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Discounted cash-flows

Suppose i.i.d. cash-flows {C), } occur at times {7, }, and that one wishes
to find the distribution of the discounted value of all future cash-flows.
If the discount rate is » > 0, then this is

X = ie_rT’“Cm.
n=1

Let the waiting times

Wy =11, W, =1, —1T,_1, n > 2,

be i.i.d., making {7T;,} a renewal process, and assume moreover that

{T,,} and {C,,} are independent. Then the above sum may be rewritten
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asS

X = ZAl---AnOn if A, =e¢ "Wn,
n=1

Such sums of products of random variables occur in a variety of ap-

plications and have been studied for several decades.

It is known that in such cases X satisfies the identity in law
X £ AX +0).
A known example is:
6 L Bd (G + )
where all variables on the right are independent and

B@bY ~ Beta(a,b), Gga) ~ Gamma(a, 1), ng) ~ Gamma(b,1).
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This means that

Z B%a”b) ... Bl@YGla) o Gamma(a,1)

n=1

(all variables independent).

The identity
¢\ 2 v Gl + Py,

1S the same as
Gga) g B(a,b)GéCH‘b)

This is part of the so-called “beta-gamma algebra”. It may be proved
with Mellin transforms, 7.e. by checking that

E[GIV)P = EBEeYGYTE, p>o.
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Mellin transform:  if X >0, then Mx(s) = EX?.

Mellin transforms for sums of positive variables

Theorem A. Suppose ¢ > 0, Re(p) > ¢ and

E(X; XS ReW)y < oo,




Barnes’ Lemmas and properties of beta and gamma variables

Barnes’ First Lemma (Barnes, 1908). For a suitably curved line of in-
tegration, so that the decreasing sequences of poles lie to the left and

the increasing sequences lie to the right of the contour,

%;éO@TQL%ﬁNB+zﬁK%<dND—z)
_ D(A+C)T(A+ D)I(B +C)I(B + D)

['(A+B+C+D) |

Theorem B. By Theorem A, Barnes’ First Lemma 1S equivalent to the
additivity property of gamma distributions: if a,b > 0 and Gﬁ“), ng)
are independent, then Gga) + G;b) 4 G:(,)a+b).
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Barnes’ Second Lemma (Barnes, 1910). For a suitably curved line of
integration, so that the decreasing sequences of poles lie to the left

and the increasing sequences lie to the right of the contour, if £ =
A+B+C+ D,

I ; D(A+2)T(B+ 2)[(C + 2)I'(D — 2)I'(—2)

2mi i (B + 2)
- T(AT(B)I'(C)I'(A+ D)I'(B+ D)I'(C + D)
B I'(E—-ATI'(E—-BI'(E-C) '




Another properties of gamma variables (Dufresne, 1998)

Proposition C. Suppose all variables are independent.

For any a,b,c > 0,

B](_a7b+C)ng)—|—GéC) g G:(gb—kc)Béa—l—c,b) g Gé(la—kc)B:gb—i—c,a).

Theorem D. By Theorem A, Barnes’ Second Lemma 1s equivalent to

the property in Proposition C.



Properties of reciprocal gamma variables

We look at the distribution of

—1 a b

) _ ( ! +;) __Gay)
a b a b)’

v ad G + Gy

where a,b > 0 and the the gamma variables are independent.

The distribution of H(*?) turns out to be directly related to the “beta
product distribution”.

Proposition E. The distribution of the product of independent B(%:b)
and B\©? extends to a four-parameter family called the “beta product”
distribution. It is a proper probability distribution on (0,1) if, and only
if, the parameters (a,b,c,d) satisfy:

9



a,c,b+d,Re(a+b),Re(c+ d) > 0, and either

(i) (real case) b,d are real and min(a,c) < min(a + b,c+ d), or

(ii) (complex case) Im(b) = —Im(d) # 0 and a+b = c+ d.

“Bla:b,e,d)” will represent a variable with that distribution.

The density of B(@:b:¢:d) ig
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Theorem F. (a) If Re(p) > —min(a,b), then

E (H(a,b))p _ (a)P((f)—lli(;):; b)p .

(b) For any 0 < a,b < oo,

a b
ey _ GGy
a b
G\ 4+ Gl

%B(aw bga 7b7 a—2b+1 )G(CL-Fb))

where the variables on the right are independent. This is the same as:

1 I 4 4 1

C@ TGl T palEeerl) Gl 1 GO
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(c) For a,b> 0 and Re(s) > —4,

EG_SH(a’b) = 3F5(a,b,a + b ""2”?, “*’2’“; —i)-
(d) For any a,b > 0,
(G £ aey e,

where the vartables on either side are independent.

Corollary G. (a) The identity in law

1 11
ey = 4 (Gm) i G(b)> ’
1 2 3
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with independent variables on the right, has a solution A if, and only

if, one of the three cases below occurs:

(i) 0<a<b<oo,b> 1. Then

d 1
— atb b—a atbtl atb—1-~"°

AB(= === =5 )

A

(1)) a =b> <. Then

d 1
-~ yplatz.a—3)°

A

i) a=b=2%. Then A =1 and
(441) > 1

4 d 1 L+ 1
(;5%) (;;%) (;é%)
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(b) In any one of the three cases above, let

1
A, = n=12,...

a+b b—a a+b+1 a+b— 1)

4B( ’ 2 0 2 ? 2

Then, if all variables are independent,

1
Z Ay - G<b> £

Gy
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