BETA-GAMMA ALGEBRA, DISCOUNTED CASH-FLOWS,

AND BARNES' LEMMAS

Daniel Dufresne
Centre for Actuarial Studies

University of Melbourne

Discounted cash-flows

Suppose i.i.d. cash-flows $\left\{C_{n}\right\}$ occur at times $\left\{T_{n}\right\}$, and that one wishes to find the distribution of the discounted value of all future cash-flows. If the discount rate is $r>0$, then this is

$$
X=\sum_{n=1}^{\infty} e^{-r T_{n}} C_{n}
$$

Let the waiting times

$$
W_{1}=T_{1}, \quad W_{n}=T_{n}-T_{n-1}, \quad n \geq 2
$$

be i.i.d., making $\left\{T_{n}\right\}$ a renewal process, and assume moreover that $\left\{T_{n}\right\}$ and $\left\{C_{n}\right\}$ are independent. Then the above sum may be rewritten
as

$$
X=\sum_{n=1}^{\infty} A_{1} \cdots A_{n} C_{n} \quad \text { if } \quad A_{n}=e^{-r W_{n}}
$$

Such sums of products of random variables occur in a variety of applications and have been studied for several decades.

It is known that in such cases X satisfies the identity in law

$$
X \stackrel{\mathrm{~d}}{=} A(X+C)
$$

A known example is:

$$
G_{1}^{(a)} \stackrel{\mathrm{d}}{=} B^{(a, b)}\left(G_{1}^{(a)}+G_{2}^{(b)}\right)
$$

where all variables on the right are independent and
$B^{(a, b)} \sim \operatorname{Beta}(a, b), G_{1}^{(a)} \sim \operatorname{Gamma}(a, 1), G_{2}^{(b)} \sim \operatorname{Gamma}(b, 1)$.

This means that

$$
\sum_{n=1}^{\infty} B_{1}^{(a, b)} \cdots B_{n}^{(a, b)} G_{n}^{(a)} \sim \operatorname{Gamma}(a, 1)
$$

(all variables independent).
The identity

$$
G_{1}^{(a)} \stackrel{\mathrm{d}}{=} B^{(a, b)}\left(G_{1}^{(a)}+G_{2}^{(b)}\right),
$$

is the same as

$$
G_{1}^{(a)} \stackrel{\mathrm{d}}{=} B^{(a, b)} G_{2}^{(a+b)}
$$

This is part of the so-called "beta-gamma algebra". It may be proved with Mellin transforms, i.e. by checking that

$$
\mathrm{E}\left[G_{1}^{(a)}\right]^{p}=\mathrm{E}\left[B^{(a, b)} G_{2}^{(a+b)}\right]^{p}, \quad p \geq 0
$$

Mellin transform: if $X \geq 0$, then $\mathcal{M}_{X}(s)=\mathrm{E} X^{s}$.

Mellin transforms for sums of positive variables

Theorem A. Suppose $c>0, \operatorname{Re}(p)>c$ and

$$
\mathrm{E}\left(X_{1}^{-c} X_{2}^{c-\operatorname{Re}(p)}\right)<\infty .
$$

Then

$$
\mathrm{E}\left(X_{1}+X_{2}\right)^{-p}=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d z \mathrm{E}\left(X_{1}^{-z} X_{2}^{z-p}\right) \frac{\Gamma(z) \Gamma(p-z)}{\Gamma(p)}
$$

Barnes' Lemmas and properties of beta and gamma variables

Barnes' First Lemma (Barnes, 1908). For a suitably curved line of integration, so that the decreasing sequences of poles lie to the left and the increasing sequences lie to the right of the contour,

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} d z \Gamma(A+z) \Gamma(B+z) \Gamma(C-z) \Gamma(D-z) \\
& \quad=\frac{\Gamma(A+C) \Gamma(A+D) \Gamma(B+C) \Gamma(B+D)}{\Gamma(A+B+C+D)}
\end{aligned}
$$

Theorem B. By Theorem A, Barnes' First Lemma is equivalent to the additivity property of gamma distributions: if $a, b>0$ and $G_{1}^{(a)}, G_{2}^{(b)}$ are independent, then $G_{1}^{(a)}+G_{2}^{(b)} \stackrel{\mathrm{d}}{=} G_{3}^{(a+b)}$.

