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ABSTRACT 

Recent articles by Sánchez and Gómez (2003a, 2003b, 2004) addressed the subject of fuzzy 

regression (FR) and the term structure of interest rates (TSIR).  Their approach relied on 

possibilistic regression and followed the methodology of Tanaka et. al. (1982).  Although 

possibilistic regression has been used in many applications, it has a number of limitations, not 

the least of which is its nebulous relation to the least-squares concept.  As an alternative to 

possibilistic regression, this paper uses Diamond's (1988) fuzzy least square regression to 

investigate the TSIR. 
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1.  INTRODUCTION 
 
Recent articles of Sánchez and Gómez (2003a, 2003b, 2004) addressed the subject of fuzzy 
regression (FR) and the term structure of interest rates (TSIR). Following Tanaka et. al. (1982), 
their models took the general form: 
 

nn xAxAAY ~~~~
110 +++=                                                           (1) 

 
where Y~  is the fuzzy output, jA~  j=1,2,..., n, is a fuzzy coefficient, and x = ( ) is an n-
dimensional non-fuzzy input vector. The fuzzy components were assumed to be triangular fuzzy 
numbers (TFNs). Consequently, the coefficients, for example, can be characterized by a 
membership function (MF), µA(a), a representation of which is shown in Figure 

nxx ,,1

1. 
 
 

 
 

Figure 1: Fuzzy Coefficient 
 

As indicated, the salient features of the TFN are its mode, its left and right spread, and its 
support. When the two spreads are equal, the TFN is known as a symmetrical TFN (STFN). 
 
The basic idea of the Tanaka approach, often referred to as possibilistic regression, was to 
minimize the fuzziness of the model by minimizing the total spread of the fuzzy coefficients, 
subject to including all the given data. Key components of the Sánchez and Gómez methodology 
included constructing a discount function from a linear combination of quadratic or cubic 
splines, the coefficients of which were assumed to be TFNs or STFNs, and using the minimum 
and maximum negotiated price of fixed income assets to obtain the spreads of the dependent 
variable observations. Given the fuzzy discount functions, the authors provided TFN 
approximations1 for the corresponding spot rates and forward rates. 
 

                                                 
1 Since the spot rates and forward rates are nonlinear functions of the discount function, they are not TFNs even 
though the discount function is a TFN. 
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As an alternative to possibilistic regression, this paper uses Diamond's (1988) fuzzy least square 
regression with to investigate the TSIRs.  The outline of the paper is as follows. In Section 2, we 
define and conceptualize the general components of fuzzy regression. The essence of the Tanaka 
model is explored in Section 3, including a commentary on some of its potential limitations.  
Section 4 discusses the fuzzy least-squares regression model as an alternative to the Tanaka 
model.  In both the foregoing sections, the discussion is not meant to be exhaustive but, rather, is 
intended to point out some of the major considerations.  Section 5 explores a fuzzy least square 
approximation of the term structure of interest rates.  Section 6 compares the numerical results of 
Sánchez and Gómez (2004) with our findings.  The paper ends with a summary of the 
conclusions of the study.  
 
 
2.  FUZZY LINEAR REGRESSION BASICS  
 
 This section provides an introduction to fuzzy linear regression. The topics addressed include 
the motivation for FR, the components of FR, fuzzy coefficients, the h-certain factor, and fuzzy 
output. 
 
2.1 Motivation 
 
Standard (classical) statistical linear regressions take the form 
 
                , m, , ixxy iikkii 21       , 110 =++++= εβββ                               (2) 
 
where the dependent (response) variable, , the independent (explanatory) variables, , and 
the coefficients (parameters),

iy ijx

jβ , are crisp values, and iε  is a crisp random error term with  E( iε  

)=0, variance , and covariance22 )( σεσ =i 0),( =ji εεσ  jiji ≠∀ ,, . 
 
Although statistical regression has many applications, problems can occur in the following 
situations: 
 
     • Number of observations is inadequate (small data set) 
     • Difficulties verifying distribution assumptions 
     • Vagueness in the relationship between input and output variables 
     • Ambiguity of events or degree to which they occur 
     • Inaccuracy and distortion introduced by linearization 
 
Thus, statistical regression is problematic if the data set is too small, or there is difficulty 
verifying that the error is normally distributed, or if there is vagueness in the relationship 
between the independent and dependent variables, or if there is ambiguity associated with the 
event or if the linearity assumption is inappropriate. These are the very situations fuzzy 
regression was meant to address. 
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2.2 The Components of Fuzzy Regression 
 
There are two general ways (not mutually exclusive) to develop a fuzzy regression model: (1) 
models where the relationship of the variables is fuzzy; and (2) models where the variables 
themselves are fuzzy. We focus on models where the data is crisp and the relationship of the 
variables is fuzzy. 
 
For any given data pair, , their role in fuzzy regression can be summarized by ),( ii yx

the fuzzy regression interval   shown in Figure ],[ U
i

L
i YY 22. 

 
 

Figure 2: Fuzzy Regression Interval 
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),,( 1=h
i

L
i

U
i YYY

U
iY
U

iY

)i,( i yx ),,( 1=h
i

L
i

U
i YYY

L
iy−
=− h

iY

L
ii Yy −

h
iY −=1

1=− h
ii Yy

1
iY

 
In possibilistic regression based on STFN, only the data points involved in determining the upper 
and lower bounds determine the structure of the model.  The rest of the data points have no 
impact on the structure. 
 
 
2.3 The Fuzzy Coefficients 
 
Combining Equation (1) and Figure 1, and, for the present, restricting the discussion to 
                                                 
2 Adapted from Wang and Tsaur (2000), Figure 1. 
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STFNs, the MF of the j-th coefficient, may be defined as: 
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j
μ                                                     (3) 

 
where  is the mode and  is the spread, and represented as shown in Figure ja jc 3. 
 

