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Abstract This paper investigates the optimal multi-period proportional reinsurance
strategy that minimizes the ruin probability of an insurer. Some conditions under
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1 Introduction

Reinsurance is the transfer of risk from a direct insurer to a second insurance
company, the reinsurer. Many insurance companies employ reinsurance strategies to
ensure their income remain relatively stable and protect themselves from the potential
large losses. Therefore, the problem of optimal reinsurance strategies has been an area
of active research in the last few decades.

Several earlier literatures involving optimal reinsurance are Dayananda (1970),
Bühlmann (1970), Gerber (1980), Waters (1983), Dickson and Waters(1996), Hipp
and Vogt (2003), Irgens and Paulsen (2004), Kaishev (2005), Krvavych and Sherris
(2006), Taksar and Hunderup (2007), and Cai et al. (2008), which address several
different kinds of reinsurance strategies under many different criteria. In particular,
there are many papers discussing optimal proportional reinsurance problems. For ex-
ample, Schmidli (2001) studies the proportional reinsurance strategy which minimizes
the insurer’s ruin probability in a continuous-time framework. He considers two types
of risk models: a classical Cramér-Lundberg model and a diffusion approximation to
the surplus process. Via dealing with the corresponding HJB equations, he derives
the optimal reinsurance strategy in the diffusion case. In the Cramér-Lundberg case,
though he does not solve the problem explicitly, he characterizes the optimal reinsur-
ance strategy and the corresponding survival probability. He also points out that when
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the surplus of the insurance company is sufficiently small, the optimal choice of the in-
surance company is to retain all the risk. For other discussions on optimal proportional
reinsurance strategies, we refer readers to Højgaard and Taksar (1998a), Højgaard and
Taksar (1998b), Schmidli (2002), Bäulerle (2005), Bai and Guo (2008),and Cao and
Wan (2009).

However, in the literature, optimal reinsurance problems are most commonly ex-
plored in the continuous-time framework. An early exception is Schäl (2004). He
presents a formulation of the problem in which the arrival of claims and the asset price
changes occur at discrete points of time. He studies the optimal proportional reinsur-
ance and investment strategy which either maximizes expected exponential utility or
minimizes ruin probability. But he does not give the optimal strategy explicitly. Under
the objective of minimizing ruin probability, he gives a condition under which it is opti-
mal to have no reinsurance when the time horizon is infinite. After Schäl (2004), there
are several papers addressing optimal strategies and ruin probability in the discrete-
time framework, such as Irgens and Paulsen (2005), Chan and Zhang (2006), Wei
and Hu (2008), and Diasparra and Romera (2010). Recently, introducing proportional
reinsurance in a discrete-time risk process, Li and Cong (2008) study the optimal pro-
portional reinsurance strategy which minimizes the insurer’s ruin probability in finite
time horizon. They give some necessary conditions for the optimal multi-period pro-
portional reinsurance strategy and prove that the dynamic programming approach can
be used to solve minimal ruin probability.

Based on the necessary conditions of Li and Cong (2008), in this paper we further
study the optimal proportional reinsurance strategy to the ruin probability problem in
the discrete-time framework. Due to that obtaining explicit optimal solutions is very
difficult, we focus on the conditions under which it is optimal to have no reinsurance
when the time horizon is finite. Then we introduce a new concept: capital threshold of
proportional reinsurance, and discuss its economic implications and properties.

2 Ruin model and preliminaries

We start with the classical discrete-time risk process

U(n) = u0 + cn−
n∑

i=1

Xi, (1)

where U(n) is the surplus (size of the fund of reserves) of an insurance company at time
n, u0 > 0 is the insurer’s initial surplus at time 0, c > 0 is the constant rate of premium
income per period, Xi is the claim size occurring in period i (i.e., the time interval from
time i−1 to i), and {Xi}∞i=1 are assumed to be independent and identically distributed
(i.i.d.) random variables with distribution function F (x) and density function f(x).
We further assume that

f(x) = αe−αx, F (x) = 1− e−αx, x ≥ 0, (2)

where α > 0 is a constant. In the discrete-time model (1), the ruin is supposed to occur
only at the end of a period.
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We now modify the risk process (1) via introducing proportional reinsurance. At
the beginning of each period, the insurer can determine the retention level for the
coming period. Denote by θi the retention level in period i and by R(Xi, θi) the part
of claim Xi paid by reinsurer in period i. Hence, I(Xi, θi) = Xi −R(Xi, θi) is the part
paid by the insurer in period i. In particular, according to the definition of proportional
reinsurance, we have

R(Xi, θi) = (1− θi)Xi , I(Xi, θi) = θiXi , 0 6 θi 6 1. (3)

At the beginning of each period i, under the retention level θi, the insurer pays a
premium rate to the reinsurer, which has to be deducted from the premium c. This
leads to the insurer’s net premium income rate per period, c(θi). In this paper, we
assume that premiums are calculated according to the expected value (or mean value)
principle:

c(θi) = c− (1 + µ)E[R(Xi, θi)] = (1 + λ)E[Xi]− (1 + µ)(1− θi)E[Xi], (4)

where λ > 0 and µ > 0 are respectively the insurer’s and reinsurer’s safety loadings.
According to the no-arbitrage principle, it is reasonable for us to assume that the
reinsurance loading is higher than the insurance loading, i.e., µ > λ. Noticing that
E[Xi] = 1

α , equation (4) can be written as

c(θi) = −µ− λ

α
+

1 + µ

α
θi. (5)

Consider a fixed and finite time horizon of T periods where T is a integer. Let
θ := {θi}T

i=1 and call it an reinsurance strategy in the time horizon (strategies which
are identical with probability 1 are considered to be the same strategy). Similarly, let
θn,T := {θi}T

i=n+1 and call it a substrategy in the time interval [n, T ] (when n = T , there
is no need for offering strategies). A strategy θ is said to be admissible if 0 6 θi 6 1 for
i = 1, 2, . . . , T . We denote the set of all admissible strategies by Θ. For a θ ∈ Θ, we
use Uθ(n) to denote the insurer’s net surplus at time n under the strategy θ . When
we do not concern with the strategy, we can use un to denote the insurer’s net surplus
at time n. Then, according to (3), we have the following recursive equation

