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INTERVENTION EFFECTS AMONG A COLLECTION OF RISKS 
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ABSTRACT 

To describe the long-term effects of changes that affect health, including 
aging, risk factors must be included in actuarial computations. This is prob- 
lematic when there are multiple risk factors that interact with one another 
and that change over time. 

In this paper risk-factor-dependent multiple decrements and actuarial cost 
functions are initially described as a general compartment model, that is, a 
discrete time and discrete state stochastic model of morbidity and mortality 
processes for risk factor strata. For situations with large numbers of risk 
factors, the compartment model is extended to its natural continuous time 
and continuous state form, which represents risk factor dynamics and inter- 
actions as a system of first-order stochastic differential equations. By deriv- 
ing the stochastic differential equations as a generalization of multiple- 
decrement models, both the relationship between decrement rates and the 
relationship among the parameters of the dynamic equations are made ex- 
plicit, as are the actuarial cost functions for both the continuous and the 
discrete models. The methodology is illustrated by using data from the Fra- 
mingham heart study. 

I. INTRODUCTION 

Actuarial practice frequently requires a prediction of the morbidity or 
mortality experience of groups of individuals. Because of changing condi- 
tions or interventions, previous experience cannot be used naively to make 
forecasts. A "collection of risks" is a set of individuals (for example, block 
of business, group of insured persons, and so on) for which estimates of 
intervention effects are required. By "intervention effects" we mean the 
effects of any variation that would cause the health experience of the set of 
individuals to change (for example, aging, introduction of a new medical 
treatment, an antismoking campaign, and so forth). Current methods involve 
discretely stratifying the "collection of risks" by risk factors and then es- 
timating actuarial functions--oftenusing simulation. 

*Mr. Manton, not a member of the Society, is Research Professor of Demographic Studies and 
Research Professor of Community and Family Medicine at Duke University. 
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Stratification is often termed "classification of risks" (see Cummins et 
al. [3]). Risk factor stratification of life (or decrement) tables to reflect 
increased (or decreased) risks of death can be based upon medical studies 
(see, for example, Lew and Gajewski [10]) as well as primary data. The 
creation of risk strata is difficult when there are a large number of risk 
factors (see, for example, Gunning-Schepers [6]). Further complications oc- 
cur when (a) risk factors interact (that is, risk associated with one factor is 
contingent upon the level of another factor), (b) individuals change strata 
over time, (c) risk varies as a continuous function of the risk variables--not 
discretely, and (d) transitions between strata occur continuously. 

Continuous risk factors (or time) may be approximated by defining large 
numbers of risk factor strata (or by finely dividing time). This, however, 
aggravates the multiple variable problem. For example, five risk factors 
(such as smoking, blood pressure, body weight, serum cholesterol, and age), 
each divided into three levels, define fifteen categories without interactions 
and 53 = 125 categories with interactions. For some variables, such as age, 
three levels may not fully characterize a risk factor's effect. 

To deal with the stratification problem, we propose extending the multiple- 
decrement life table model to a continuous state and continuous time sto- 
chastic process in which risk is described by a multivariate function. Changes 
in the risk factor distribution are represented by stochastic differential equa- 
tions that are derived naturally from the multiple-decrement model as the 
number of discrete risk strata is increased to infinity. Thus, the stochastic 
differential equation model is a natural generalization of the actuarial practice 
of risk classification. Cost functions can be generalized similarly. Further- 
more, because health events naturally occur in continuous time (it is obser- 
vation that generates data in discrete time and in discrete states), the stochastic 
differential equations provide a basis for evaluating approximations used in 
discrete models. 

The effects of shifts in the distribution of risk factors on health costs have 
to be accounted for in both public and private actuarial practice. In the public 
domain, the assignment of limited resources to health care programs and 
projects requires analysis of the future costs and benefits of those programs. 
In the private sector, changes in either risk factor exposure or the treatment 
of disease may affect the morbidity costs and mortality rates for a large 
portion of the insured lives. When such changes are restricted to particular 
groups of insured lives, their negative financial impacts might be offset by 
reserves, reinsurance, or risk-sharing pools. For future business, both pos- 
itive and negative changes that continue to influence mortality and morbidity 
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costs will have an impact on premium calculations, the valuation of liabil- 
ities, and the determination of reserves. An insurer who benefits from re- 
duced costs because of changes in morbidity or mortality will have a surplus 
to distribute to shareholders or to offset other actuarial losses. On the other 
hand, insurers who plan to provide preventive care as a benefit must recap- 
ture costs through actuarial gains. In all cases, expected costs must be ac- 
curately estimated. 

In addition, efficacy is often not adequately measured by "current cost" 
estimates. Primary prevention programs require managing and reducing risk 
factor exposure, and the benefits, measured by decreased morbidity or dis- 
ability, require time to emerge because prevention affects the onset of dis- 
ease. Persons who already have the disease may not be susceptible to the 
intervention and continue to progress through the course of the disease. Thus, 
intervention studies frequently require five to ten years to show significantly 
reduced morbidity and mortality risks. As a consequence of these lengthy 
periods, the demographic profile of the beneficiary population may shift (for 
example, the population may become older with time) or those with adverse 
risk factor values may die early. In such cases some of the observed benefits 
are not the result of interventions but of population shifts in the distribution 
of risk factors. When "benefits" are negative, the intervention may be 
manifest only in a reduction of the negative effects (for example, reducing 
age-specific morbidity rates may partly offset the aging of persons to higher 
age categories in which chronic prevalence is high). Thus determining the 
benefits of a risk factor management program requires separating cost sav- 
ings attributable to risk factor modificati6n from costs attributable to dem- 
ographic shifts and mortality selection. 