 
 

Figure 3: Symmetrical fuzzy parameters 
Defining 
 
                       { } { }, :j j j j j j j j jL L

A a c A a c A a c= = − ≤ ≤ +      nj ,,1,0=        (4) 

 
and restricting consideration to the case where only the coefficients are fuzzy, we can write  
 

                                                      (5) 0
1
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This is a useful formulation because it explicitly portrays the mode and spreads of the 
fuzzy parameters. 
 
2.4 Fitting the Fuzzy Regression Model 
 
Given the foregoing, two general approaches are used to fit the fuzzy regression model: 

• The possibilistic model. Minimize the fuzziness of the model by minimizing the total 
spreads of its fuzzy coefficients (see Figure 1), subject to including the data points of 
each sample within a specified feasible data interval. 

• The least-squares model. Minimize the distance between the output of the model and the 
observed output, based on their modes and spreads. 

The details of these approaches are addressed in the next two sections of this paper. 
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3 THE POSSIBILISTIC REGRESSION MODEL 
 
3.1 The Model 
 
The possibilistic regression model is optimized by minimizing the spread, subject to adequate 
containment of the data. The minimization of the spread takes the following form: 
 

                                                       (6) 0       ,||min
1

0 ≥⎥
⎦

⎤
⎢
⎣

⎡
+∑

=
jijj

n

j
cxcc

 
Putting the containment requirement together with the observed fuzzy output results in Figure 4, 
which shows a representation of how the estimated fuzzy output may be fitted to the observed 
fuzzy data. 

 
Figure 4: Fitting the estimated output to the observed output 

 
For illustrative purposes, a STFN is shown, where ci represents the spreads. Beyond that, what 
makes these MFs materially different from the one shown in Figure 3, is that they  contain a 
point "h" on the y-axis, called an "h-certain factor," which, by controlling the size of the feasible 
data interval, extends the support of the MF3. In particular, as the h-factor increases, so increases 
the spreads, ci. 
If, as in Figure 2, the supports4 are just sufficient to include all the data points of the sample, 
there would be only limited confidence in out-of-sample projection using the estimated FRM. 
This is resolved for FR, just as it is with statistical regression, by extending the supports. 
 
                                                 
3 Note that the h-factor has the opposite purpose of an α-cut, in that the former is used to extend the support, while 
the latter is used to reduce the support. 
4 Support functions are discussed in Diamond (1988: 143) and Wünsche and Näther (2002: 47). 
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As indicated, the h-certain factor also can be applied to the observed output. Thus, the i-th output 
data might be represented by the STFN, ),(~

iii eyY =

iy
, where  is the mode and  is the spread. 

Here, the actual data points fall within the interval 
iy
eh)

ie

i1( −± , the base of the shaded portion 
of the graph. 
 
The key is that the observed fuzzy data, adjusted for the h-certain factor, is contained within the 
estimated fuzzy output, adjusted for the h-certain factor. Formally, 
 

                                     (7) iiijj
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3.2 Criticisms of the Possibilistic Regression Model 
 
There are a number of criticisms of the possibilistic regression model. Some of the major ones 
are the following: 
 

•  Tanaka et al "used linear programming techniques to develop a model superficially 
resembling linear regression, but it is unclear what the relation is to a least-squares 
concept, or that any measure of best fit by residuals is present." [Diamond (1988: 141-2)] 

•  The original Tanaka model was extremely sensitive to the outliers [Peters (1994)]. 
•  There is no proper interpretation about the fuzzy regression interval [Wang and Tsaur 

(2000)]. 
•  Issue of forecasting have to be addressed [Savic and Pedrycz (1991)]. 
•  The fuzzy linear regression may tend to become multicollinear as more independent 

variables are collected [Kim et al (1996)]. 
•  The solution is  point-of-reference dependent, in the sense that the predicted function 

will be very different if we first subtract the mean of the independent variables, using 
jx

)( ij xx −  instead of  [Hojati (2004), Bardossy (1990) and Bardossy et al (1990)]. jx
 
4  A FUZZY LEAST-SQUARES REGRESSION (FLSR) MODEL  
 
4.1 Main features of the FLSR  
 
An obvious way to bring the FR more in line with statistical regression is to model the fuzzy 
regression along the same lines. In the case of a single explanatory variable, we start with the 
standard linear regression model: [Kao and Chyu (2003)] 
 
               , m, , ixy iii 21             , 10 =++= εββ                              (8) 
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which, in the case most similar to the Sánchez and Gómez model, takes the form 
 
                                   (9)  ,             1 2i i iY A Bx i , , , mε= + + =
 
and requires the optimization of 
 
                   2

,
)~ ,~~(min iiBA

YxBAd +∑                                                                (10) 

From a least squares perspective, the problem then becomes 

                                  (11) 2 2

1 1
min min ( ) min ( )  

m m

i i
i i

S Yε
= =

= = − −∑ ∑ iA B x

There are a number of ways to implement FLSR, but a basic approach is FLSR using distance 
measures.5  A description of this method follows. 
 
4.2 FLSR using Distance Measures (Diamond's Approach) 
 
Diamond (1988) was the first to implement the FLSR using distance measures and his 
methodology is the most commonly used. Essentially, he defined an  between 
two TFNs by [Diamond (1988: 143) equation (2)] 

22 (.,.)  metric - dL
)r,l,m( and )r,l,m( 222111
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Given TFNs, it measures the distance between two fuzzy numbers based on their modes, left 
spread and right spread6. 
 