Uθ(n + 1) = Uθ(n) + c(θn+1)− I(Xn+1, θn+1) = Uθ(n) + c(θn+1)− θn+1Xn+1 (6)

for n = 0, 1, . . . , T − 1, with Uθ(0) = u0.
For n = 0, 1, . . . , T , let

φθ
n(u) := Pr(Uθ(n) > 0, Uθ(n + 1) > 0, . . . , Uθ(T ) > 0|Uθ(n) = u) (7)

denote the survival probability in time interval [n, T ] under strategy θ, given the initial
surplus u > 0 at time n. Clearly,

φθ
T (u) =

{
0 if u < 0,

1 if u > 0.
(8)
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Applying the law of total probability to (7), we have the following recursive equation

φθ
n−1(u) =

∫ u+c(θn)
θn

0
φθ

n(u + c(θn)− θnx)f(x)dx, n = 1, 2, . . . , T. (9)

Let ψθ
n(u) denote the ruin probability in time interval [n, T ] under strategy θ, given the

initial surplus u > 0. Then, for n = 1, 2, . . . , T ,

ψθ
n−1(u) = 1− φθ

n−1(u)

= 1− F

(
u + c(θn)

θn

)
+

∫ u+c(θn)
θn

0
ψθ

n(u + c(θn)− θnx)f(x)dx,
(10)

ψθ
T (u) =

{
1 if u < 0,

0 if u > 0.
(11)

It is clear that when given the initial surplus u > 0 at time n, φθ
n(u) and ψθ

n(u)
only depend on substrategy θn,T , while do not rely on the strategy in time interval
[0, n]. Therefore, we can denote

φ
θn,T
n (u) = φθ

n(u), ψ
θn,T
n (u) = ψθ

n(u)

Accordingly, (10) can be written as

ψ
θn−1,T

n−1 (u) = 1− F

(
u + c(θn)

θn

)
+

∫ u+c(θn)
θn

0
ψ

θn,T
n (u + c(θn)− θnx)f(x)dx (12)

for n = 1, 2, . . . , T .
The substrategy θn,T that minimizes the ruin probability ψ

θn,T
n (u) in time interval

[n, T ] is called the optimal reinsurance substrategy in time interval [n, T ]. In particular,
when n = 0, it is called the optimal reinsurance strategy.

Further, we define the symbol ψ̂n(u) (n = 0, 1, . . . , T ) by the following recursive
expression

ψ̂n−1(u) = min
06θn61

{
1− F

(
u + c(θn)

θn

)
+

∫ u+c(θn)
θn

0
ψ̂n(u + c(θn)− θnx)f(x)dx

}
(13)

for n = 1, 2, . . . , T , with

ψ̂T (u) =

{
1 if u < 0,

0 if u > 0.
(14)

In this paper, we will use some results in the reference [1]. In order to make it
more convenient for the readers to refer, we list them as lemmas here and give their
proofs in the appendix.

Lemma 1: For n ∈ {0.1, . . . , T}, when given the initial surplus u > 0 at time n, then
the minimal ruin probability in time interval [n, T ] is ψ̂n(u).

Lemma 2: Suppose that θ∗ = (θ∗1, θ
∗
2, . . . , θ

∗
T ) is an optimal reinsurance strategy. For

each n ∈ {1, 2, . . . , T}, if the insurer’s initial surplus at time n− 1, un−1, satisfies that
0 6 un−1 < µ−λ

α , then θ∗n = 1.
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Lemma 3: For any reinsurance strategy θ, if when making policy at the beginning,
the insurer can anticipate that: there is a k ∈ {1, 2, . . . , T} satisfying

c(θk) < 0 , Uθ(k − 1) + c(θk) <
µ− λ

α
,

then strategy θ is not an optimal reinsurance strategy.

Lemma 1 indicates that the minimal ruin probability is

ψ̂n(u) = min
θ∈Θ

ψθ
n(u)

and can be calculated according to the recursive equation (13), which is the same
as the Bellman equation in dynamic programming. In other words, one can use
the dynamic programming approach to solve the multi-period reinsurance problem
minimizing the ruin probability. Moreover, in the light of the proof of Lemma 1,
θ∗ = (θ∗1(u0), θ∗2(u1), . . . , θ∗T (uT−1)) is an optimal reinsurance strategy, where ui is the
the insurer’s initial surplus at time i and θ∗n(u) is the point at which the function

Tn(θn) = 1− F

(
u + c(θn)

θn

)
+

∫ u+c(θn)
θn

0
ψ̂n(u + c(θn)− θnx)f(x)dx

achieves its minimal value on the bounded closed set [0, 1].
Lemma 2 provides a necessary condition for the optimal multi-period proportional

reinsurance strategy. It actually gives an optimal reinsurance policy in a simple case.
Lemma 3 also presents a necessary condition for the optimal reinsurance strategy, only
in terms of the insurer’s surplus.

3 Optimal dynamic proportional reinsurance strategy

Using the expressions of f(x) and F (x) in (2), we can simplify (13) as

ψ̂n−1(u) = min
06θn61

{
exp{−αc(u, θn)}+ α

∫ c(u,θn)

0
ψ̂n(θnx) exp {αx− αc(u, θn)} dx

}

(15)
for n = 1, 2, . . . , T , where c(u, θn) := u+c(θn)

θn
= 1

θn

(
u− µ−λ

α

)
+ 1+µ

α .

3.1 Optimal single-period reinsurance strategy

According to (15), we have ψ̂T−1(u) = min
06θT 61

e−αc(u,θT ), which yields

ψ̂T−1(u) =





e−αc(u,θT )
∣∣∣
θT =0

= 0 if u > µ− λ

α
,

e−αc(u,θT )
∣∣∣
θT =1

= exp{−α(u +
1 + λ

α
)} if u <

µ− λ

α
.