We present two strategies for modeling risk factor interventions. The first 
generalizes standard increment-decrement life table models (see, for exam- 
ple, Jordan [8]) to "compartment" models (that is, discrete state and discrete 
time models of health processes) to represent movement between risk factor 
states. The states in the compartment model can represent death, disability, 
or an adverse (or beneficial) risk factor status. Interventions are represented 
by changes in risk factor states; for example, interventions modify transition 
rates between certain risk factor and mortality states and change the number 
of individuals in those states. The costs and benefits of the intervention are 
calculated by standard actuarial procedures. A multivariate continuous state 
model arises directly from the compartment model as the number of risk 
strata increases. Actuarial cost functions are presented for this continuous 
state model. 
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II. A DISCRETE STATE MODEL OF HEALTH INTERVENTION 

A compartment model of morbidity-mortality processes is illustrated in 
Figure 1. An individual resides in only one risk factor state although he/she 
can move to any other state at time t. The risk factor states can represent 
chronic illness, disability and risk factor exposure (for example, smoker 
versus nonsmoker, hypertensive versus not hypertensive, and so on). The 
"we l l "  state is defined as the state with no risk factors. Though an individual 
can be only in one state at any time, the definitions of states need not be 
exclusive; for example, an individual may be in a hypertensive state, a 
smoking state, or a hypertensive and smoking state. We define the following 
terms: 

t 
K 

L 
a 

nk(a,t) 
pki(a, t) 

qn(a,t) 

ql(a,t) 

= time interval (t = 1, 2, . . . ,  T) 
= number of risk factor states (besides the well state). Risk factor 

state " 0 "  is the " w e l l "  state 
= number of causes of death ( l= 1, 2, . . . ,  L) 
= index for age groups 
= number of individuals in age group a at beginning of t in state k 
= probability that an individual in risk factor state k and age a at 

time t will move to risk factorstate j at time t + 1 
= probability that a person in age group a in state k at t will die 

of cause I during the year 
= probability that a person in age group a at t dies of cause 1, 

= ~, q~(a=t) nk(a, t ) l~  nk(a, t). (1) 
k k 

FIGURE 1 

COMPARTMENT MODEL SCHEMATIC OF MORBIDITY-MORTALrrY PROCESS 
WITH DISCRETE RISK STATES 
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III. THE MARKOV ASSUMPTION 

Multiple increment or decrement life tables are special cases of the com- 
partment model in Figure 1. Consequently, methods to estimate multiple- 
decrement life table parameters are easily extended to the compartment model. 
Applying those methods for many risk factor states and causes of death, 
however, requires a huge volume of data. Problems in evaluating actuarial 
functions arise because (i) all possible pathways that result in the contingent 
event of interest must be determined and (ii) the probabilities associated with 
each of these pathways must be assessed. The problems are simplified if the 
model in Figure 1 can be assumed to be Markovian; that is, the probability 
of changing states depends only on the two states (the state the individual 
is coming from and the state he/she is going to) and not on any previous 
states the individual has been in nor length of time in the current state. 

The Markov assumption seems unreasonable because age, length of ill- 
ness, and prior illness are determinates of the risks of many causes of death 
and diseases. The Markov assumption can be made more reasonable by 
several strategies. First, risk factor states can be defined to represent multiple 
diseases. A risk factor state may also be defined as increased length of time 
with a particular risk factor. For example, a person enters the "smoked 0-- 
5 years" risk state when he/she begins to smoke. In five years he/she moves 
to a "smoked 5-10 years" risk state if he/she still smokes and has not died. 
Or he/she may enter a "hypertensive and smoked 5-10 years" state if his/ 
her blood pressure rises and he/she continues to smoke. Alternatively if he/ 
she stops smoking, he/she may enter the "smoked only 5 years" state. Age 
can be treated similarly; that is, Figure 1 can be viewed as applying to a 
specific age group with risk factor states defined for each subsequent age 
group. Individuals move between states as they age. 

Assuming that the Markov assumption holds for Figure 1, movement 
between states can be described by a matrix of transition probabilities. If ,rr~ 
is the probability of moving from state i to state j in a year, the transition 
matrix is 

n'O0 '13"01 " " " ~/'roR / 

I I  = , 

"ITR0 'ITR1 'r/'RR J 

(2) 
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where the total number of states is R +  1 = K + L +  1 including the "well"  
and death states. The "rrij are estimated from nk(a, t) and qk~(a, t). TO determine 
the population in each state after m years, let ni be the number of individuals 
in state i at time 0. The row vector N = (no, nl, . . . .  nR) of these counts is 
called the state vector. The vector N ~m) of counts in each state after m years 
is 

N (m) = NII  m (3) 

where II m is product of H with itself m -  1 times (that is, the m-th power 
of H). The vector N on), m = 1, 2, . . . ,  is the basis for all actuarial functions. 

The model can be used in different ways. First, it could relate future 
morbidity and mortality experience data with risk factor data from follow- 
up studies in which changes are defined by 17. Second, the model is useful 
for forecasting future contingent outcomes and for evaluating actuarial func- 
tions associated with morbidity and mortality outcomes under various inter- 
ventions or changes in the insured population. Because the current model is 
more biologically plausible than simply "alive-dead" and "standard-sub- 
standard risk" classifications, the actuarial estimates will be more accurate. 
By selecting a sufficient number of risk factor and mortality states, any finite 
combination of risk factors can be modeled. A model representing the in- 
teractions of risk factors and chronic conditions is more defensible than risk- 
scoring methods that do not represent those interactions (see Cummins et al. 
[3]). 

IV. RELATION TO HEALTH STUDIES 

The different types of risk measures used in epidemiological and public 
health studies are reviewed to illustrate how they can be used to estimate 
the parameters in Figure 1 (that is, the q~a and nk values). 

Incidence rate is the rate per unit of time that cases occur in the population. 
For example, the annual "incidence" rate of lung cancer deaths among 
smokers age a at t is q~(a,t), where k represents the "smoking" risk factor 
state and l represents the "death by lung cancer" state. Alternately, inci- 
dence may represent onset of a chronic disease. The incidence rate of, for 
example, diabetes for those over age 50 at t is 

~ k~ ~ a>5o ~ nk(a't)PkJ(a't)/n 

where K is the set of all indexes of risk states that do not include diabetes 
in their definition and/(  is the set of risk factors states that include diabetes 
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in their definition. The total population of individuals over 50 who are not 
diabetic is 

n = ~ ~ nk(a,t ). 
&~-~ a>50 

Prevalence is the number of cases in a population or sample at t. The 
prevalence of state k among individuals who are age a at t is nk(a, t). The 
prevalence rate does not refer to transitions but to the proportion of the 
population in a certain state (or set of states) at t. Thus, prevalence rates 
give information only on nk(a, t). 

Relative Risk (or Risk Ratio or Rate Ratio) is the ratio of the incidence 
of an event from two different risk factor states (see, for example, Breslow 
and Day [2]). The events can be onset of morbidity or death by specific 
causes. The risk of death from cause I at time t for those with risk factor k~ 
relative to the same risk for those with risk factor k2 is, for age a, 

Relative Risk = qk~t(a,t) 
qka(a,t)" 

With ihe relative risk, the ratio of certain probabilities of death can be estimated. 
This does not provide an estimate of a transition probability--only a ratio. 