For , the solution follows from  , 1 2i i iY A Bx i , , , mε= + + = (12), and if B~  is positive7 

(and  and, )c,ca,(~ R
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            (13) 

 
A similar expression holds when B~  is negative. If the solutions exist, the parameters of 
A~ and B~ satisfy a system of six equations in the same number of unknowns, these equations 
arising from the derivatives associated with (13) being set equal to zero. Of course, this fitted 
                                                 
5 An alternate basic fuzzy least-squares approach is to use compatibility measures.  See Celmiņš (1987). 
6 The methods of Diamond's paper are rigorously justified by a projection-type theorem for cones on a 
Banach space containing the cone of triangular fuzzy numbers, where a Banach space is a normed vector space that 
is complete as a metric space under the metric d(x, y) = ||x-y|| induced by the norm. 
7 A triangular fuzzy number  is positive if  and negative if ),,( RL aac 0≥La 0≤Ra (Shapiro, 2004:401) 
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model has the same general characteristics as previously shown, but now we can use the residual 
sum of d-squares to gauge the effectiveness of model. 
 
The studies by Sánchez and Gómez (2003a and 2004) provide some interesting insights into the 
use of fuzzy regression for the analysis of the TSIRs. However, their methodology relies on 
possibilitic regression, which has the potential limitations mentioned in section 3.1. As an 
alternative, we use fuzzy least square regression (FLSR) with the distance measure defined by 
Diamond (1988).  
 
5. FUZZY ESTIMATE OF THE TSIR  
 
5.1. The problem 
 
The input data consist of the following quantities given at a particular point in time (one session) 
in a fixed income market (public debt market): 
 
•  K  bonds which generated a stream of cash-flows (coupon and principal) 
 
          { ; }            for ),( 11

kk tC ;);,( 22
kk tC ),( )()(

k
kn

k
kn tC Kk ,,1= ;            (14) 

 
where is the amount of the i th cash-flow provided by the th bond,  is its maturity (in 
years) and n(k) is the number of cash-flows of the th bond. 

k
iC k k

it
k

  
•  The minimum and maximum negotiated prices ( , ) of each bond also are given. kPmin

kPmax

 
Assuming the bonds are non-convertible and non-callable, the price of the th bond,k kP , is then 
the sum of the discounted cash flows (Sánchez and Gómez, 2003a:674) 
 

                                                                                                        (15) ∑
=

=
)(

1

kn

i
t

k
ik k

i
fCP

 
where  is the discounted value of one dollar with a maturity of t  years: i.e. , and 

 is the spot rate (also called the internal rate of return (IRR)).  For forecast purposes, we are 
interested in studying the evolution of the interest rates over time. 

tf t
tt if −+= )1(

ti

 
5.2. Motivation for fuzzy estimation of TSIR 
 
Several studies have dealt with the modeling of interest rates. Nelson and Siegel (1987), 
Beekman and Shiu (1988) and later on Carriere (1999), used a four-parameter model to fit the 
yield curve. Local polynomial (and spline) approximation methods have also been applied 
(McCulloch, 1971; Vasicek and Fong, 1982; Shea, 1984). In these studies the price of the 
financial asset is represented by a single value. However, in practice, the price of a financial 
asset fluctuates within an interval, and a single-number representation can result in a lost of 
information. A fuzzy representation allows us to use the range of  prices negotiated on the 

ARC2008_Shapiro-Koissi.pdf 9



 

financial market during one session. Thus, this approach is more inclusive and realistic than 
standard econometric methods (Sánchez and Gómez, 2003b:314). 
 
5.3. Possibilistic Estimation of the TSIR 
 
5.3.1.  Background: 
 
Since the negotiated price of the k th bond oscillated between a minimum and maximum value 

( and ), it can be represented as a fuzzy number
kP

min
kP max

kP kP~  (Sánchez and Gómez (2003a)).  In 
particular, TFN are used here because of their convenient properties (Dubois and Prade, 1980; 
Shapiro, 2004). Then,  
 
                             ),,(~

kRkLkCk PPPP =     Kk ,,1=                                                 (16) 
 
where is the mode of kCP kP~ , and and  are the left and right spreads.  kLP kRP
 
McCulloch (1971) showed that the discounted function  in (tf 15) can be written as a linear 
combination of a quadratic spline function   )(tg j

                           ,                                                                            (17) ∑
=

=
m

j
jjt tgaf

0
)(

where the coefficients do not dependent on t .  Appendix A.1 provides the explicit expression 
of the quadratic spline function . 

ja
)(tg j

 
A fuzzy representation of the spline decomposition (17) is as follows 
 

                         ,                                                                            (18) ∑
=

=
m

j
jjt tgaf
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where ),,(~

tRtLtCt ffff =  and ),,(~
jRjLjCj aaaa =

jR tRtL ff , .
 are fuzzy numbers with centers and and 

(left and right) spreads ,   
jCa jCf

jL a,a
 
Therefore, by combining (16) and (18), a fuzzy formulation of (15) is 
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With initial values )0,0,1(~

0 =a , g0(t)=1 and gj(0)=0, j=1,...,m (Sánchez and Gómez, 2004; 810), 
(18) and (19) become  

                 .                                                     (20) )(),,()0,0,1(~
1
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Now, denote by kY~  the transformation (Sánchez and Gómez, 2004) 
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Then the fuzzy regression model (possibilistic or least squares) reduces to solving 
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5.3.2.  The Possibilistic Estimation of the TSIR 
 
From (22) and (23)  
   
       ,                           (24) k

mmRmLmC
k

RLCkRkLkC XaaaXaaaYYY ),,(),,(),,( 1111 ++=
 
which, in practice, is solved in two steps (Sánchez and Gómez, 2004): 
 

