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The Sparre Andersen Model (1957) for an aggregate claim is
given by:

S(t) =

N(t)∑
k=1

Xk , t ≥ 0 , (1)

where N(t) is a renewal process.

If we consider the effect of the interest and inflation on the
claims, Léveillé and Garrido (2001a) propose the following
model.
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claims, Léveillé and Garrido (2001a) propose the following
model.



Introduction Discounted Compound PH–renewal Sums Application Conclusion

Model

The compound present value sum is denoted by:

Z (t) =

N(t)∑
k=1

e−δ Tk Xk , t ≥ 0 , (2)

with Z (t) = 0 if N(t) = 0.

The net interest rate δ = interest rate -inflation rate ≥ 0.
The claim arrival times {Tk ; k ∈ N+} form a renewal
process.
The deflated claim severities {Xk ; k ∈ N+} are iid,
independent from the times Tk .
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The Distribution of the Compound Sum Z (t) if the
Net Interest δ > 0

Taylor (1979), Delbaen and Haezendonck (1987) and
Willmot (1989): the moments of the discounted compound
Poisson process .

Léveillé and Garrido (2001a, 2001b): the first two moments
and recursive formulas for all the moments of Z (t).

Kim and Kim (2006): the moments of discounted
aggregated claims in a Markovian environment.

Ren (2008): explicit formula for the first two moments of
discounted compound renewal sums.

Jang (2004): Laplace transform of the discounted
compound Poisson process if the claim severities are
exponential and mixture of exponential.
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The Distribution of the Compound Sum Z (t) if the
Net Interest δ > 0 (. . . continued)

This talk will present:

the moment generating function of the discounted
compound Poisson aggregate sums when the deflated
claims are PH distributed.

moment generating function of the discounted compound
renewal sums.

the comparison Poisson and Erlang(n) models are made.
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Analytic Results for the M.G.F

Recall our model:

Z (t) =

N(t)∑
k=1

e−δ Tk Xk , t ≥ 0 .

Léveillé and Garrido (2001b) give the moment generating
function (m.g.f.) of Z (t):

MZ (t)(s) = F̄τ (t) +

∫ t

0
MX (se−δv )MZ (t−v)(se−δv )dFτ (v) , (3)

or in term of the renewal function (Léveillé, Garrido and Wang,
2008) we have:

MZ (t)(s) = 1 +

∫ t

0

[
MX (se−δv )− 1

]
MZ (t−v)(se−δv )dm(v) . (4)
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Analytic Results for the M.G.F

Continuously substituting MZ (t−v)(se−δv ) in (3) into itself gives
an analytical expression of the m.g.f. in terms of Fτ :

MZ (t)(s) =
∞∑

k=0

Hk (t , s) , (5)

where Hk (t , s) =
∫ t

0 MX (se−δv )Hk−1(t − v , se−δv )dFτ (v), and
H0(t , s) = F τ (t), for all s.

Or in term of renewal function

MZ (t)(s) =
∞∑

k=0

Ik (t , s) , (6)

where Ik (t , s) =
∫ t

0

[
MX (se−δv )− 1

]
Ik−1(t − v , se−δv )dm(v),

and I0(t , s) = 1, for all s
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PH Inter–arrival Times

Definition
Let A be an arbitrary non-singular square matrix of order n
such as limx→∞ eAx = 0, α be a n-dimensional column vector
such that α′ 1 = 1, where 1 is a n-dimensional column vector of
1′s, that is:

α =
(
α1 α2 · · · αn

)′
,
∑n

i=1 αi = 1 , αi ≥ 0 ,

and 1 =
(

1 1 · · · 1
)′
.

If the distribution function FX can be written as:

FX (x) = 1− α′eAx1 , x ≥ 0, (7)

then we say that FX is (or X has) a phase-type (PH) distribution
with parameters (α ,A).
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PH Inter–arrival Times

The mean E[N(t)] is defined as renewal function and renewal
density is given by:

m′(t) = lim
∆t→0

E
[
N(t + ∆t)

]
− E

[
N(t)

]
∆t

= −α′eA[I−1α′]tA1 .

Asmussen (2003).

Substituting it into the m.g.f. equation (6) yields ( (Léveillé,
Garrido and Wang, 2008):

MZ (t)(s) = 1 +
∞∑

k=0

∫ t

0

∫ t−x1

0
· · ·
∫ t−

∑k
i=1 xi

0

k+1∏
i=1{[

MX (se−δ
∑i

j=1 xj )− 1
]
α′eBxi (−A)1

}
dxk+1 . . . dx2dx1 ,

(8)

where B = A(I− 1α′).
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PH Inter–arrival Times

A differential equation in t is obtained for MZ (t):

∂

∂t
MZ (t)(s) =

[
MX (se−δt )− 1

][
α′eBt (−A)1 + f (t , s)

]
, (9)

where

f (t , s) =
∞∑

k=1

∫ t

0

∫ yk

0
· · ·
∫ y2

0
α′eB(t−yk )(−A)1

k∏
i=1{[

MX (se−δyi )− 1
]
α′eB(yi−yi−1)(−A)1

}
dy1 · · · dyk−1dyk ,

with y0 = 0.
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Corollaries

Discounted Compound Poisson Sums

If the inter-arrival times are exponential distributed, that is
Fτ (t) = 1− e−λt ⇒ m(t) = λt , the m.g.f. can be simplified as
(Léveillé, 2002):

MZ (t)(s) = e
∫ t

0 [MX (se−δv )−1]dv . (10)
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Corollaries

Discounted Compound Poisson with PH Claim
Severities

Considering PH claim severities, the result (10) can be
simplified as.