In case control studies, relative risk is defined by prevalence (see, for 
example, Monson [12]). In this case, samples are selected from two different 
risk factor states and the prevalence of a disease examined. The relative risk 
of the disease is the ratio of the prevalence of disease in two risk factor 
states. Because this relative risk is based on prevalence, it does not provide 
estimates of transition probability ratios, but ratios of counts. Explicitly, the 
relative risk (prevalence based) at t of a chronic illness for individuals in 
risk factor state k I and k2 is 

n*k~(a,t), nk2(a,t) 
Relative Risk = nkl(a,t) n*k2(a, t)' 

where n*kl(a,t) represents persons with the disease aged a and in state kl at 
t and nk~(a, t) represents all those without and with the disease. 

This type of relative risk is used to determine risk factor states. For ex- 
ample, if we separated "smokers" into those with chronic obstructive lung 
disease (COLD) and those without, a relative risk measure provides infor- 
mation on the counts in the new "smoker-COLD" state relative to a "non- 
smoker-COLD" state. 
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Excess Mortality is the additional chance of dying due to the presence of 
a risk factor, say kl, relative to a second risk factor, say k2, 

excess mortality = qk~(a, t) -- qk2(a,t). 

This measure also can be used to calculate the excess risk of a chronic 
disease by replacing qt(a, t) with pk~(a, t). 

Cross Product Ratio ("Odds Ratio") is the ratio of the "odds" of an 
event, in one risk factor state relative to the odds in a second risk factor 
state. For example, the age-specific cross product ratio of death for smokers 
to nonsmokers at t is rl/rz, with 

r~ = ~ ~'qky(a't)/[ 1 - ~ j k~ j 

where/(1 is the index set for smoker risk factor states and r2 is defined 
similarly for K2, the index set for nonsmokers. 

Cross product ratios can also be used with prevalence data, for example, 
the odds ratio of smokers and nonsmokers who have COLD is r~/r2, where 

r 1 = ~ nk(a, t ) /~  nk(a, t) 
~e.gt k~M 

and/(1 is the set of risk factor states that include both smokers and persons 
with COLD and K'~ is the set of risk factor states that include smokers and 
persons without COLD. 

Attributable Risk (or Etiologic Fraction) is the portion of deaths caused 
by a risk factor over what would have occurred without the risk factor (see 
Miettinen [11]). The attributable risk of smoking for lung cancer deaths is 

nk(a, t) qk~(a, t) 
Attributable Risk = ~ 

where K is the index set of risk factor states that include smoking. Kj is the 
index set of risk factor j across all levels of smoking; that is, Kj represents 
all risk factors states that would have been in the risk factor state without 
stratifying on smoking, for example, "hypertensive nonsmoker," "hyper- 
tensive light smoker," and "hypertensive heavy smoker" are three states 
that would have been a "hypertensive" state. In this case qjt(a,t) is the 
annual mortality rate for hypertensive nonsmokers. The index l refers to the 
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death by lung cancer state. Attributable risk can also be defined for chronic 
diseases. 

These morbidity and mortality measures are commonly used in epidemio- 
logical and public health literature. Published results from such studies, in 
conjunction with national mortality data, can be used to construct relatively 
complex compartment models of risk and mortality. Given the wide range 
of risk measures, estimating the parameters for the model from secondary 
studies with a mixture of measures requires complex algebraic manipulation 
and approximation. 

V.  A N  E X A M P L E  OF A M U L T I S T A T E  C O M P A R T M E N T  M O D E L  

To illustrate these concepts, consider the example in Figure 2. For sim- 
plicity, all transitions are assumed to be independent of age. The compart- 
ments labeled " smoker"  and " 'hypertensive" are risk factor states. Persons 
who are not hypertensive and who do not smoke are in the " w e l l "  state. 
When a " w e l l "  person begins to smoke, he/she enters the " smoking"  state. 
Similarly, a well person who becomes hypertensive enters the "hyperten- 
sive" state. The "hypertensive and smoking" state represents individuals 
with both risk factors. Figure 2 allows for movement from risk factor states 
back to the " w e l l "  state. Transitions are effected by medical treatment (for 
example, for hypertension) or behavior modification (for smokers). 

Causes of death are denoted by the "lung cancer death," "coronary death" 
and "other  death" states. The "dead I year or more"  state enables calcu- 
lation of actuarial functions associated with mortality; that is, an insurer can 
expect to incur costs in the year of death, but not subsequent years. The 
"dead I year or more"  state identifies individuals with no further insurance 
risk. The transition rates for this model are 
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FIGURE 2 

SIMPLE EXAMPLE OF THE COMPARTMENT MODEL 
FOR MODELING HEALTH STATES 

UNDER THE MARKOV ASSUMPTION 

rtensive ] 

Dead 1 
Year or More 

In rl the "smoker" state is denoted state 1, the "hypertensive" state 2, 
and so on. The transition probabilities are 

p,, = 1 -  Y~ P o -  2 qi~. (4) 
j ÷ i  k 

The probability of going to the "dead 1 year or more" state from the dead 
by any cause states is a certainty (that is, "fl'47 = 'YI'57 ~-'1"/'67 = 1 . 0 ) .  

We require estimates for each transition probability; these can be gener- 
ated from published results. For example, Peto [13] gives a formula relating 
smoking to lung cancer. This provides estimates of qol and qn- The prob- 
ability of coronary death for smokers is estimated to be about twice that of 
nonsmokers. Under this assumption, q12=2qo2. Other relationships might 
be assumed such as (see, for example, Bumgarner [1]): 
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q21 ~ qOl 

q22 = 2q02 
q ~  -- 4qo~ 

q03 = q13 

Plo = P21 = 0.03 

The vector of the number of individuals in each health state is N = (no, 
nl, . . .  , n T ) .  If everyone starts "wel l ,"  then nl =n2 = . . .  = n 7 = 0 .  The num- 
ber of individuals in each state after m years, N("), is 

N(")  = Nn". (5) 

From (5) the present value of total costs for, say, state 2, discounted at 6 
percent interest and by the contingency of the event is 

costh = C ~ (1.06)-" ni m), (6) 
m=0 

where c is the annual health cost for an individual who is hypertensive and 
nz ¢') is the third element of the vector N (m). 