• The first step consists in finding the centers  (jCa mj ,,1= ) such that 

            k
mmC  ,           for Kk

CkC XaXaY ++= 11 k ,,1= .                                 (25) 
 

Appendix A.2 provides details on the technique used to solve (25).  The estimated value 
of are denoted by . ),,( 1 mCC aa )ˆ,,ˆ( 1 mCC aa
 

• The second step in solving (24) consists in computing the spreads  and 

 using the estimated centers  from Step 1. Denote by 

),,( 1 mLL aa

),,( 1 mRR aa )ˆ,,ˆ( 1 mCC aa kŶ~  the 

estimated value of kY~ . A fuzzy regression based on an extended version of Tanaka 
formula (Ishibuchi and Nii, 2001) is applied. The idea is to minimize the spread of the 
right hand side of (24), and simultaneously maximize the congruence of the 

estimate kŶ~ with kY~  at the -level. This leads to the following system to solve (Sánchez 
and Gómez, 2004:811) 

h

 
 
 
 

ARC2008_Shapiro-Koissi.pdf 11



 

Problem 1: 

   Minimize                             (26) ||||
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            , 0 1, ,jR jLa a j m> = (26e)        
 
where P is an arbitrary periodicity (in years) andu  is the future periods over which the financial 
rates will be determined. The conditions (26a) and (26b) ensure that each kY~ fall within the 

estimated kŶ~ at level h (i.e. hYY kk ≥⊆ )~̂~(μ ). Equations (26c) and (26d) are the required 
conditions for the existence of the forward rates  periods ahead, and u (26e) ensures that the left 
and right spreads are non-negative.  
 
Once the values  are obtained, the discount function at time t, },,1,,,{ mjaaa jRjLjC = tf~ , is 
obtained by using (20) 
 

                 .  ( )∑
=

+=
m

j
jjRjjLjjCt tgatgatgaf

1
)(),(),(1~

The spot rate  is a non-linear expression of . As a consequence, even though 
the discount function  is a TFN, the spot rate is not necessarily a TFN. However, a good 
approximation of  for the maturity t  is given by the following fuzzy number (Dubois and Prade, 
1993; Sánchez and Gómez 2004:eq. (31)) 

t
tt fi /1)(1 −+−=

tf

ti

tf
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t

tCtRtLtCt ftfftffiiii /1/1/1 )(/,)(/,)(1),,(~ ++−+−==                   (27). 
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The spot rate also can be obtained using theα -cuts as described in Sánchez and Gómez (2004: 
811). The forward rates for integer years, },,1,{ ut1 t =ρ , can be represented by the TFN 
(Sánchez and Gómez, 2004: 813)  
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Some of the potential limitations of possibilistic regression (especially its “disconnection” with 
the least-squares concept) can be circumvented by using fuzzy least square regression.  
 
5.4. Estimation of the TSIR using Fuzzy Least Squares regression (FLSR) 
 
As mentioned in §4, FLSR establishes a connection between standard least squares regression 
and fuzzy regression.  This section shows how the Diamond (1988) version of FLSR can be used 
to approximate the term structure of interest rates. 
 
In what follows, the weakest t-norm8  is used because it is shape preserving under the 
multiplication

WT

,a
9 and addition of fuzzy numbers (Mesiar, 1997; and Hong and Do, 1997).  

Basically, TW replaces the t-norm min(  with the  t-norm  )b
 

⎩
⎨
⎧ =

=
.0

1),max(),min(
),(

otherwise
yxifyx
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For TFNs  and , for example, the operations reduce to (Kolesárová, 
1998: Proposition 2; Hong et al. 2001:188): 

),,(~
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BB rlbB =

 
•  )),max(),,max(,(~~
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+=⊕                                  (29a)      

•   ))|||,|max(),|||,|max(,(~~
B            ABAT
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W

=⊗ (29b)       

 
For convenience, we will use ⊕  and ⊗ to denote 

WT
⊕  and 

WT
⊗ , respectively.  

 
5.4.1. Problem formulation  
 
A formulation of (24) with based addition gives −WT
 

          fork
mm

kkk
jj

m

j

k XAXAXAXAY ~~~~~̂
22111

⊕⊕⊕=⊕=
=

Kk ,,1=                      (30) 

                                                 
8 A triangular norm (t-norm) is a binary operation T on [0, 1], which is associative, commutative, non-decreasing 
and verifies T(x, 1) = x for all x ∈ [0, 1] (Zimmermann, 1996, 31). 
9 The multiplication of TFNs is an issue because it can result in a fuzzy number whose sides are drumlike. 
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Applying (29a-b) with ),,(~
jRjLjCj aaaA = in (30) gives  

 

|)||,|,(|)||,|,(~̂
111111

k
mmR

k
mmL

k
mmC

k
R

k
L

k
C

k XaXaXaXaXaXaY ⊕⊕= ,            (31) 
 
which, for each k=1, ..., K, reduces to 
 

{ } { })||;|;|max,||;|;|max,(),,( 111111
k
mmR

k
R

k
mmL

k
L

k
mmC

k
C

k
R

k
L

k
C XaXaXaXaXaXaYYY ++=  

 
Then, the fuzzy regression problem reduces to the following. 
 
Problem 2: 

       Minimize  ]227

1k

~,~̂ kk
LR YYDz ⎢⎣
⎡= ∑

=

   Minimize                          (32a)  [ ]22211

27

1k

~,~~~ kk
mm

kk
LR YXAXAXAD ⊕⊕⊕∑

=

where the corresponding Diamond distance  is given by LRD (13) 
 

[ ]
[ ]
[ { } ]
[ { } ]21111

2
1111

2
11

2
2211

)()||;|;|max(

)()||;|;|max(

~,~~~

k
R

k
C

k
mmR

k
R

k
mmC

k
C

k
L

k
C

k
mmL

k
L

k
mmC

k
C

k
C

k
mmC

k
C

kk
mm

kk
LR

YYXaXaXaXa

YYXaXaXaXa

YXaXa

YXAXAXAD

+−++++

−−−+++

−++=

⊕⊕⊕

      (32b), 

 
Equations (32a) and (32b) are solved with the same constraints [(26c)- (26d)] as used in Sánchez 
and Gómez (2004:811). 
 