If the deflated claims {Xk}k≥1 have a PH (α ,A) distribution
with sprad{sA−1} < 1 and N = {N(t) , t ≥ 0} forms a Poisson
process, then for δ > 0

MZ (t)(s) = exp
{
λ
δα
′ ln
[
(I + se−δtA−1)(I + sA−1)−1]1} , s ∈ R ,

(11)
which is a generalization of Jang (2004).
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Corollaries

Corollary
For δ > 0 we have:

E[Z (t)] = −λ
δ

(1− e−δt )α′A−11 , t > 0 , (12)

and
V
[
Z (t)

]
=
λ

δ
(1− e−2δt )α′A−21 , t > 0 . (13)

which is consistent with Léveillé and Garrido (2001a).



Introduction Discounted Compound PH–renewal Sums Application Conclusion

Corollaries

Corollary
For δ > 0 we have:

E[Z (t)] = −λ
δ

(1− e−δt )α′A−11 , t > 0 , (12)

and
V
[
Z (t)

]
=
λ

δ
(1− e−2δt )α′A−21 , t > 0 . (13)

which is consistent with Léveillé and Garrido (2001a).
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Corollaries

Erlang(2) Inter–arrival Times

Considering Erlang(2) inter–arrival times, then the m.g.f. of Z (t)
satisfies:

∂2

∂t2 MZ (t)(s) = a1(t)
∂

∂t
MZ (t)(s)+a0(t)MZ (t)(s) , t ≥ 0 , s ∈ R ,

(14)

with initial values MZ (0)(s) = 1 and ∂
∂t MZ (t)(s)| t=0 = 0, where

a1(t) =
∂
∂t

[
MX (se−δt )−1

][
MX (se−δt )−1

] − 2λ, a0(t) = λ2[MX (se−δt )− 1
]

and

MX is the m.g.f. of the deflated claim severity X .
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∂t MZ (t)(s)| t=0 = 0,

where

a1(t) =
∂
∂t

[
MX (se−δt )−1

][
MX (se−δt )−1

] − 2λ, a0(t) = λ2[MX (se−δt )− 1
]

and

MX is the m.g.f. of the deflated claim severity X .
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Example

Let inter-arrival time be Erlang(2) (α =

(
1
0

)
,

A =

(
−λ λ
0 −λ

)
, deflated claim X be exponential distribution

(θ) and δ = 0.01 , λ = 0.01 , θ = 1. We have homogeneous
differential equation:

∂2

∂t2 MZ (t)(s) = a1(t)
∂

∂t
MZ (t)(s) + a0(t)MZ (t)(s) ,

where

a1(t) =
∂
∂t

[
M(t , s)

]
M(t , s)

− 2λ =
0.01(2se−0.01t − 3)

1− se−0.01t ,

a0(t) = λ2M(t , s) =
0.0001se−0.01t

1− se−0.01t , M(t , s) =
θ

θ − se−δt
− 1 .
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Example

MZ (t)(s) =
1
s2

{
(s − 1)

[
se−0.01t − 2

]
ln
[ 1− s

1− se−0.01t

]
+se−0.01t (s − 2) + 2s

}
.

The asymptotic behavior of the MZ (t)(s):

MZ (∞)(s) =
2
s

+
2(1− s) ln (1− s)

s2 .
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Comparison of Erlang(n)

We have the following assumption for the comparison

Erlang(n) inter-arrival times n = 1,2,3,4.

Erlang(2) with mean 2 deflated claim severities.

δ = 0.01, λ = n
200 for n = 1,2,3,4.



Introduction Discounted Compound PH–renewal Sums Application Conclusion

Comparison of Erlang(n)

We have the following assumption for the comparison

Erlang(n) inter-arrival times n = 1,2,3,4.

Erlang(2) with mean 2 deflated claim severities.

δ = 0.01, λ = n
200 for n = 1,2,3,4.



Introduction Discounted Compound PH–renewal Sums Application Conclusion

Comparison of Erlang(n)

We have the following assumption for the comparison

Erlang(n) inter-arrival times n = 1,2,3,4.

Erlang(2) with mean 2 deflated claim severities.

δ = 0.01, λ = n
200 for n = 1,2,3,4.



Introduction Discounted Compound PH–renewal Sums Application Conclusion

exponential
Erlang(2)
Erlang(3)
Erlang(4)

x
0 2 4 6 8 10

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Figure: Density function at time 100
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Figure: Density of Z (t) (Exponential, Erlang(2), Erlang(3), Erlang(4))
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The mass at x = 0 of the distribution of Z (t) differs for Erlang
claim inter–arrival distributions.

The comparison should be made for the conditional density
functions of Z (t), given that x > 0 (see following figures).

We can see that the exponential claim inter–arrival times have
the heaviest tail; i.e. compound Poisson discounted sum is the
most dangerous Erlang compound renewal sum.
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Figure: Conditional density of Z (t) (Exponential, Erlang(2),
Erlang(3), Erlang(4))
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Figure: C.d.f. of Z (t) (Exponential, Erlang(2), Erlang(3), Erlang(4))
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Figure: Stop-loss premium (Exponential, Erlang(2), Erlang(3),
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Summary

developing a close form for m.g.f. if the discounted
compound sums is Poisson process with PH claim
severities.

obtaining homogeneous differential equation for m.g.f. if
the inter-arrival times are Erlang(2) distributed.
asymptotic results as t →∞ and δ → 0 are also
considered.
some numerical examples are given to illustrate the results.
the results can be applied to delated and stationary
renewal processes.
the computation of the stop-loss premium.
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