Other costs are similarly calculated from powers of the transition matrix 
II. For example, the mortality costs for lung cancer death are 

co 

cOSta = ca ~, (1.06) -m ni "), (7) 
ra~0 

where ca is the cost of death from lung cancer. The sequence nl (1), 
nl (2) . . . .  , nl (m) represents the number of individuals who smoke and who, 
consequently, may incur additional medidal costs. Costs may also be ex- 
pressed as demands for resources, not as monetary units discounted by in- 
terest and contingency. Such resource measures (for example, the number 
of beds required per year, health manpower requirements) might be useful 
for resource allocation in health service systems with fixed global budgets 
(for example, hospitals or HMOs). Introducing age dependency in the tran- 
sition probabilities increases the size of II, though it does not add conceptual 
difficulty. The costs and benefits of interventions are estimated by altering 
the transition probabilities, or cost functions, and performing the matrix 
computations. 

Our primary interest is the evaluation of risk factor interventions. To 
simulate an intervention in Figure 1, the probabilities of transition into or 
out of certain states are altered; that is, the % parameters in the transition 
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matrix are changed starting at t = 0. For example, an intervention may reduce 
the rate at which people start smoking by 25 percent. Though the effect of 
the intervention on the transition probabilities is clear, how the intervention 
operates over time depends on all parameters of the Markov model. 

The example shows advantages and disadvantages of the compartment 
model. First, the vectors, n,~ m~, are the basis for calculating actuarial cost 
functions for state i. Knowledge of N Cm~, over values of m, and the costs 
associated with each state allow estimation of actuarial functions for the 
process. Changes in transitions, in turn, alter the entries in NCm) from which 
the financial consequence of the intervention is assessed. Thus the N (m) are 
"sufficient statistics" for the compartment model; that is, all discrete time 
actuarial functions can be calculated once the compartment model is specified. 

To use the compartment model to calculate actuarial functions for contin- 
gent events, two assumptions are made. The first is that the occurrence of 
a contingent event at t is equivalent to an individual being present in a state 
at the end of t. By appropriate construction of states, absorbing transitions 
(for example, death by a specific cause) can be modeled. Morbidity and 
health-related actuarial functions are easily modeled by such states. The 
second assumption is that an appropriate cost for the contingent event can 
be assigned to the state (or states) indicating the occurrence of an event. 
This assumption is satisfied by determining costs on a present value basis, 
for example, present value at year's end for health care costs for the year. 

The disadvantage of the approach, despite familiarity to actuaries, is that 
the number of risk factor states that can be represented is limited. In the 
example, there are 24 transition probabilities and 6 cost functions. If this 
were applied to a cohort grouped into five-year categories for ages 30 to 90, 
there are 12 x 24, or 288, transition probabilities. Thus, estimation of such 
models (Weinstein et al. [16]) may require unrealistic assumptions (for ex- 
ample, that risk factors operate independently). In the example in Section 
X, nine risk factors are examined. A discrete state model of this complexity 
requires more data than are generally available. 

A second limitation is the need to approximate continuous risk factors by 
discrete risk states. For example "hypertensive" or "high blood choles- 
terol" are not defined until the blood pressure or cholesterol threshold for 
each is specified. Often standards are set up by national or international 
organizations, but different standards might classify both values of 200 and 
240 as "high,"  though the risks of cardiovascular failure in these two cases 
vary considerably. Similarly, smoking two cigarettes a day and smoking two 
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packs a day are different risks that are not distinguished by classifying in- 
dividuals as "smokers." 

VI. THE CONTINUOUS STATE GENERALIZATION OF THE MULTIPLE 

DECREMENT/COMPARTMENT MODEL 

When continuous risk factors (for example, age, blood pressure) are rep- 
resented as discrete states, there is a loss of information. In this section we 
generalize the compartment model to represent continuous risk factors and 
time to avoid this loss. The advantages of generalizing the compartment 
model are: 
1. The response of many diseases to risk factor exposures is naturally 

continuous. 
2. Rules for describing discrete risk factor states are often arbitrary. 
3. The data requirements of discrete state models exceed those for a model 

of continuous risk factors. 
4. Fewer simplifying assumptions are required than in complex compart- 

ment models in which transitions often have to be estimated from multiple 
independent published studies. 

Conversely, it is easy to use discrete risk factors (for example, gender) 
in the continuous model. For variables that are discrete (and cannot be 
represented by a continuous surrogate risk factor variable), the process is 
made specific to the discrete state. For example, continuous state models 
could be sex-specific--or apply only to those individuals who have (or have 
not) had a coronary event. For coronary heart disease, an individual can be 
viewed as "jumping" from one continuous state model to another (probably 
with very different parameters) when a coronary event occurs. In addition, 
discrete risk factors may be replaced by continuous variables that are sur- 
rogates for the event. This is useful when information is gathered at discrete 
points in time. 

A second generalization of the compartment model represents transitions 
in continuous, not discrete, time. This has two advantages. First, it is more 
realistic. Even when data are gathered at discrete time points, both mortality 
and morbidity processes are operating in continuous time. Second, the equa- 
tions describing the number of individuals at each risk factor level are easier 
to solve in continuous time. Under mild regularity conditions, the function 
describing the number of individuals at each level of the risk factors is 
described by a specific type of differential equation (for example, Gillespie 
[5]). 
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More formally, to generalize the compartment model, we replace the 
discrete states with a vector of continuous risk factors for person w denoted 
as r,~(t). Thus rw(t) describes the level of smoking, blood pressure, choles- 
terol, and so on of individual w at exact time t. The values that a person 
has at t describe his/her "state" as a point in a risk factor continuum. 
Changes in rw(t) are described by a continuous time, vector stochastic process; 
that is, the health "state" of the individual, represented by r,,(t), is governed 
by a random process--as are movements between discrete states in the com- 
partment model. The discrete state of an individual (for example, gender) is 
indexed by d. 

Following the Markov assumption rdw(t + A), the "state" of individual w 
at time t + A, given that individual w was in "state" rdw(t) at t, is an Outcome 
whose probability depends only on rdw(t) and not on raw(t-s) (for s>0). 
Thus, the "state" of an individual is defined jointly by the risk factor vector 
rw(t) and the discrete state d. Both can change at any t. For example, risk 
factor r,,(t) may increase. The individual may have a heart attack, which 
changes d. The realization of this process at time t for the w-th individual 
represents the w-th individual's risk factors. 