(16)

When T = 1, the expressions above give the optimal single-period reinsurance
strategy and the corresponding ruin probability.
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3.2 Optimal two-period reinsurance strategy

In this subsection, we focus on the two-period reinsurance problem, which is the
simplest multi-period case. We need to find the optimal two-period reinsurance strategy
θ∗ = (θ∗1, θ

∗
2) that gives the insurer’s minimal ruin probability ψ̂0(u). Clearly, using the

results in Section 3.1, the insurer can determine θ∗2 according to Uθ(1). Therefore, we
just need to work out θ∗1. When T = 2, taking advantage of (15) and (16), we have

ψ̂0(u) = min
06θ161

{
exp {−αc(u, θ1)}+ α

∫ A

0
exp {α(1− θ1)x− (1 + λ + αc(u, θ1))} dx

}
,

(17)
where A = min

{
µ−λ
αθ1

, c(u, θ1)
}

.

3.2.1 When the insurer’s initial surplus u satisfies u < µ−λ
α

According to Lemma 2, when the insurer’s initial surplus u0 = u < µ−λ
α , we have

θ∗1 = 1. Substituting θ∗1 = 1 into (17) gives the insurer’s minimal ruin probability

ψ̂0(u) = exp
{
−α

(
u +

1 + λ

α

)}
· (1 + αA1 · exp {−(1 + λ)}) ,

where A1 = min
{

µ−λ
α , u + 1+λ

α

}
.

θ∗1 = 1 means that it is optimal to have no reinsurance at time 0. In this case, the
insurer has so little initial surplus that he can not spend any on the reinsurance. It
follows that if the insurer has too little initial surplus, reinsurance will not be able to
diversify the risk for the insurer effectively.

3.2.2 When the insurer’s initial surplus u satisfies u > 2(µ−λ)
α

From (5), it is easy to derive that if the insurer wants to transfer all the risk in
one period, the net amount of premium he needs to pay is µ−λ

α . Therefore, when the
insurer’s initial surplus u > 2(µ−λ)

α , the insurer has enough reserve to transfer all risk
in the two forthcoming periods. In this case, if the insurer wants to minimize the ruin
probability, the best choice is to transfer all the risk, i.e. θ∗1 = θ∗2 = 0, ψ̂0(u) = 0. 1©

3.2.3 When the insurer’s initial surplus u satisfies µ−λ
α < u < 2(µ−λ)

α

Taking advantage of Lemma 3, we can simplify the expression of ψ̂0(u). To this
end, we denote, for brevity,

h = u− µ− λ

α
, y =

2(µ− λ)
α

− u,

H(u, θ1) = exp
{
−αh

θ1
− (1 + µ)

}
+

1
1− θ1

exp
{

αy

θ1
− 2(1 + µ)

}

− 1
1− θ1

exp
{
−

(
2 + λ + µ +

αh

θ1

)}
.

1©In this case, the problem of optimal reinsurance is relatively simple and intuitive. Therefore, we
do not offer the related strict mathematical proof.
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Theorem 1: Let θ∗ = {θ∗1, θ∗2} be an optimal reinsurance strategy, and let µ−λ
α < u <

2(µ−λ)
α . Then

ψ̂0(u) =





lim
θ1→1

H(u, θ1), if θ∗1 = 1;

min
y

α(1+µ)
<θ1<1

H(u, θ1), if θ∗1 6= 1.

Proof: If c(θ1) 6 −
(
u− µ−λ

α

)
, then Uθ(1) = u + c(θ1) − θ1X1 < µ−λ

α . Therefore,
according to Lemma 3, the optimal reinsurance strategy θ∗ = {θ∗1, θ∗2} satisfies c(θ∗1) >

−
(
u− µ−λ

α

)
, i.e., θ∗1 > 2(µ−λ)

1+µ − αu
1+µ = y

α(1+µ) . In this case, (17) can be rewritten as

ψ̂0(u) = min
y

α(1+µ)
<θ161

{
exp {−αc(u, θ1)}+ α

∫ A

0
exp {α(1− θ1)x− (1 + λ + αc(u, θ1))} dx

}

(18)
where A = min

{
µ−λ
αθ1

, c(u, θ1)
}

. By the definition of c(u, θ1), we have

c(u, θ1)− µ− λ

αθ1
=

1
θ1

(u− µ− λ

α
) +

1 + µ

α
− µ− λ

αθ1
=

1
θ1

(u− 2(µ− λ)
α

) +
1 + µ

α
.

When θ1 > 2(µ−λ)
1+µ − αu

1+µ = y
α(1+µ) , we can easily obtain c(u, θ1) > µ−λ

αθ1
, i.e., A = µ−λ

αθ1
.

Inserting this into (18) and using the definition of c(u, θ1), it follows that when θ∗1 = 1,

ψ̂0(u) = exp
{
−α

(
u +

1 + λ

α

)}
(1 + (µ− λ) · exp {−(1 + λ)}) = lim

θ1→1
H(u, θ1),

and when θ∗1 6= 1, ψ̂0(u) = min
y

α(1+µ)
<θ1<1

H(u, θ1). ¤

When the insurer’s initial surplus u satisfies µ−λ
α < u < 2(µ−λ)

α , it is very difficult
for us to derive the closed-form expressions of the optimal reinsurance strategy and its
corresponding ruin probability. However, we can give the conditions under which it is
optimal to have no reinsurance.

Theorem 2: When the insurer’s initial surplus u satisfies u < µ−λ
α

(
1 + e−1−λ

)
, i.e.,

h < µ−λ
α e−1−λ, the strategy θ∗ = (1, θ∗2), in which θ∗2 is determined according to

Uθ(1) and the results in Section 3.1, is an optimal two-period proportional reinsurance
strategy, that is, it is optimal to have no reinsurance at time 0.

In order to prove Theorem 2, we need to introduce the following two lemmas.