For j=1, ..., m,  denotes the estimated values of . jCâ jCa
 
Then, as shown in Appendix 4,   

[ ] ( ) ( )2 22 2 2

1

1 1 1 1

1 1

ˆ , 3 3 ( ) ( ) 2 ( )

6 ( )( ) 6 2 ( )

max{ | |, , | |}

m
k k k k k k k k k

LR jC j C L R C R L
j

known terms

m m m m
k k k k k k k

jC j iC i C jC j jC j R L
j i j j j

k k
L mL m

D Y Y a X Y Y Y Y Y Y

a X a X Y a X a X Y Y

a X a X

=

= = + = =

= + + + + −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎡+ ⎣

∑

∑∑ ∑ ∑
2 2

1 1

1 1 1 1
1

1 1

1 1

max{ | |, , | |}

2 max{ | |, , | |} max{ | |, , | |}

2( ) max{ | |, , | |}

2( ) max{ | |, , | |}

k k
R mR m

m
k k k k k

jC j R mR m L mL m
j

k k k k
C L L mL m
k k k k

C R R mR m

a X a X

a X a X a X a X a X

Y Y a X a X

Y Y a X a X

=

⎤ ⎡ ⎤+⎦ ⎣ ⎦
⎛ ⎞

⎡ ⎤+ −⎜ ⎟ ⎣ ⎦
⎝ ⎠

+ −

− +

∑

−

(33) 
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Problem 2 can be solved using nonlinear programming.  
 
Let us denote by the expression kF
 

    [ ] ( )
termsknown

k
L

k
R

k
C

k
R

k
L

k
C

kk
LRk YYYYYYYYDF )(2)()(3~,~̂ 2222 −−−−−= .  

Then, minimizing reduces to minimizing . [ 2~,~̂ kk
LR YYD ] kF

 
The inputs in (33) are and k

iX ),,(~ k
R

k
L

k
C

k YYYY = , for }27,,1{=k , and the outputs are ,  
and  ( ). 

jCa jLa

jRa 5,,1=j
 
The partial derivatives of  (with respect to the unknown parameters) contain the function 
“max”, which makes it difficult to differentiate (see Appendix A.3). Therefore, nonlinear 
programming is used to solve Problem 2 (Nash and Sofer, 1996). A detail overview of Problem 2 
solution is provided in Appendix A.3. 

kF

 
The steps in solving this problem can be summarized as follows, using the definitions of Ak, 
pC(k,j), pL(k,j), pR(k,j), g(a1C, ..., amC), and q(x,y,k) found in Appendix 3: 
 

Step 1: compute the known terms, for each asset 27,,1=k  
 
   , and . )(2)()()(3 222

0
k

L
k

R
k

C
k

R
k

L
k

C
k YYYYYYS −+++= k

L
k

Ck YYB −= k
R

k
Ck YYC +=

 
Step 2:  

Start with initial value , , and  ),,( 1 mCC aa ),,( 1 mLL aa ),,( 1 mRR aa
For j=1, ..., m, compute , , , , and  kA ),( jkpC ),( jkpL ),( jkpR ),,( 1 mCC aag

Step 3: find the maximums;  
     , { }),(,),1,(maxmax mkpkpp CC

k
C = { }),(,),1,(maxmax mkpkpp LL

k
L = ,       

. { }),(,),1,(maxmax mkpkpp RR
k
R =

Step 4:  Minimize [ ] . ),,(),,( maxmaxmax1
k
R

k
L

k
CmCC pppqaag +

 
6. NUMERICAL EXAMPLE 
 
6.1. Data and Primary Computation 
 
In this subsection, we compare the results from the FLSR with the fuzzy regression results found 
by Sánchez and Gómez (2004). The data (Sánchez and Gómez 2004:813) consists of  bonds 
negotiated in the Spanish debt market on June 29, 2001 and are displayed on Table 

27
1. The face 

value of each asset at maturity is 100. The cash-flows prior to maturity time are the product of 
the annual coupon and the face value. The matrix in Table 2 shows the streams of payments 

by asset, . The numbers of payments corresponding to each asset are in ),( k
i

k
i tC 1, , 27k =
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column 2.  For example, the second asset, which is a T-bill, only provides one cash-flow (face 
value) of 100 at expiration time 1.05. The 20th asset (bond) pays 9 cash-flows consisting of 8 
payments of 4.00 prior to maturity and one payment of 100+4.00 at the time of maturity 8.59. 
 