To understand the probabilistic mechanism describing changes in risk 
factors, denote h~ as the i-th element of the difference rdw(t + A) - r a w ( t ) ,  for 
a small value of A. The process is represented by changes in the h~ values 
over time. Specifically we assume the following first two moment condi- 
tions, given that the value of rdw(t) is known to be x: 

E[hi[rdw(t) = x] = gdi (x,t)A + O(A) (8) 

and 

E[h,hjlrdw(t ) = x] = Aa,j(x,t)A + o(A), (9) 

where o(A) is such that o (A) /A~0  as A ~ 0 .  The third assumption is: 

E[h,hjhklrd~(t) = x] = o(A). (10) 

Collectively, the assumptions in (8), (9), and (10) indicate that for small 
time intervals (small A), the average expected change in the risk factors is 
a function of the current risk factor level times the length of the time interval; 
a similar relation holds for the second moment as described by Equation (9). 
All moments higher than the second are assumed to decrease faster than A 
as A goes to zero. The vector containing the gdi(x,t) values can be denoted 
gd(X, t) and the matrix containing the AdU(X, t) values as A~(x, t) where these 
quantities are functions of the discrete state d. With these conditions and 
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regularity conditions on the correlation of the random vector process r(t + A) 
-r(t), r(t) satisfies the stochastic differential equation 

dr(t) = gd[r(t),t] dt + trd(X,t ) d~ [r(t), t], (11) 

where ~ [r(t),t] is a Gaussian vector process (see Kushner [9]) and o'e(x,t) 
is the "square root" of Ae(x,t). The parameters on the right-hand side of 
(11) are dependent on d. Equation (11) assumes that the individual did not 
change states during the interval (t,t + A). 

To understand (11), let aw(x,t,A) denote the risk factor values that are 
statistically expected for individual w at time t + A given that he/she remains 
in discrete risk factor state d and has continuous risk factor values r(t)= x 
at t. Then aw(x,t,A) is calculated from the distribution of the risk factor 
process at t + A given that the value of the process at t is x. This expectation 
is similar to the compartment model in which the state that an individual is 
expected to be in at t + 1 is calculated conditionally on the state the individual 
was in at t. The function ge[r(t),t] in (11) is (see Schuss [15]) 

a 
gait(t), t] = ~ a~, Jr(t), t, A] (a-.o+. (12) 

Consequently, Equation (11) describes changes in risk factors as changes in 
the conditional mean of the risk factor and the "differential" of random 
noise within each discrete state or compartment. 

To illustrate (11), consider insured persons with two risks: smoking and 
hypertension. For this population during a year, suppose smoking increases 
3 percent with a standard deviation of 2 percent. Suppose hypertension rises 
1 percent, with a standard deviation of 1/2 percent. Assume, for conve- 
nience, that changes in smoking and hypertension are linear in time and 
independent. Using the notation above, 

r(t) = (smoking level / = (rl(t)~ 
~ hypertensive level] \r2(t)]" 

If the instantaneous rate of change is constant over the year, then 

g(x,t) = / 0"03xl) 
~0.01 x2 
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and the matrix A(x,t) is given by 

A(x,t) = [(0"010x')2 0 
(0.005 x~) 2] 

Equation (11) replaces the compartment model transitions between risk 
factor states. In the compartment model, a number of discrete states are 
required to describe the levels of smoking and hypertension. In the contin- 
uous case, only two equations are required. 

VII. JUMP PROCESS 

Equation (11) represents how continuous risk factors change over time 
given that individuals remain in state d. However, individuals will not remain 
in the same discrete states. Some will enter the different discrete disease/ 
risk states by suffering a heart attack, stroke, and so on. Others die. In this 
section we describe how these discrete changes are represented for the con- 
tinuous state process. 

Assume that the probability individual w is in discrete state d is Pw[dlr(t),t]. 
Then, in addition to changes in rw(t), the individual's risk profile can change 
by jumping from one discrete state to another. For small A, the probability 
of jumping from d to d' (d:/:d') is 

Prob [d,d'lr(t), t] = k,~d, [r(t)]A + o(A), (13) 

where h is the Poisson rate parameter. We assume the other Poisson as- 
sumptions for jumps: Jumps are independent in nonoverlapping time inter- 
vals and independent between individuals; there is a small probability of 
two (or more) jumps in a short interval of time. All independence assump- 
tions are conditional on r(t). Equations (11) and (13) are similar to the 
compartment model except that certain risk factor states are converted into 
a continuous vector rw(t) and generalized to continuous time as A ~ 0 .  In- 
trinsically discrete states are still modeled as discrete except that individuals 
jump from state to state with Poisson rate, X, rather than with annual prob- 
ability, ,%. 

The concept that parallels the state vector N(t) in the discrete model is 
the distribution of risk factors rd(t) for each d. Denote the probability density 
function for rd(t) for discrete state d at time t, given that at time ,r<t the 
risk factor was x~ in discrete state d,, is ft(x, d, x ,  d,). For any function 
qb(x) that has all derivatives, we can write 
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[ r F 

L i 

°+(x)l + X X (xi, - x,,) ix,, - x ,l °2+(x)l 1 
m I 

OXi Ix=x, i j ~iOXj IX=X* "[- • • • ~ dx. 

(14) 

We assume "r is "close" to t and that jumps occur at the end of the interval. 
Given (8), (9), (10) and (13), we can rewrite (14) as 

f f'(x, d, x ,  d,)d~(x)dx = I f  ' (x, d, x ,  d~)0a.d, [d~(xT) 

+ A X  giCx,,,r)aqb(x)[ + A x XAijCxr,'r) axqb(x)l + o A ) ]  dx 
,. ax, h=~, , j ~ax~l  . . . .  

(15) 

where A = t - %  and Oa~, is the probability of jumping from discrete state 
d, to d, in the interval (%0 given in (13). The probability of jumping is a 
function of x,. 

Equation (15) holds for any q~(x) that has derivatives of all orders (Iranpour 
and Chacon [7]). Consequently, the density function, f'(x,d,xo,do), is the 
solution to the differential equation, 

af'(x, d, Xo, do) = _ y~ a~Cx, d, xo, do)g~,(x, t)] 
at , Ox, 

+ ~ • a2[ftCx, d, Xo, do)AaqCx, t)] 
i j OXiO.~j 

+ ~ x~Cx)f'(x, ~, Xo, do) 
k÷d 

- [k~a kdk(x)] f(x, d, Xo, do). (16) 

In (16), g,~(x,t) is the i-th element of the vector gd(x,t) and A,,j(x,t) is the 
i,j-th element of An(x,t). 