Lemma 4: When the insurer’s initial surplus u satisfies u < µ−λ
α

(
1 + e−1−λ

)
, i.e.,

h < µ−λ
α e−1−λ, the strategy θ∗ = (1, θ∗2), in which θ∗2 is determined according to Uθ(1)

and the results in Section 3.1, is a local optimal two-period proportional reinsurance
strategy, or equivalently, it is local optimal to have no reinsurance at time 0.

Proof: According to Theorem 1, we need only to prove that ∂H(u,θ1)
∂θ1

< 0 when θ1 is
in the left neighborhood of 1. It is easy to derive that

∂H(u, θ1)
∂θ1

=
(

αh

θ2
1

e1+λ − 1
(1− θ1)2

− αh

(1− θ1)θ2
1

)
exp

{
−

(
2 + µ + λ +

αh

θ1

)}

+
1

1− θ1

(
1

1− θ1
− αy

θ2
1

)
exp

{
−

(
2 + 2µ− αy

θ1

)}
.

(19)
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From (19), it is clear that ∂H(u,θ1)
∂θ1

is a continuous function of θ1 on (0, 1). Consequently,

we need only to prove that lim
θ1→1−

∂H(u, θ1)
∂θ1

< 0. Notice that

exp
{
−

(
2 + 2µ− αy

θ1

)}
= exp

{
−

(
2 + µ + λ +

αh

θ1

)}
exp

{(
1
θ1
− 1

)
(µ− λ)

}

and h < µ−λ
α e−1−λ, it follows from (19) that

∂H(u, θ1)
∂θ1

=

{
αhe1+λ

θ2
1

− 1
(1− θ1)2

− αh

(1− θ1)θ2
1

+
1

(1− θ1)2
exp

[(
1
θ1
− 1

)
(µ− λ)

]

− αy

(1− θ1)θ2
1

exp
[(

1
θ1
− 1

)
(µ− λ)

]}
· exp

{
−

(
2 + µ + λ +

αh

θ1

)}

<

{
µ− λ

θ2
1

− 1
(1− θ1)2

− αh

(1− θ1)θ2
1

+
1

(1− θ1)2
exp

[(
1
θ1
− 1

)
(µ− λ)

]

− αy

(1− θ1)θ2
1

exp
[(

1
θ1
− 1

)
(µ− λ)

]}
· exp

{
−

(
2 + µ + λ +

αh

θ1

)}
.

From h < µ−λ
α e−1−λ and h + y = µ−λ

α , we know that y > µ−λ
α (1− e−1−λ) > µ−λ

2α , i.e.,
2αy > µ − λ. Therefore, applying the L’Hospital’s rule, we can obtain the following
result

lim
θ1→1−

{
µ− λ

θ2
1

− 1
(1− θ1)2

− αh

(1− θ1)θ2
1

+
1

(1− θ1)2
exp

[(
1
θ1
− 1

)
(µ− λ)

]

− αy

(1− θ1)θ2
1

exp
[(

1
θ1
− 1

)
(µ− λ)

]}
=

µ− λ

2
[(µ− λ)− 2αy] < 0.

Obviously, exp
{
−

(
2 + µ + λ + αh

θ1

)}
> 0 for all θ1 ∈ (0, 1). Hence, lim

θ1→1−

∂H(u, θ1)
∂θ1

<

0. This completes the proof. ¤

Lemma 5: Assume that h(x) is a continuously differential function on (0, 1) and sat-
isfies
(i) lim

x→0+
h(x) < 0, lim

x→1−
h(x) < 0; and

(ii) for any x0 ∈ (0, 1), h(x0) = 0 implies h′(x0) > 0.
Then h(x) < 0 for all x ∈ (0, 1).

Proof: If there is no any x ∈ (0, 1) satisfying h(x) = 0, from the assumption conditions
lim

x→0+
h(x) < 0, limx→1− h(x) < 0 and the Intermediate Value Theorem, we know that

h(x) < 0 for all x ∈ (0, 1). Therefore, in order to prove Lemma 5, we just need to prove
that there is no any x ∈ (0, 1) satisfying h(x) = 0. We show this by apagoge.

First, we prove that h(x) does not have two or more different zero points in (0, 1).
If this was not the case, obviously one can find a δ > 0 and x1 ∈ (0, 1) such that
h(x1) = 0 and h(x) 6= 0 for all x ∈ (x1 − δ, x1)

⋃
(x1, x1 + δ). We use x2 to denote
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the zero point of h(x) in (0, 1) which is nearest to x1. Without loss of generality, we
assume that x2 > x1, i.e., x2 ∈ (x1, 1), h(x2) = 0 and h(x) 6= 0, for all x ∈ (x1, x2).

From h(x2) = 0 and the conditions given in this lemma, we know that h′(x2) > 0
and h′(x) is a continuous function on (0, 1). Therefore, there exists a δ2 > 0 such that
h′(x) > 0 for all x ∈ (x2 − δ2, x2 + δ2). It follows that h(x) < 0 for all x ∈ (x2 − δ2, x2)
and h(x) > 0 for all x ∈ (x2, x2+δ2). Similarly, there exists a δ1 > 0 such that h(x) < 0
for all x ∈ (x1 − δ1, x1) and h(x) > 0 for all x ∈ (x1, x1 + δ1). Notice that h(x) 6= 0 for
all x ∈ (x1, x2) and h(x) < 0 for all x ∈ (x2 − δ2, x2), we know that h(x) < 0 for all
x ∈ (x1, x2), which contradicts with that h(x) > 0 for all x ∈ (x1, x1 + δ1). Therefore,
h(x) does not have two or more different zero points in (0, 1).

Now we suppose that there exists x0 ∈ (0, 1) satisfying h(x0) = 0. From the
discussion above, x0 is the unique zero point of h(x). According to the conditions
given in this lemma, we know that h′(x0) > 0 and h′(x) is a continuous function on
(0, 1). Therefore, from the Intermediate Value Theorem, we know that h(x) > 0 for all
x ∈ (x0, 1), which contradicts with the condition that lim

x→1−
h(x) < 0. Therefore, h(x)

does not have zero points in (0, 1). This completes the proof. ¤
The following corollary can be easily derived from Lemma 5.

