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Discounted cash-flows

Suppose i.i.d. cash-flows {Cn} occur at times {Tn}, and that one wishes
to find the distribution of the discounted value of all future cash-flows.
If the discount rate is r > 0, then this is

X =
∞X

n=1

e−rTnCn.

Let the waiting times

W1 = T1, Wn = Tn − Tn−1, n ≥ 2,

be i.i.d., making {Tn} a renewal process, and assume moreover that
{Tn} and {Cn} are independent. Then the above sum may be rewritten
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as

X =
∞X

n=1

A1 · · ·AnCn if An = e−rWn .

Such sums of products of random variables occur in a variety of ap-
plications and have been studied for several decades.

It is known that in such cases X satisfies the identity in law

X
d= A(X + C).

A known example is:

G(a)
1

d= B(a,b)(G(a)
1 + G(b)

2 ),

where all variables on the right are independent and

B(a,b) ∼ Beta(a, b), G(a)
1 ∼ Gamma(a, 1), G(b)

2 ∼ Gamma(b, 1).
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This means that

∞X

n=1

B(a,b)
1 · · ·B(a,b)

n G(a)
n ∼ Gamma(a, 1)

(all variables independent).

The identity

G(a)
1

d= B(a,b)(G(a)
1 + G(b)

2 ),

is the same as

G(a)
1

d= B(a,b)G(a+b)
2

This is part of the so-called “beta-gamma algebra”. It may be proved
with Mellin transforms, i.e. by checking that

E[G(a)
1 ]p = E[B(a,b)G(a+b)

2 ]p, p ≥ 0.
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Mellin transform: if X ≥ 0, then MX(s) = EXs.

Mellin transforms for sums of positive variables

Theorem A. Suppose c > 0, Re(p) > c and

E(X−c
1 Xc−Re(p)

2 ) <∞.

Then

E(X1 + X2)−p =
1

2πi

Z c+i∞

c−i∞
dz E(X−z

1 Xz−p
2 )

Γ(z)Γ(p− z)
Γ(p)

.
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Barnes’ Lemmas and properties of beta and gamma variables

Barnes’ First Lemma (Barnes, 1908). For a suitably curved line of in-
tegration, so that the decreasing sequences of poles lie to the left and
the increasing sequences lie to the right of the contour,

1
2πi

Z i∞

−i∞
dz Γ(A + z)Γ(B + z)Γ(C − z)Γ(D − z)

=
Γ(A + C)Γ(A + D)Γ(B + C)Γ(B + D)

Γ(A + B + C + D)
.

Theorem B. By Theorem A, Barnes’ First Lemma is equivalent to the
additivity property of gamma distributions: if a, b > 0 and G(a)

1 , G(b)
2

are independent, then G(a)
1 + G(b)

2
d= G(a+b)

3 .
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Barnes’ Second Lemma (Barnes, 1910). For a suitably curved line of
integration, so that the decreasing sequences of poles lie to the left
and the increasing sequences lie to the right of the contour, if E =
A + B + C + D,

1
2πi

Z i∞

−i∞
dz

Γ(A + z)Γ(B + z)Γ(C + z)Γ(D − z)Γ(−z)
Γ(E + z)

=
Γ(A)Γ(B)Γ(C)Γ(A + D)Γ(B + D)Γ(C + D)

Γ(E −A)Γ(E −B)Γ(E − C)
.
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Another properties of gamma variables (Dufresne, 1998)

Proposition C. Suppose all variables are independent.

For any a, b, c > 0,

B(a,b+c)
1 G(b)

1 + G(c)
2

d= G(b+c)
3 B(a+c,b)

2
d= G(a+c)

4 B(b+c,a)
3 .

Theorem D. By Theorem A, Barnes’ Second Lemma is equivalent to
the property in Proposition C.
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Properties of reciprocal gamma variables

We look at the distribution of

H(a,b) =
µ

1

G(a)
1

+
1

G(b)
2

∂−1

=
G(a)

1 G(b)
2

G(a)
1 + G(b)

2

,

where a, b > 0 and the the gamma variables are independent.

The distribution of H(a,b) turns out to be directly related to the “beta
product distribution”.

Proposition E. The distribution of the product of independent B(a,b)

and B(c,d) extends to a four-parameter family called the “beta product”
distribution. It is a proper probability distribution on (0, 1) if, and only
if, the parameters (a, b, c, d) satisfy:
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a, c, b + d,Re(a + b),Re(c + d) > 0, and either

(i) (real case) b, d are real and min(a, c) < min(a + b, c + d), or

(ii) (complex case) Im(b) = −Im(d) 6= 0 and a + b = c + d.

“B(a,b,c,d)” will represent a variable with that distribution.

The density of B(a,b,c,d) is

Γ(a + b)Γ(c + d)
Γ(a)Γ(c)Γ(b + d)

ua−1(1−u)b+d−1
2F1(a+b−c, d; b+d; 1−u)1{0<u<1}.
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Theorem F. (a) If Re(p) > −min(a, b), then

E (H(a,b))p =
(a)p(b)p(a + b)p

(a + b)2p
.

(b) For any 0 < a, b <∞,

H(a,b) =
G(a)

1 G(b)
2

G(a)
1 + G(b)

2

d= 1
4B(a, b−a

2 ,b, a−b+1
2 )G(a+b),

where the variables on the right are independent. This is the same as:

1
G(a)

+
1

G(b)

d=
4

B(a, b−a
2 ,b, a−b+1

2 )
· 1
G(a) + G(b)
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(c) For a, b > 0 and Re(s) > −4,

Ee−sH(a,b)
= 3F2(a, b, a + b; a+b

2 , a+b+1
2 ;− s

4 ).

(d) For any a, b > 0,

(G(a+b)
1 )2H(a,b) d= G(a)

2 G(b)
3 G(a+b)

4 ,

where the variables on either side are independent.

Corollary G. (a) The identity in law

1

G(a)
1

d= A

√
1

G(a)
2

+
1

G(b)
3

!

,
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with independent variables on the right, has a solution A if, and only
if, one of the three cases below occurs:

(i) 0 < a < b <∞, b > 1
2 . Then

A
d=

1
4B( a+b

2 , b−a
2 , a+b+1

2 , a+b−1
2 )

.

(ii) a = b > 1
2 . Then

A
d=

1
4B(a+ 1

2 ,a− 1
2 )

.

(iii) a = b = 1
2 . Then A = 1

4 and

4

G
( 1
2 )

1

d=
1

G
( 1
2 )

2

+
1

G
( 1
2 )

3

.
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(b) In any one of the three cases above, let

An =
1

4B( a+b
2 , b−a

2 , a+b+1
2 , a+b−1

2 )
n

, n = 1, 2, . . .

Then, if all variables are independent,

∞X

n=0

A1 · · ·An
1

G(b)
n

d=
1

G(a)
0

.
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