 

k  Asset Coupon (annual) % Number of coupons Maturity in years Minimum Price  Maximum Price
1 T-Bill 0.00 0 0.05 99.779 99.779
2 T-Bill 0.00 0 1.05 95.758 95.758
3 Bond 4.25 2 1.07 103.907 103.947
4 T-Bill 0.00 0 1.43 94.220 94.220
5 Bond 5.25 2 1.58 103.555 103.669
6 Strip 0.00 0 1.58 93.579 93.749
7 Bond 3.00 2 1.58 99.337 99.376
8 Strip 0.00 0 2.07 91.540 91.540
9 Bond 4.60 3 2.07 104.670 104.917

10 Bond 4.50 4 3.07 104.017 104.166
11 Bond 4.65 3 3.33 98.466 98.702
12 Bond 3.25 4 3.58 97.026 97.200
13 Bond 4.95 5 4.08 105.407 105.918
14 Bond 10.15 5 4.58 126.340 126.340
15 Bond 4.80 5 5.33 97.785 98.385
16 Bond 7.35 6 5.75 113.539 113.539
17 Bond 6.00 7 6.58 107.400 108.206
18 Strip 0.00 0 7.60 68.412 68.412
19 Bond 5.15 9 8.08 104.101 104.307
20 Bond 4.00 9 8.59 92.679 93.473
21 Bond 5.40 10 10.08 97.716 98.923
22 Bond 5.35 10 10.33 96.966 97.749
23 Bond 6.15 12 11.59 108.098 108.168
24 Strip 0.00 0 11.59 53.357 53.357
25 Bond 4.75 14 13.08 96.506 97.567
26 Bond 6.00 28 27.60 103.722 105.194
27 Bond 5.75 31 31.10 93.954 94.777

 
 

Table 1: Bonds negotiated in the Spanish debt market on June 29, 2001: 
(From Sánchez and Gómez, 2004:813) 
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bond #
#  payments ----------------------------------------------------------------------- (payment, time) ----------------------------------------------------------------

1 1 (100,0.05)
2 1 (100,1.05)
3 2 (4.25,0.07) (104.25,1.07)
4 2 (100,1.43)
5 2 (5.25,0.5 8) (105.25,1.5 8)
6 1 (100,1.58)
7 2 (3.00,0.58) (103,1.58)
8 1 (100,2.07)
9 3 (4.60,0.07) (4.60,1.07) (104.60,2.07)

10 4 (4.50,0.07) (4.50,1.07) (4.50,2.07) (104.50,3.07)
11 3 (4.65,1.33) (4.65,2.33) (104.65,3.33)
12 4 (3.25,0.58) (3.25,1.58) (3.25,2.58) (103.25,3.58)
13 5 (4.95,0.08) (4.95,1.08) … (4.95,3.08) (104.95,4.08)
14 5 (10.15,0.58) (10.15,1.58) … (10.15,3.58) (110.15,4.58)
15 5 (4.80,1.33) (4.80,2.33) … (4.80,4.33) (104.80,5.33)
16 6 (7.35,0.75) (7.35,1.75) … … (7.3 5,4.75) (107.3 5,5.75)
17 7 (6.00,0.58) (6.00,1.58) … … (6.00,5.58) (106.00,6.58)
18 1 (100,7.60)
19 9 (5.15,0.08) (5.15,1.08) … … … (5.15,7.08) (105.15,8.08)
20 9 (4.00,0.59) (4.00,1.59) … … … (4.00,7.59) (104.00,8.59)
21 10 (5.40,1.08) (5.40,2.08) … … … (5.40,9.08) (105.40,10.08)
22 10 (5.35,1.33) (5.35,2.33) … … … (5.35,9.33) (105.35,10.33)
23 12 (6.15,0.59) (6.15,1.59) … … … (6.15,10.59) (106.15,11.59)
24 1 (100,11.59)
25 14 (4.75,0.08) (4.75,1.08) … … … (4.75,12.08) (104.75,13.08)
26 28 (6.00,0.60) (6.00,1.60) … … … (6.00,26.60) (106.00,27.60)
27 31 (5.75,1.10) (5.75,2.10) … … … (5.75,30.10) (105.75,31.10)  

 The first and second columns show the kth bond with the number of payments. 
 The right columns display the pairs (payment, time of payment). 

 
Table 2 : Matrix of cash flows. 

 

The values , , and  are 

displayed in Table 

2/)( minmax
kk

kC PPP +=

5=m

2/)( minmax
kk

kR PPP −=

jg

∑
=

−=
)(

1

kn

i

k
ikCkC CPY kRkR PY =

3. The number of bonds and the structure of maturities in the data lead to the 
choice of knots in the spline approximation (17) of the discount function (Sánchez and 
Gómez, 2004:814). The corresponding functions (17) are provided in Appendix A.1. 
 
Then, we compute, for k=1,...,27, the following terms 
 

)()()( )()(2211
k

knj
k

kn
k

j
kk

j
kk

j tgCtgCtgCX +++= ,  5,,1=j . 
 
For example, for the second asset, n(2)=1, with the cash-flow at t=1.05, which leads to the values 
 

.0)05.1(100

0)05.1(100;0)05.1(100

8892.34)05.1(100;1108.70)05.1(100

5
2
5

4
2
43

2
3

2
2
21

2
1

=×=

=×==×=

=×==×=

gX

gXgX

gXgX

   

 
Similarly, for the 20th bond, n(20)=9, and the cash-flows occur at t = 0.59, 1.59, ..., 8.59, which  
results in the values 
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Recall that the objective is to find ),(~

jRjCj aaA = such that, for k=1, ..., 27,  
 
                  (34) k

RC
k

RC
k

RCkRkC XaaXaaXaaYY 555222111 ),(),(),(),( +++=
 
where  and are known. Table ),( kRkC YY k

jX 4 displays the values of  for each asset. k
jX

 
 

kth bond PkC PkR YkC YkR 
1 99.7790 0.0000 -0.2210 0.0000 
2 95.7580 0.0000 -4.2420 0.0000 
3 103.9270 0.0200 -4.5730 0.0200 
4 94.2200 0.0000 -5.7800 0.0000 
5 103.6120 0.0570 -6.8880 0.0570 
6 93.6640 0.0850 -6.3360 0.0850 
7 99.3565 0.0195 -6.6435 0.0195 
8 91.5400 0.0000 -8.4600 0.0000 
9 104.7935 0.1235 -9.0065 0.1235 