Corollary 1: Assume that h(x) is a continuously differential function on (0, 1) and
satisfies
(i) lim

x→0+
h(x) > 0, lim

x→1−
h(x) > 0; and

(ii) for any x0 ∈ (0, 1), h(x0) = 0 implies h′(x0) < 0.
Then h(x) > 0 for all x ∈ (0, 1).

Proof: Denote that ĥ(x) = −h(x). It is clear that ĥ(x) is a continuously differential
function on (0, 1) and satisfies

(i) lim
x→0+

ĥ(x) < 0, lim
x→1−

ĥ(x) < 0; and

(ii) for any x0 ∈ (0, 1), ĥ(x0) = 0 implies ĥ′(x0) > 0.
According to Lemma 5, ĥ(x) < 0 for all x ∈ (0, 1). Hence, h(x) > 0 for all x ∈ (0, 1).
¤

Now we can use Lemma 4, Lemma 5 and Corollary 1 to prove Theorem 2.
The proof of Theorem 2:

According to Theorem 1, in order to prove Theorem 2, we just need to prove that
∂H(u,θ1)

∂θ1
< 0 for all θ1 ∈ (0, 1).

From equation (19), we can easily derive that lim
θ1→0+

∂H(u, θ1)
∂θ1

< 0 and that

∂H(u,θ1)
∂θ1

is a continuously differential function of θ1 on (0, 1). From the proof of Lemma

4, we know that lim
θ1→1−

∂H(u, θ1)
∂θ1

< 0. Therefore, according to Lemma 5, in order to

prove that ∂H(u,θ1)
∂θ1

< 0 for all θ1 ∈ (0, 1), we just need to prove that ∂2H(u,θ1)
∂θ2

1
> 0 for

all θ1 ∈ Ω :=
{

θ1 ∈ (0, 1)|∂H(u,θ1)
∂θ1

= 0
}

.
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Notice that h + y = µ−λ
α , we can rewrite (19) as

∂H(u, θ1)
∂θ1

=exp
[
−

(
2 + µ + λ +

αh

θ1

)]
·
{

αh

θ2
1

exp (1 + λ)

+
exp

[(
1
θ1
− 1

)
(µ− λ)

]
− 1

(1− θ1)2
−

αh + αy exp
[(

1
θ1
− 1

)
(µ− λ)

]

(1− θ1)θ2
1

}
,

(20)

which implies that ∂H(u,θ1)
∂θ1

= 0 is equivalent to

αh

θ2
1

exp (1 + λ) +
exp

[(
1
θ1
− 1

)
(µ− λ)

]
− 1

(1− θ1)2
−

αh + αy exp
[(

1
θ1
− 1

)
(µ− λ)

]

(1− θ1)θ2
1

= 0.

(21)
Therefore, when θ1 ∈ Ω, after differentiating (20) and using (21), we have

∂2H(u, θ1)
∂θ2

1

= exp
[
−

(
2 + µ + λ +

αh

θ1

)]
w(θ1),

where

w(θ1) =
2αh[1− exp(1 + λ)] + 2αy exp

[(
1
θ1
− 1

)
(µ− λ)

]

(1− θ1)θ3
1

+
αh + [αy − (µ− λ)] exp

[(
1
θ1
− 1

)
(µ− λ)

]

(1− θ1)2θ2
1

+
αy(µ− λ) exp

[(
1
θ1
− 1

)
(µ− λ)

]

(1− θ1)θ4
1

.

It is clear that exp
[
−

(
2 + µ + λ + αh

θ1

)]
> 0 for all θ1 ∈ Ω. Therefore, in order to

prove that ∂2H(u,θ1)
∂θ2

1
> 0 for all θ1 ∈ Ω, we just need to prove that w(θ1) > 0 for all

θ1 ∈ Ω.
Applying h < µ−λ

α e−1−λ (i.e. αh exp(1 + λ) < µ− λ) and αh + αy = µ− λ to the
expression of w(θ1), we have

w(θ1) >
2αh− 2(µ− λ) + 2αy exp

[(
1
θ1
− 1

)
(µ− λ)

]

(1− θ1)θ3
1

+
αh + [αy − (µ− λ)] exp

[(
1
θ1
− 1

)
(µ− λ)

]

(1− θ1)2θ2
1

+
αy(µ− λ) exp

[(
1
θ1
− 1

)
(µ− λ)

]

(1− θ1)θ4
1

=
αh + 2αy

{
exp

[(
1
θ1
− 1

)
(µ− λ)

]
− 1

}
− αh exp

[(
1
θ1
− 1

)
(µ− λ)

]

(1− θ1)2θ2
1

+
αy(µ− λ) exp

[(
1
θ1
− 1

)
(µ− λ)

]

(1− θ1)θ4
1

>
αy(µ− λ) exp

[(
1
θ1
− 1

)
(µ− λ)

]

(1− θ1)θ4
1

−
αh

{
exp

[(
1
θ1
− 1

)
(µ− λ)

]
− 1

}

(1− θ1)2θ2
1

.
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Denote g(θ1) =
αy(µ−λ) exp

[(
1

θ1
−1

)
(µ−λ)

]

θ2
1

− αh
{

exp
[(

1
θ1
−1

)
(µ−λ)

]
−1

}

(1−θ1) . From the definition
of the set Ω, we know that Ω ⊆ (0, 1). Therefore, in order to prove that w(θ1) > 0 for
all θ1 ∈ Ω, we just need to prove that g(θ1) > 0 for all θ1 ∈ (0, 1). We do it by using
Corollary 1.

Obviously, lim
θ1→0+

g(θ1) > 0 and g(θ1) is a continuously differential function on

(0, 1). By the L’Hospital’s rule, we can easily derive that lim
θ→1−

g(θ1) = α(y−h)(µ−λ).

From h < µ−λ
α e−1−λ and h + y = µ−λ

α , we know that h < y, i.e., lim
θ1→1−

g(θ1) > 0.