Barnes' Second Lemma (Barnes, 1910). For a suitably curved line of integration, so that the decreasing sequences of poles lie to the left and the increasing sequences lie to the right of the contour, if $E=$ $A+B+C+D$,

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} d z \frac{\Gamma(A+z) \Gamma(B+z) \Gamma(C+z) \Gamma(D-z) \Gamma(-z)}{\Gamma(E+z)} \\
&=\frac{\Gamma(A) \Gamma(B) \Gamma(C) \Gamma(A+D) \Gamma(B+D) \Gamma(C+D)}{\Gamma(E-A) \Gamma(E-B) \Gamma(E-C)}
\end{aligned}
$$

Another properties of gamma variables (Dufresne, 1998)

Proposition C. Suppose all variables are independent.
For any $a, b, c>0$,

$$
B_{1}^{(a, b+c)} G_{1}^{(b)}+G_{2}^{(c)} \stackrel{\mathrm{d}}{=} G_{3}^{(b+c)} B_{2}^{(a+c, b)} \stackrel{\mathrm{d}}{=} G_{4}^{(a+c)} B_{3}^{(b+c, a)}
$$

Theorem D. By Theorem A, Barnes'Second Lemma is equivalent to the property in Proposition C.

Properties of reciprocal gamma variables

We look at the distribution of

$$
H^{(a, b)}=\left(\frac{1}{G_{1}^{(a)}}+\frac{1}{G_{2}^{(b)}}\right)^{-1}=\frac{G_{1}^{(a)} G_{2}^{(b)}}{G_{1}^{(a)}+G_{2}^{(b)}}
$$

where $a, b>0$ and the the gamma variables are independent.
The distribution of $H^{(a, b)}$ turns out to be directly related to the "beta product distribution".

Proposition E. The distribution of the product of independent $B^{(a, b)}$ and $B^{(c, d)}$ extends to a four-parameter family called the "beta product" distribution. It is a proper probability distribution on $(0,1)$ if, and only if, the parameters (a, b, c, d) satisfy:
$a, c, b+d, \operatorname{Re}(a+b), \operatorname{Re}(c+d)>0$, and either
(i) (real case) b, d are real and $\min (a, c)<\min (a+b, c+d)$, or
(ii) (complex case) $\operatorname{Im}(b)=-\operatorname{Im}(d) \neq 0$ and $a+b=\overline{c+d}$.
" $B^{(a, b, c, d)}$ " will represent a variable with that distribution.

The density of $B^{(a, b, c, d)}$ is
$\frac{\Gamma(a+b) \Gamma(c+d)}{\Gamma(a) \Gamma(c) \Gamma(b+d)} u^{a-1}(1-u)^{b+d-1}{ }_{2} F_{1}(a+b-c, d ; b+d ; 1-u) 1_{\{0<u<1\}}$.

Theorem F. (a) If $\operatorname{Re}(p)>-\min (a, b)$, then

$$
\mathrm{E}\left(H^{(a, b)}\right)^{p}=\frac{(a)_{p}(b)_{p}(a+b)_{p}}{(a+b)_{2 p}}
$$

(b) For any $0<a, b<\infty$,

$$
H^{(a, b)}=\frac{G_{1}^{(a)} G_{2}^{(b)}}{G_{1}^{(a)}+G_{2}^{(b)}} \stackrel{\mathrm{d}}{=} \frac{1}{4} B^{\left(a, \frac{b-a}{2}, b, \frac{a-b+1}{2}\right)} G^{(a+b)},
$$

where the variables on the right are independent. This is the same as:

$$
\frac{1}{G^{(a)}}+\frac{1}{G^{(b)}} \stackrel{\mathrm{d}}{=} \frac{4}{B^{\left(a, \frac{b-a}{2}, b, \frac{a-b+1}{2}\right)}} \cdot \frac{1}{G^{(a)}+G^{(b)}}
$$