10 104.0915 0.0745 -13.9085 0.0745 
11 98.5840 0.1180 -15.3660 0.1180 
12 97.1130 0.0870 -15.8870 0.0870 
13 105.6625 0.2555 -19.0875 0.2555 
14 126.3400 0.0000 -24.4100 0.0000 
15 98.0850 0.3000 -25.9150 0.3000 
16 113.5390 0.0000 -30.5610 0.0000 
17 107.8030 0.4030 -34.1970 0.4030 
18 68.4120 0.0000 -31.5880 0.0000 
19 104.2040 0.1030 -42.1460 0.1030 
20 93.0760 0.3970 -42.9240 0.3970 
21 98.3195 0.6035 -55.6805 0.6035 
22 97.3575 0.3915 -56.1425 0.3915 
23 108.1330 0.0350 -65.6670 0.0350 
24 53.3570 0.0000 -46.6430 0.0000 
25 97.0365 0.5305 -69.4635 0.5305 
26 104.4580 0.7360 -163.5420 0.7360 
27 94.3655 0.4115 -183.8845 0.4115 

 
Table 3: Fuzzy price kP~ and dependent variable kY~  
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kX 1  kX 2  kX 3  kX 4  kX 5  Asset 
1 4.921 0.079 0.000 0.000 0.000 
2 70.111 34.889 0.000 0.000 0.000 
3 74.068 37.777 0.000 0.000 0.000 
4 78.288 64.712 0.000 0.000 0.000 
5 85.634 83.706 0.000 0.000 0.000 
6 79.000 79.000 0.000 0.000 0.000 
7 82.791 81.689 0.000 0.000 0.000 
8 79.000 122.664 5.336 0.000 0.000 
9 86.160 129.979 5.581 0.000 0.000 
10 89.560 193.860 51.796 0.000 0.000 
11 89.929 203.774 71.801 0.000 0.000 
12 88.242 204.299 92.500 0.000 0.000 
13 94.636 217.787 146.417 0.600 0.000 
14 115.881 255.246 211.770 6.000 0.000 
15 97.865 228.288 263.667 23.100 0.000 
16 112.237 254.203 312.709 39.200 0.000 
17 110.281 252.162 365.666 80.300 0.000 
18 79.000 191.500 350.973 138.500 0.000 
19 111.542 258.299 433.495 193.800 0.000 
20 106.199 247.343 431.116 239.600 0.000 
21 121.233 282.212 484.392 418.500 3.000 
22 121.159 283.730 488.252 447.300 4.500 
23 135.395 312.690 534.635 608.700 17.000 
24 79.000 191.500 369.000 503.900 15.600 
25 127.777 298.592 523.084 754.300 41.800 
26 209.897 493.695 885.055 2439.000 1101.200 
27 219.398 519.534 937.863 2694.000 1609.100 

 
Table 4: Values of  k

jX

ARC2008_Shapiro-Koissi.pdf 19



 

 
 
Method1           
Asset     Centers     

k a1C a2C a3C a4C a5C 
1 -0.0443 -0.0366 -0.0487 -0.0355 -0.0077 
2 -0.0426 -0.0359 -0.0487 -0.0355 -0.0077 
3 -0.0433 -0.0362 -0.0487 -0.0355 -0.0077 
4 -0.0437 -0.0364 -0.0487 -0.0355 -0.0077 
5 -0.0443 -0.0369 -0.0487 -0.0355 -0.0077 
6 -0.0438 -0.0364 -0.0487 -0.0355 -0.0077 
7 -0.0441 -0.0367 -0.0487 -0.0355 -0.0077 
8 -0.0449 -0.0380 -0.0488 -0.0355 -0.0077 
9 -0.0447 -0.0376 -0.0487 -0.0355 -0.0077 
10 -0.0446 -0.0380 -0.0491 -0.0355 -0.0077 
11 -0.0447 -0.0383 -0.0493 -0.0355 -0.0077 
12 -0.0440 -0.0367 -0.0487 -0.0355 -0.0077 
13 -0.0438 -0.0360 -0.0483 -0.0355 -0.0077 
14 -0.0435 -0.0354 -0.0477 -0.0355 -0.0077 
15 -0.0437 -0.0359 -0.0479 -0.0354 -0.0077 
16 -0.0438 -0.0362 -0.0482 -0.0354 -0.0077 
17 -0.0437 -0.0360 -0.0478 -0.0353 -0.0077 
18 -0.0436 -0.0357 -0.0470 -0.0348 -0.0077 
19 -0.0439 -0.0364 -0.0484 -0.0354 -0.0077 
20 -0.0439 -0.0364 -0.0483 -0.0353 -0.0077 
21 -0.0444 -0.0375 -0.0502 -0.0368 -0.0077 
22 -0.0442 -0.0370 -0.0494 -0.0361 -0.0077 
23 -0.0441 -0.0368 -0.0490 -0.0359 -0.0077 
24 -0.0440 -0.0367 -0.0489 -0.0357 -0.0077 
25 -0.0440 -0.0367 -0.0489 -0.0358 -0.0077 
26 -0.0440 -0.0365 -0.0485 -0.0349 -0.0074 
27 -0.0440 -0.0367 -0.0488 -0.0359 -0.0079 

Mean -0.0440 -0.0366 -0.0486 -0.0355 -0.0077 
            

     Method2 
  -0.0438 -0.0368 -0.0486 -0.0355 -0.0078 
      

  Results by Sanchez and Gomez 
  -0.0440 -0.0366 -0.0487 -0.0355 -0.0077 

 
Table 5a: Centers values for CA~ using Possibilistic and FLS regressions  
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Tanaka Diamond

-0.0438 -0.0366 -0.0486 -0.0355 -0.0078 -0.0438 -0.0366 -0.0486 -0.0355 -0.0078

h=0.5 z=110.2
0.0009 0.0037 0.0064 0 0
0.0033 0 0.0045 0 0.0008

0.011 0.0047 0.0026 0.0009 0.0015
h=0.75 z=220.5 0.0064 0.0029 0.0017 0.001 0.0016

0.0019 0.0074 0.0129 0 0
0.0065 0 0.0089 0 0.0016

Ca1ˆ Ca2ˆ Ca3ˆ Ca4ˆ Ca5ˆ

jCjC aa ˆ=

jLa
jRa

jLa

jRa

Ca1ˆ Ca2ˆ Ca3ˆ Ca4ˆ Ca5ˆ

jLa

jRa

 
Table 5b: Centers and spreads of kA~ , Tanaka and Diamond distances. 