Therefore, according to Corollary 1, in order to prove that g(θ1) > 0 for all θ1 ∈ (0, 1),
we just need to prove that for any θ̃1 ∈ (0, 1), g(θ̃1) = 0 implies g′(θ̃1) < 0.

Suppose that θ̃1 ∈ (0, 1) satisfies g(θ̃1) = 0. This together with h < y leads to

αh(µ− λ) exp
[(

1
θ̃1
− 1

)
(µ− λ)

]

(1− θ̃1)θ̃2
1

=
h

y
·
αh

{
exp

[(
1
θ̃1
− 1

)
(µ− λ)

]
− 1

}

(1− θ̃1)2

<
αh

{
exp

[(
1
θ̃1
− 1

)
(µ− λ)

]
− 1

}

(1− θ̃1)2
.

Differentiating g(θ), letting θ = θ̃1 and using the inequality above, we have

g′(θ̃1) =
αh(µ− λ) exp

[(
1
θ̃1
− 1

)
(µ− λ)

]

(1− θ̃1)θ̃2
1

−
αh

{
exp

[(
1
θ̃1
− 1

)
(µ− λ)

]
− 1

}

(1− θ̃1)2

−
[2θ̃1 + (µ− λ)] · αy(µ− λ) exp

[(
1
θ̃1
− 1

)
(µ− λ)

]

θ̃4
1

<−
[2θ̃1 + (µ− λ)] · αy(µ− λ) exp

[(
1
θ̃1
− 1

)
(µ− λ)

]

θ̃4
1

<0.

This completes the proof. ¤

Remark:
1. Theorem 2 offers a sufficient condition under which it is optimal to have no

reinsurance.
2. Theorem 2 coincides with the results in Schmidli (2001), which studies the pro-

portional reinsurance strategy minimizing the insurer’s ruin probability in a continuous-
time framework. Schmidli (2001) points out that when the surplus of the insurance
company is sufficiently small, it is optimal to have no reinsurance. However, Schmidli
(2001) does not explicitly indicate how small the surplus should be if the optimal choice
of the insurance company is to have no reinsurance.

3. Theorem 2 her is different from Theorem 6 in Schäl (2004), though they both
describe conditions under which it is optimal to have no reinsurance. The Theorem 6
in Schäl (2004) does not involve the surplus of the insurance company. The condition
in Theorem 6 of Schäl (2004) is only about the safety loadings of the insurer and the
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reinsurer. However, the condition in Theorem 2 here involve not only the safety loadings
of the insurer and the reinsurer, but also the surplus of the insurance company and the
expectation of the claim size. Theorem 6 in Schäl (2004) essentially gives a reasonable
range of the price of reinsurance, while Theorem 2 here offers an optimal control of the
insurer. The difference between Theorem 2 here and the Theorem 6 in Schäl (2004)
stems from whether the time horizon is finite or not.

Next, we will use a numerical example to make some further discussions on Theo-
rem 2.

3.3 Numerical example

We consider a numerical example in two-period case, i.e. T = 2. The model
parameters are α = 0.8, λ = 0.15, µ = 0.2. 2©

From Theorem 1, we have

ψ̂0(u) = min
06θ161

{
exp{−αc(u, θ1)}+ α

∫ µ−λ
αθ1

0
exp {α(1− θ1)x− (1 + λ + αc(u, θ1))} dx

}
.

According to the expression above, we plot the following figures. 3© Figure 1 shows the
relation between the insurer’s initial surplus and the optimal reinsurance strategy and
Figure 2 shows the relation between the insurer’s initial surplus and the minimal ruin
probability.

0.02 0.04 0.06 0.08 0.1 0.12
u

0.2

0.4

0.6

0.8

1

Θ1
*HuL

Figure 1: initial surplus and the optimal
reinsurance strategy.

0.02 0.04 0.06 0.08 0.1 0.12
u

0.05
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0.25

0.3

Ψ
�

0HuL

Figure 2: initial surplus and the ruin prob-
ability.

Figure 1 reflects Theorem 2 intuitively. From Figure 1, we can see that the optimal
retention in the first period, θ∗1, is decreasing with the insurer’s initial surplus u.

From Figure 2, we find that the minimal ruin probability is decreasing with the
insurer’s initial surplus. Besides, Figure 2 also shows that when the insurer’s initial
surplus u satisfies u < 0.082, |∂ψ̂0(u)

∂u | is relatively smaller, which means that the effect
of increasing the initial surplus on decreasing the minimal ruin probability is relatively
smaller; and when the insurer’s initial surplus u satisfies u > 0.082, |∂ψ̂0(u)

∂u | is relatively
larger, which means that the effect of increasing the initial surplus on decreasing the
minimal ruin probability is relatively larger.

2©In this case, µ−λ
α

= 0.0625, µ−λ
α

[1 + e−(1+λ)] = 0.0823.
3©In this paper, we use mathematica 5.0 to deal with the numerical example
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4 Capital threshold of multi-period proportional reinsurance

4.1 Definition

When considering a problem of optimal proportional reinsurance in the case of T

periods, we denote

ZT = sup
{

Z

∣∣∣∣
∂ψθ

0(u)
∂θ1

< 0,∀θ ∈ Θ,∀u ∈ [0, Z)
}

.

Definition 1: ZT is said to be the capital threshold of proportional reinsurance in the
case of T periods.

Obviously, for T > 1, when u = (µ−λ)T
α , we have ∂ψθ

0(u)
∂θ1

< 0 for all θ ∈ Θ. It

follows that ZT < (µ−λ)T
α . Therefore, ZT is bounded for any T > 1.

According to Definition 1, when we consider a problem of optimal proportional
reinsurance in the case of T periods, if the insurer’s initial surplus u satisfies u <

ZT , then ψθ
0(u) is a strict decreasing function of θ1, which means that the optimal

proportional reinsurance strategy θ∗ satisfies θ∗1 = 1. It follows that when the insurer’s
initial surplus u satisfies u < ZT , it is optimal to have no reinsurance in the first
period. In this case, whether the reinsurance available or not will not affect the insurer’s
decision-making. On the contrary, if the insurer’s initial surplus u satisfies u > ZT ,
then ψθ

0(u) is not a strict decreasing function of θ1, which means that it may be optimal
to have some reinsurance. To sum up, if the insurer’s initial surplus u is less than ZT ,
the insurer will not be able to afford the reinsurance in the first period. That is why
we call ZT the capital threshold of proportional reinsurance.