Equation (16) represents the distribution of the risk factors and discrete 
states given the initial state (xo,do). This equation is similar to the Fokker- 

• Planck equations for continuous processes (Iranpour and Chacon [7]). In 
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(16), however, individuals can move between states according to the jump 
process in (13). 

Equation (16) is useful for simulating changes in the distribution of risks 
and numbers of individuals in each discrete state. This is done by incre- 
mentally changing the initial distribution according to (16). Equation (16) 
can be used to construct likelihood models for observed data. 

VIII. CALCULATION OF COSTS 

In Section V, actuarial functions were calculated by using the number of 
individuals in each state at t. In continuous time, actuarial functions are 
derived from the expectation of the number of individuals with risk factor 
profile rdw(t). For risk factor profile raw(t), the instantaneous medical cost 
and/or mortality costs at time t are denoted c[rdw(t),t]. The instantaneous 
cost at time t for a collection of N risks in a population described by (11) 
and (13) is 

Cost(t) = N ~ f f`(x, d)c(x, t) dx, (17) 

wheref`(x,d) is marginal probability density at time t over all "states" r(0), 
do at time 0. The present value of the costs accumulated over time, starting 
at t = 0, is 

Present Value of Future Costs = J exp( -  ~t) Cost (t) dt (18) 
o 

where ~ is the force of interest. The distribution function f`(x,d) plays the 
same role as  ni(t ) in the actuarial functions. 

Costs for a collection of risks can be calculated under dynamic situations 
by determining the value of f` over time. One method of doing this is to 
start from a given distribution of risk factors at a fixed point in time. Then, 
future values off, are determined by using Equation (16). Both dynamic risk 
factor processes and jumps from state to state are represented. In many 
situations this approach is simpler than constructing a large number of dis- 
crete states. Besides the reduced computational burden, it is often easier to 
specify a distribution of risk factors and trends than it is to detail each 
transition probability as required in the compartment model case. 
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IX. ESTIIVh~TION 

Even though, for most risk factors, studies relate risk factor distributions 
to the risk of death for specific causes, those studies may not describe all 
risk factor dynamics. It is desirable, therefore, to estimate all components 
of the dynamic model from a single, extensive follow-up study. One method 
(Woodbury and Manton [17]) has been applied to the Framingham heart 
disease study. 

The function f ,  describing change in risk factors over time, can be esti- 
mated if specific functions are selected to describe mortality and risk factor 
dynamics. Woodbury and Manton [17] assumed that the mortality rates (that 
is, the hazard functions) are specific to cause of death. The only discrete 
states were alive or dead by a specific cause. The hazard for cause of death 
m is denoted p~m[r(t)]. The mortality function I~ is assumed to be a quadratic 
function of the factors rw(t), 

rz,,,[r,,(t)] = {ao + brw(t) + 1/2 r ' ( t)  Brw(t)} (c~ eel),, (19) 

where ao, b and B are scalar, vector and matrix constants, respectively. The 
Gompertz scaling term, e e', represents the average effects of unobserved 
factors on the hazard. The function w,,,[r(t)] represents a specific assumed 
form of the function h [r(t)] for the jumping process described previously. 
In this case, however, the only jumps are deaths. 

The Gompertz term transforms the equations that describe the change in 
risk factors over time into the mortality conditions of a select population, 
where the change is estimated from relatively rare long-term longitudinal 
data (for example, Framingham). Changes in the proportional mortality 
structure of the population are represented by altering ~. Changes in the age 
dependence can be represented by 0. These transformations make the hazard 
function applicable to a wide range of populations. For example, the hazards 
in six developing countries have been successfully modeled by scaling the 
cause-specific Gompertz proportionality and age-dependence parameters by 
using either national vital statistics data or data from specific health clinics 
and hospitals (for example, Dowd and Manton [4]). 

In addition, the distribution of risk factor or physiological variables, r(t), 
is assumed to change as a "linear" function of the prior risk factor state: 

ri,+l = Uo, + 131 ri, + 132 x Age + 133(Age x ri,) + ei~. (20) 

Equation (20) is linear in its coefficients. The variables may be nonlinear 
functions of time, age, or interactions. Age is explicitly introduced, both as 
a linear term and as an interaction with the prior risk factor values. 
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Equations (19) and (20) can be estimated (as in our example) from lon- 
gitudinal study data (Equation (19) by maximum likelihood, Equation (20) 
by least squares). With parameters estimated for those two equations, the 
differential equations can be solved to yield life table survival parameters, 
age-specific changes in risk factors, and cost functions. Risk factor values, 
r,,(t), are calculated from (20), and conditional on these values, the hazard 
is estimated from (19). Thus the two sets of equations interact over time. 
The parameters in the two sets of equations can be derived from multiple 
sources. Equation (16) can be used to examine the change in the distribution, 
f,(x,d), of risk factors over time under different intervention scenarios. Ex- 
plicitly, if health interventions were introduced at t = 0, the distribution of 
a risk factor, say smoking, will be altered. The effect of this alteration 
diffuses throughout the distribution of other risk factors in the cohort over 
time according to (16)--analogous to taking the M-th power of II. The 
corresponding health effect is seen by changes in mortality experience for 
causes of death for which smoking is a risk factor. The impact of the inter- 
vention may take many years to emerge, even assuming that the physiolog- 
ical effect of smoking cessation is immediate. 

X. APPLICATION 

The continuous state model can be used to simulate a wide range of 
interventions by modifying a number of features of the dynamic equation. 
In each case, we can calculate life tables that reflect interventions in risk 
factor values for survivors to age x and the values of actuarial functions. 
For example, we may wish to determine the change in the present value of 
an annuity associated with a 10 percent reduction in blood pressure of an 
insured group. 

Consider results obtained from 20-year follow-up data on males from the 
Framingham heart study in which measurements were made biannually on 
systolic and diastolic blood pressure, smoking, serum cholesterol, body mass 
index, hemoglobin, blood sugar, vital capacity index, and age. Using this 
data, we simultaneously modeled changes in the risk factor variables and 
the effects of the risk factors on cause-specific mortality (discrete, absorbing 
states) under the assumptions of Equations (19) and (20). In addition, we 
determined the effects of interventions by manipulating different features of 
the dynamic equations in (16) and the hazard function (19). 

In Table 1 we present the male life table calculated for the Framingham 
population. 