 
6.2. Results and Comparison of fuzzy regressions estimates 
 
Tables 5(a) and (b) show the estimated centers and spreads obtained from both the Tanaka 
(possibilistic) and Diamond (least squares) fuzzy regressions.  
 

• For the center values : Both approaches produce identical estimated. Given 
and , the following values are obtained 

jCa
27max =k 5=m 0438.0ˆ1 −=Ca , , 

,  and 
0366.0ˆ2 −=Ca

0486.0ˆ3 −=Ca 0355.0−=ˆ4Ca 0078.0ˆ5 −=Ca . These expected results agree with 
the findings in Sanchez and Gomez (2004:815).   

 
• For the spreads: The left and right spreads  for the possibilistic regression are 

estimated for user-selected values of
),( jRjL aa

−h level (h=0.5 and h=0.75). With the least squares 
regression, the data determinate the values of the spreads, and there is no need for an 
arbitrarily chosen level.  −h

 
 By implementing the possibilistic regression using the Matlab software, we got the values of 
110.2 (h=0.5) and 220.5 (h=0.75) for the objective function, which are close to the values of 
109.62 and 219.25 obtained by Sanchez and Gomez. The values obtained for the left and right 
spreads agree with the results by Sanchez and Gomez. 
  
The FLSR produces spread values that are lower than the results obtained with the possibilistic 
model, except for the components  and . Ra4 Ra5

 
Figure 5 displays the discount functions, the spot rates and the forward rates (for 30 years ahead) 
obtained from equations (20), (27), and (28).  
 
 
 

ARC2008_Shapiro-Koissi.pdf 21



 

 
 

0 10 20 30
0

0.5

1

Time (years)

D
is

co
un

t 
fu

nc
tio

n
Results from Tanaka and Diamond distances 

(h=0.5)

0 10 20 30
0

0.5

1

Time (years)

D
is

co
un

t 
fu

nc
tio

n

0 10 20 30

0.04

0.05

0.06

0.07

Time (years)

S
po

t 
ra

te

0 10 20 30

0.04

0.05

0.06

0.07

Time (years)

S
po

te
 r

at
e

0 10 20 30
0.04

0.05

0.06

0.07

0.08

Time (years)

F
or

w
ar

d 
ra

te

0 10 20 30

0.04

0.06

0.08

0.1

Time (years)

F
or

w
ar

d 
ra

te

Tanaka
Diamond

 
Figure 5: Discount Function, Spot and Forward rates, Tanaka and Diamond distances. 
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7. CONCLUSION 
 
In this paper, we used Diamond’s FLSR methodology to extend the standard econometric 
estimation of the TSIRs.  The starting point for our analysis was the studies by Sánchez and 
Gómez.  Those studies provide interesting insights into the use of fuzzy regression for the study 
of the TSIRs.  However, their methodology relies on possibilitic regression, which has potential 
limitations, some of which can be circumvented by using FLSR techniques.  While this study is 
still in the development stage and should be considered a work in progress, preliminary analysis 
suggest that both fuzzy regression models produce similar results.  
 
 
 
APPENDICES  
 
A.1.  Spline approximation of the discount function: 
 
The function gj(t) is based on McCulloch (1971: 29-30), as modified by Sánchez and Gómez 
(2004: 814).  In particular, m=5, while d1=0, d2=1.58, d3=3.83, d4=8.96, and d5=31.1 years, 
respectively.  Thus, 
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A.2. Overview of Equation (32) solution 
 
The equation (25) below can be solve in two ways 
 
           . k

C
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CkC XaXaY 5511 ++= }27,,1{ =k
 
 
Method 1: (Sánchez and Gómez) 
 
This approach was used by Sánchez and Gómez. For each }27,,1{ =k , ordinary least squares 
are used to obtain a vector 1 5( , ,k k k

C C C )A a a=

(ˆ
CA =

. Then, the means of each vector component over  

provide the vector of estimates centers . 
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Method 2: 
 
Assume that the  coefficients are the same for every . Then, jCa k (25) has the following matrix 
representation,   
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where  andCY X are (27x1) and (27x5) matrices, and  is the (5x1) unknown vector. CA
 
A solution to this equation is obtained using MATLAB backslash (X = A\B denotes the solution 
to the matrix equation AX = B): CC YXA \= .  As an alternative, Matlab built-in function 
“regress” can be used: regress( . No additional adjustment is then needed. X) ,CY
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A.3. Overview of Problem 2 solution 
 
The partial derivatives of  with respect to the unknown parameters are as follows. kF
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These expressions contain the function “max”, which makes it difficult to differentiate.  
 
Problem 2 can be summarized as follows.  

Minimize , where  ∑
=
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Define the functions , and such that Cp Lp Rp
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Also define the functions g and such that q
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A. 4.  Derivation of (33) 
 
Each term of the right hand side of (32b) can be written as 
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Then, (33) is obtained by summing up (36a)- (36c). 
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