In fact, Theorem 2 offers a lower bound of the capital threshold of proportional
reinsurance in the case of two periods.

4.2 Properties and application

From the solution of optimal single-period reinsurance strategy in Section 3.1, we
know that Z1 = µ−λ

α . From Theorem 2, we know that Z2 > µ−λ
α (1 + e−1−λ). In the

case of T > 3, we are not able to make a good estimation of ZT . However, we can
derive the following results.

Theorem 3: {ZT }∞T=1 is an increasing series.

Proof: The conclusion is equivalent to ZT ≤ ZT+1 (T = 1, 2, . . .). To show this, it
suffices to prove that if the insurer’s initial surplus u satisfies u < ZT , then ψθ

0(u) is a
decreasing function of θ1.

Let u < ZT . By the definition of ψθ
0(u) and φθ

0(u), we have ψθ
0(u) = 1 − φθ

0(u).
Besides, from (7), we can easily derive that

φθ
0(u) = Pr{Uθ(0) > 0, Uθ(1) > 0, . . . , Uθ(T + 1) > 0|Uθ(0) = u} = Pr(A ∩B),
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where A = {Uθ(0) > 0, Uθ(1) > 0, . . . , Uθ(T ) > 0|Uθ(0) = u} and B = {Uθ(1) >
0, Uθ(2) > 0, . . . , Uθ(T + 1) > 0|Uθ(0) = u} are two events. From u < ZT and the
definition of ZT , we know that Pr(A) is increasing with θ1. Notice that

E[Uθ(1)] = E[Uθ(0) + c(θ1)− θ1X1] = u + λE[X1] + (θ1 − 1)µE[X1],

E[Uθ(1)] is increasing with θ1. Obviously, Pr(B) is increasing as E[Uθ(1)] increases,
which indicates that Pr(B) is increasing as θ1 increases. Therefore, φθ

0(u) is increasing
with θ1, or equivalently ψθ

0(u) is decreasing with θ1. ¤
From Theorem 3, we can obtain the following corollary.

Corollary 2: Consider a problem of optimal proportional reinsurance in the case of T

(T > 2) periods. If the insurer’s initial surplus u satisfies u < µ−λ
α (1 + e−1−λ), then

the optimal reinsurance strategy θ∗ satisfies θ∗1 = 1, namely, it is optimal to have no
reinsurance in the first period.

Proof: By Theorem 2, we know that Z2 > µ−λ
α (1+e−1−λ). So u < Z2. From Theorem

3, we know that ZT+1 > ZT (T = 1, 2, . . .). Therefore, we have u < ZT . According to
the definition of ZT , the conclusion of the corollary 2 holds. ¤

Corollary 2 offers an optimal multi-period proportional reinsurance strategy in
a special case. If only applying dynamic programming to solve the optimal multi-
period reinsurance strategy without introducing the concept, the capital threshold of
proportional reinsurance, we may not be able to obtain the similar result in Corollary
2.

Theorem 4: If 1 + µ > (1 + λ)2, i.e., µ > 2λ + λ2, then the series {ZT }∞T=1 diverges,
i.e., lim

T→∞
ZT = +∞.

Proof: According to Theorem 6 in Schäl (2004), when the time horizon is infinite, it
is optimal to have no reinsurance if the condition 1 + µ > (1 + λ)2 holds. Therefore,
according to the definition of {ZT }∞T=1, it is clear that lim

T→∞
ZT = +∞ if the condition

1 + µ > (1 + λ)2 holds. ¤

4.3 Economic implication

After computing a lot of numerical examples, we find the following phenomenon.
Assume that the insurer is facing a problem of finding the optimal proportional

reinsurance strategy in the case of T periods. When the insurer’s initial surplus u

satisfies u < (>)ZT , |∂ψ̂0(u)
∂u | is relatively smaller (larger), which means that the effect

of increasing the initial surplus on decreasing the minimal ruin probability is relatively
smaller (larger).

Now we will offer some concise analysis on the immanent mechanism of the above
phenomenon. From the definition of ZT , we know that when the insurer’s initial surplus
u satisfies u < ZT , it is optimal for the insurer to have no reinsurance in the first period.
In this case, the minimal ruin probability ψ̂0(u) is decreasing as the insurer’s initial
surplus u increases because the increase of the initial surplus enhances the insurer’s
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ability of paying the policyholders’ claims. When the insurer’s initial surplus u satisfies
u > ZT , it may be optimal for the insurer to have some reinsurance. In this case,
the increase of the initial surplus not only enhances the insurer’s ability of paying the
policyholders’ claims, but also allows the insurer to have more reinsurance. That is why
the effect of increasing the initial surplus on decreasing the minimal ruin probability is
relatively larger when the insurer’s initial surplus u satisfies u > ZT .

This property of ZT can give us some enlightenment. For example, when consid-
ering the case of T periods, in order to control the risk of insurers, the government can
stipulate that the insurers must maintain their surplus above ZT at the beginning of
every period. In this case, reinsurance can be truly helpful for the insurers to reduce
their risk.

5 Concluding remarks

In this paper we incorporate proportional reinsurance into the multi-period ruin
model, and then apply the dynamic programming approach to deal with the problem
of finding the optimal proportional reinsurance strategy under the assumption that the
claim size follows the exponential distribution. We give some conditions under which it
is optimal to have no reinsurance. Also we introduce a new concept, capital threshold
of proportional reinsurance, and discuss its properties and economic implication.

