (155)	87 (18)
83-97	160	123 (276)	116 (31)
98 and over	215	165 (16)	
Total	100	99	115

Blood Pressure
TABLE 12
REDUCTIONS IN 25 YEAR TEMPORARY LIFE EXPECTANCY
25 Year Temporary Life Expectancies

Corresponding Mortality Ratios		
Age 40	Age 50	Age 60
	$\frac{\text { Males }}{}$	
160% est.	140% est.	130% est.
200	170	150
260	210	180
350	275	225
	Females	
150% est.	125% est.	110% est.
175	145	125
225	175	150

Employed persons covered by group life insurance 1975-79

$$
\begin{array}{ll}
\frac{\text { Males }}{1.2 \text { years }} & 1.5 \text { years } \\
2.0 \text { years } & 2.3 \text { years } \\
3.0 \text { years } & 3.3 \text { years } \\
4.3 \text { years } & 4.7 \text { years } \\
\text { Females } & \\
\hline .3 \text { year } & .3 \text { year } \\
.6 \text { year } & .8 \text { year } \\
1.1 \text { years } & 1.5 \text { years }
\end{array}
$$

140/85
150/90
$160 / 95$
170/100
$140 / 85$
150/90
$160 / 95$

$$
\begin{gathered}
.8 \text { year } \\
1.3 \text { years } \\
2.0 \text { years } \\
2.9 \text { years } \\
.3 \text { year } \\
.5 \text { year } \\
.8 \text { year }
\end{gathered}
$$

[^0]: *Dr. Wilber, not a member of the Society, is Senior Vice President and Medical Director of the Georgia International Life Insurance Company and was a member of the Ad Hoc Committee on the New Build and Blood Pressure Study of the Society of Actuaries and the Association of Life Insurance Medical Directors of America.