(c) For $a, b>0$ and $\operatorname{Re}(s)>-4$,

$$
\mathrm{E} e^{-s H^{(a, b)}}={ }_{3} F_{2}\left(a, b, a+b ; \frac{a+b}{2}, \frac{a+b+1}{2} ;-\frac{s}{4}\right) .
$$

(d) For any $a, b>0$,

$$
\left(G_{1}^{(a+b)}\right)^{2} H^{(a, b)} \stackrel{\mathrm{d}}{=} G_{2}^{(a)} G_{3}^{(b)} G_{4}^{(a+b)},
$$

where the variables on either side are independent.

Corollary G. (a) The identity in law

$$
\frac{1}{G_{1}^{(a)}} \stackrel{\mathrm{d}}{=} A\left(\frac{1}{G_{2}^{(a)}}+\frac{1}{G_{3}^{(b)}}\right)
$$

with independent variables on the right, has a solution A if, and only if, one of the three cases below occurs:
(i) $0<a<b<\infty, b>\frac{1}{2}$. Then

$$
A \stackrel{\mathrm{~d}}{=} \frac{1}{4 B^{\left(\frac{a+b}{2}, \frac{b-a}{2}, \frac{a+b+1}{2}, \frac{a+b-1}{2}\right)}} .
$$

(ii) $a=b>\frac{1}{2}$. Then

$$
A \stackrel{\mathrm{~d}}{=} \frac{1}{4 B^{\left(a+\frac{1}{2}, a-\frac{1}{2}\right)}} .
$$

(iii) $a=b=\frac{1}{2}$. Then $A=\frac{1}{4}$ and

$$
\frac{4}{G_{1}^{\left(\frac{1}{2}\right)}} \stackrel{\mathrm{d}}{=} \frac{1}{G_{2}^{\left(\frac{1}{2}\right)}}+\frac{1}{G_{3}^{\left(\frac{1}{2}\right)}}
$$

(b) In any one of the three cases above, let

$$
A_{n}=\frac{1}{4 B_{n}^{\left(\frac{a+b}{2}, \frac{b-a}{2}, \frac{a+b+1}{2}, \frac{a+b-1}{2}\right)}}, \quad n=1,2, \ldots
$$

Then, if all variables are independent,

$$
\sum_{n=0}^{\infty} A_{1} \cdots A_{n} \frac{1}{G_{n}^{(b)}} \stackrel{\mathrm{d}}{=} \frac{1}{G_{0}^{(a)}}
$$

References

Andrews, G.E., Askey, R., and Roy, R. (2000). Special Functions. Cambridge University Press.

Barnes, E.W. (1908). A new development of the theory of the hypergeometric functions. Proc. London Math. Soc. 6: 141-177.

Barnes, E.W. (1910). A transformation of generalized hypergeometric series. Quart. J. Math. 41: 136-140.

Chamayou, J.-F., and Letac, G. (1999). Additive properties of the Dufresne laws and their multivariate extension. Journal of Theoretical Probability 12: 1045-1066.

Chaumont, L., and Yor, M. (2003). Exercises in Probability. Cambridge University Press.

Dufresne, D. (1998). Algebraic properties of beta and gamma distributions, and applications. Advances in Applied Mathematics 20: 285-299. Dufresne, D. (2009). Beta products with complex parameters. To appear in Communications in Statistics: Theory and Methods.

Lebedev, N.N. (1972). Special Functions and their Applications. Dover, New York.

Vervaat, W. (1979). On a stochastic difference equation and a representation of non-negative infinitely divisible random variables. Adv. Appl. Prob. 11: 750-783.