TABLE 1 

OBSERVED (BASELINE) AND CAUSE ELIMINATION LIFE TABLE VALUES ASSUMING NO CHANGE IN RISK FACTORS (INDEPENDENCE) 
AND ALTERING THE RISK FACTOR DISTRIBUTION (DEPENDENCE): CIRCULATORY DISEASE ELIMINATION, MALES, FRAM1NGHAM HEART STUDY 

Diastolic Vital 
Age Pulse Blood Ouetelet Blood Capacity Cigarettes 

l d q e (t + 30) Pressure Pressure Index Cholesterol Sugar Hemoglobin Index per Day 
i 1 i i i i i i i i i i i 

Baseline 100,000 260 0.003 43.80 45.83 79.57 261.88 215.22 79.55 142.11 139.29 , 13.24 
Dependence 100,000 122 0.001 53.98 30.00 45.83 79.57 261.88 215.22 79.35 142.11 139.29 13.24 
Independence 100,000 122 0.001 54.88 
Baseline 98,209 563 0.006 34.50 41.13 83.20 273.20 241.50 78.37 147.76 138.16 14.46 
Dependence 99,263 210 0.002 44.34 40.00 41.14 83.21 273.35 241.56 78.39 147.76 138.16 14.48 
Independence 99,264 210 0.002 45.25 
Baseline 94,289 1,203 0.013 25.70 47.62 83.40 277.11 241.12 83.70 149.63 127.60 12.61 
Dependence I 97,798 461 0.005 34.92 50.00 47.64 83.42 277.26 241.27 83.76 149.64 127.59 12.67 
Independence i 97,801 460 0.005 35.84 
Baseline 85,976 2,569 0.030 17.65 ! 55.26 83.31 274.24 233.01 91.00 150.42 114.42 9.13 
Dependence 94,493 1,069 0.011 25.94 60.00 55.34 83.37 274.40 233.28 91.17 150.44 114.29 9.27 
Independence 94,508 1,063 0.011 26.90 
Baseline 68,166 5,355 0.079 10.79 62.97 82.85 266.77 222.97 98.27 150.74 100.90 4.78 
Dependence 86,685 2,552 0.029 17.76 70.00 63.25 83.01 266.37 223.39 99.07 150.74 100.32 5.09 
Independence 86,789 2,498 0.029 18.78 
Baseline 35,532 7,278 0.205 5.82 70.39 82.04 257.70 213.13 105.78 150.96 88.44 0.00 
Dependence 68,613 5,462 0.080 10.96 80.00 71.21 82.41 255.04 213.67 107.06 150.82 86.52 0.47 
Independence 69,388 4,930 0.071 12.09 
Baseline 5,818 2,722 0.468 2.86 77.34 80.87 250.65 204.64 111.89 151.91 78.01 0.00 
Dependence 36,316 7,325 0.202 6.00 90.00 79.36 81.68 242.69 205.59 115.04 151.30 73.30 0.00 
Independence 39,670 6,756 0.170 7.17 
Baseline 56 44 0.772 1.55 83.36 79.58 249.33 197.13 116.80 153.60 71.51 0.00 
Dependence 6,520 2,848 0.437 3.10 100.00 87.75 81.05 232.38 200.48 123.51 152.48 61.55 0.00 
Independence 10,599 3,508 0.331 4.24 
Baseline 0 0 0.947 1.11 88.01 78.50 254.14 188.80 120.75 1 5 5 . 6 9  70.35 0.00 
Dependence 113 80 0.710 1.76 110.00 96.18 80.52 225.99 198.91 133.32 I 154.35 53.14 0.00 
Independence, 776 ~ 401 0.516 2.68 , , L ~ . 
Note: Mean values under independence are the same as those under the baseline model. 
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In the life table, in addition to the standard survival parameters (for ex- 
ample, l~, ex, dx), age-specific means (l)x) and variances (~ )  of the risk 
factors are presented. These are calculated from the time series change of 
the risk factors, Equation (20), as it interacts with mortality, Equation (19). 
Thus, the ability of the mean to describe the experience of the population 
is evaluated not only by survival but also by the ability to reproduce age 
changes in multiple risk factors. This greatly increases the information used 
in evaluation. In addition, we present the life tables if a specific disease 
(CVD) is eliminated both (a) as an independent cause (that is, it does not 
affect the age-specific risk factor values) and (b) as a dependent cause. The 
dependent risk model shows that, at advanced ages, the independent risk 
model overstates the effects of the disease on survival because reducing the 
reduction of mortality at early ages allows more risk-susceptible persons to 
survive. 

In addition, we modified the dynamic equation to represent specific in- 
terventions. In Table 2, we present changes in age-specific life expectancies 
at select ages (that is, 30, 40, 50, 60, 70, 80) induced by modifying the 
parameters of the risk factor dynamics. 

TABLE 2 

CHANGE IN LlFE EXPECTANCY UNDER DIFFERENT RISK FACTOR INTERVENTIONS, 
FRAMINGHAM MALES 

Intervention 

Baseline values of life expectancy 
Control of the age increase of pulse and 

diastolic blood pressure 
Reduction of the variability of pulse and 

diastolic blood pressures 
Elimination of the age increase and the 

variability of pulse and diastolic 
blood pressures 

Control of the age increase of cholesterol 
Control of the variance of cholesterol 
Both age increase and variance control for 

cigarette smokinl~ (mean = 0) 
Control of the age increase of vital capacity 
Control of the age increase of blood sugar 
Control of the age increase of all variables 

Age 

30 40 50 60 70 80 

44.52 35.17 26.35 18 .34  11.53 6.39 
1.09 1.08 1.11 1.22 1.33 1.30 

2.08 1.98 1.80 1.50 1.07 0.58 

3.00 2.90 2.78 2.63 2.37 1.90 

0.12 0.12 0.11 0.10 0.12 0.14 
0.64 0.61 0.55 0.46 0.33 0.20 

1.48 1.33 1.10 0.75 0.36 0.06 
1.14 1.16 1.19 1.22 1.19 1.03 
0.43 0.43 0.45 0.46 0.44 0.36 
4.36 4.25 4.09 3.95 3.85 3.59 

Three risk factor interventions are represented in Table 2. The first in- 
volves preventing the j-th risk factor from increasing with age (that is, the 
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values are fixed at their age 30 levels--these values may not optimize sur- 
vival at all ages so that alternative values at later ages may have greater 
survival improvement). In this intervention, we adjust the A,j terms to main- 
tain the variance of the distribution of the risk factor at approximately the 
same level as in the model before the intervention. 

Not allowing systolic and diastolic blood pressure values to rise with age 
produces bigger increases in life expectancy above age 60--consistent with 
hypertension being a risk factor for causes of death more prevalent at ad- 
vanced ages, that is, stroke and heart disease. 

The second intervention allows risk factor means to change with age, but 
eliminates the variance of the risk factor distribution representing interven- 
tions that affect only persons with extreme risk factor values. This interven- 
tion produces a bigger effect on life expectancy at early ages (that is, at age 
30, 2.08 years versus 1.09 years). The effect of reducing the variance of 
blood pressure decreases with age. 

In the third example both interventions are introduced. For blood pressure, 
the simultaneous control of the two aspects of blood pressure dynamics 
produced nearly additive effects. 

Imposing interventions on both the mean and variance of cholesterol pro- 
duced relatively small effects on life expectancy. Eliminating increases in 
blood sugar with age also had a small effect. Control of cigarette smoking 
(with mean and variance set to zero) has most of its effect before age 70. 
In contrast, controlling vital capacity has a constant effect over age. The 
simultaneous control of the age increase of all variables (with mean and 
variance of cigarette smoking set to zero) produces a large effect on life 
expectancy. Overall, variance control, which implies reducing extreme risk 
factor values, has a larger effect at younger ages, whereas controlling the 
age change of risk factors is more important at advanced ages. 

We translated the person-year changes in Table 2 into their age-specific 
direct and indirect mortality cost implications using the cost functions of 
Rice and Hodgson [14]. These are presented in Table 3. 

The table shows that the pattern of effects on indirect costs is quite dif- 
ferent from that of the effects on life expectancy. This is because the age- 
specific cost function used in the calculations is derived from current wage 
rates and employment patterns, assuming a current general retirement age 
of 65 and low general retirement ages (Rice and Hodgson [14]). If one wishes 
to determine what the relative costs and benefits would be if increases in 
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TABLE 3 

CHANGE 1N THE DIRECT AND INDIRECT COST OF DISEASE AND MORTALITY 
UNDER DIFFERENT RISK FACTOR INTERVENTIONS, FRAMINGHAM MALES 

Inte~'cntion 

Baseline value of indirect cost 
Control on the variability of pulse and diastolic 

blood pressures 
Control on the variability of pulse and diastolic 

blood pressures 
Both types of intervention on pulse and 

diastolic blood pressure 
Control of the age increase of cholesterol 
Control of the variability of cholesterol 
Both types of intervention on smoking 
Control of the age increase of vital capacity 
Control of the age increase of blood sugar 
Control of the age increase of all variables 

Baseline value of indirect cost 
Control on the variability of pulse and diastolic 

blood pressure 
Control on the variability of pulse and diastolic 

blood pressure 
Both types of intervention on pulse and 

diastolic blood pressures 
Control of the age increase of cholesterol 
Control of the variability of cholesterol 
Both types of intervention on smoking 
Control of the age increase of vital capacity 
Control of the age increase of blood sugar 
Control of the age increase of all variables 

Indirect Costs 
$10,8001512,8091511,670 $6,856 $3,315 

198 164 171 332 333 

2,025 2,440 2,204 1,180 427 

1,9681 2,440 2,016 1,303 684 

~al 128 92 18 25 
6571 777 698 371 135 

2,2741 2,553 2,051 868 196 
1831 342[ 537 526 343 

hut 124 211 214 142 
2,4451 2,812 i 2,465 1,514 848 

D i ~  Cos~ 

$1,050151,69652,636153,91855,490 
13118 52 921 180 318 

135 208 3081 447 592 

- ,  9 Ht 13 27 
371 56 ~ '  95 95 

1071 150 1821 178 115 
361 67 1191 202 298 
13[ 26 46t 79 116 

1741 271 4021 591 847 

$1,554 
194 

116 

292 

23 
39 
12 

164 
63 

413 

$7,103 
437 

213 

645 

47 
70 
20 

353 
126 

1,096 

life expectancy also implied increases in retirement age, then the cost func- 
tion would require modification to represent the implied changes in age- 
specific earnings. 

In Table 3 we present the direct costs of mortality fixed at $10,000. These 
costs increase with age due to the shorter times for the discount rates to 
operate. Because smoking-related mortality tends to occur at younger ages, 
the combined control on smoking has a relatively smaller impact on direct 
costs than on indirect costs. In contrast, the combined dynamic and variance 
control of blood pressure has a larger relative effect on direct costs. 

In Table 4 we present the present value of a cost of $1,000 per death 
prior to age 75 (6 percent discount rate) under baseline conditions (no in- 
tervention) and with the elimination of smoking. In addition, we present the 
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ratio of the values under the two scenarios. There is a 26 to 30 percent 
reduction in the present value of a death under smoking elimination. Thus, 
there is a considerable cost reduction for a life insurance program due to an 
effective antismoking intervention program. The change produced by elim- 
inating smoking was at the population level and not the elimination for a 
subpopulation with a specific level of smoking (for example, the elimination 
of smoking among persons who consume two packs of cigarettes per day). 
The effects on the subpopulation are much larger. 

TABLE 4 

PRESENT VALUE OF A COST OF $1,000 PER DEAr. 
PRIOR TO AGE 75 WlTH INTERVENTION AND NO INTERVENTION 

BY 5-YEAR AGE GROUPS. VALUES ARE CALCULATED 
ASSUMING 6% ANNUAL INTEREST RATE. 

Present Value of $1,000 at Death 

Age No Smoking Intervention 
Group Intervention Eliminating Smoking Ratio 

30--35 $ 83.27 $ 64.55 1.29 
35--40 88.86 68.40 1.30 
40--45 112.98 86.69 1.30 
45-50 141.14 108.67 1.30 
50--55 171.71 134.33 1.28 
55-60 182.13 144.79 1.26 

XI. S U M M A R Y  

We have shown how standard multiple-decrement models for calculating 
the direct and indirect costs of disease can be generalized from a discrete 
state to a continuous state form. This latter type of model has the advantages 
of representing (a) the stochastic evolution of the risk factors, (b) the inter- 
dependence of risk factors, (c) the interdependence of competing causes of 
death, and (d) the effects of a large number of different risk factor variables. 
The cost calculations for this model also use more information from time 
series data on risk factor changes, so that intervention effects for a wide 
range of risk factors can be calculated by using moderate sized (for example, 
2,000 to 10,000 cases) populations. The presence of diffusive and regressive 
forces in the model suggests that the estimates of long-term costs in the 
population will be more accurately calculated than by using models that 
represent the effects of risk factors as only a small number of discrete strata. 
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