To conclude this article, we point out several possible directions of further research.
For example, (1) it is of interest to make some good estimation of ZT (T > 3). If some
better estimation of ZT (T > 3) is obtained, a result that is stronger than Corollary 2
can be derived. Besides, it may be noteworthy to consider the global properties and
asymptotic behavior of {ZT }∞T=1, such as its uniform upper bound and limit, if exist.
(2) Our study in this article focuses on the proportional reinsurance. It deserves to
study other kinds of reinsurance, such as stop-loss reinsurance. (3) It is interesting
to relax the assumption that the claim size follows the exponential distribution. (4)
Instead of considering the ruin model, it is worth to investigate other models, such as
mean-risk model.
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Appendix:

The proof of Lemma 1:
Assume that for each n ∈ {1, 2, . . . , T}, the function

Tn(θn) = 1− F

(
u + c(θn)

θn

)
+

∫ u+c(θn)
θn

0
ψ̂n(u + c(θn)− θnx)f(x)dx

achieves its minimal value on the bounded closed set [0, 1] at θn = θ∗n(u).
First, via induction, we prove that for n ∈ {0, 1, . . . , T − 1} and un > 0, the sub-

strategy θ∗n,T = (θ∗n+1(un), θ∗n+2(uu+1), . . . , θ∗T (uT−1)) satisfies that ψ
θ∗n,T
n (un) = ψ̂n(un),

where un is the the insurer’s initial surplus at time n. When n = T , (11) and (14) give

ψ
θ∗T,T

T (uT ) = ψ̂T (uT ) =

{
1 if uT < 0,

0 if uT > 0.

Therefore, when n = T − 1, we have

ψ̂T−1(u) = min
06θT 61

{
1− F

(
u + c(θT )

θT

)}
= ψ

θ∗T−1,T

T−1 (u).

Assume that for uk > 0, we have ψ
θ∗k,T

k (u) = ψ̂k(u). According to (12), (13) and
the definition of θ∗n,T , for uk−1 > 0, we have

ψ
θ∗k−1,T

k−1 (uk−1)

=1− F

(
uk−1 + c(θ∗k)

θ∗k

)
+

∫ uk−1+c(θ∗k)

θ∗
k

0
ψ

θ∗k,T

k (uk−1 + c(θ∗k)− θ∗kx)f(x)dx

=1− F

(
uk−1 + c(θ∗k)

θ∗k

)
+

∫ u+c(θ∗k)

θ∗
k

0
ψ̂k(uk−1 + c(θ∗k)− θ∗kx)f(x)dx

= min
06θk61



1− F

(
uk−1 + c(θk)

θk

)
+

∫ uk−1+c(θk)

θk

0
ψ̂k(uk−1 + c(θk)− θkx)f(x)dx





=ψ̂k−1(uk−1).

Therefore, for n ∈ {0, 1, . . . , T} and un > 0, we have ψ
θ∗n,T
n (un) = ψ̂n(un).

Next we use induction to prove that ψθ
n(u) > ψ̂n(u) for all n ∈ {0, 1, . . . , T}, θ ∈ Θ

and u > 0. From (11) and (14), ψθ
T (u) > ψ̂T (u) holds for all θ ∈ Θ and u > 0. Assume

that ψθ
k(u) > ψ̂k(u) is true for all θ ∈ Θ and u > 0. Then, according to (10) and (13),

we have

ψθ
k−1(u) = 1− F

(
u + c(θk)

θk

)
+

∫ u+c(θk)

θk

0
ψθ

k(u + c(θk)− θkx)f(x)dx

> 1− F

(
u + c(θk)

θk

)
+

∫ u+c(θk)

θk

0
ψ̂k(u + c(θk)− θkx)f(x)dx

> min
06θk61

{
1− F

(
u + c(θk)

θk

)
+

∫ u+c(θk)

θk

0
ψ̂k(u + c(θk)− θkx)f(x)dx

}

= ψ̂k−1(u).
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Therefore, ψθ
n(u) > ψ̂n(u) holds for all n ∈ {0, 1, . . . , T}, θ ∈ Θ and u > 0.

The above results lead to the conclusion of the theorem. ¤
In order to prove Lemma 2, we first prove the following result.

Lemma 6: Under any reinsurance strategy θ, for any time n, the ruin probability in
time interval [n, T ], ψθ

n(un), decreases as the initial surplus at time n, un, increases. In
particular, for any time n, the minimal ruin probability in time interval [n, T ], ψ̂n(un),
increases as the initial surplus at time n, un, increases.

Proof: Let strategy θ ∈ Θ and time n be given, and assume that u(2) > u(1) > 0.
According to the definition of survival probability, we have

φθ
n(u(1)) = Pr

(
Uθ(n) > 0, Uθ(n + 1) > 0, . . . , Uθ(T ) > 0|Uθ(n) = u(1)

)
.

Applying (6), we have

φθ
n(u(2)) = Pr

(
Uθ(n) > 0, Uθ(n + 1) > 0, . . . , Uθ(T ) > 0|Uθ(n) = u(2)

)

= Pr
(
Uθ(n) + u(2) − u(1) > 0, Uθ(n + 1) + u(2) − u(1) > 0, . . . ,

Uθ(T ) + u(2) − u(1) > 0|Uθ(n) = u(1)
)

> φθ
n(u(1)).

Notice that ψθ
n(u) = 1− φθ

n(u), we have ψθ
n(u(1)) > ψθ

n(u(2)). This shows that ψθ
n(un)

decreases with un for any strategy θ. The minimal ruin probability ψ̂n(un), as the ruin
probability under the optimal strategy, is therefore decreases with un. ¤

The proof of Lemma 2:
Assume that θ = {θ1, θ2, . . . , θT } is a reinsurance strategy. For all n ∈ {1, 2, . . . , T}, we
assume that 0 6 un−1 < µ−λ

α . According to (5) and (6), we have

Uθ(n) = un−1 + c(θn)− θnXn = un−1 − µ− λ

α
+

(
1 + µ

α
−Xn

)
θn.

As un−1 > 0, according to (7), we have

φθ
n−1(un−1)

=Pr (Uθ(n− 1) > 0, Uθ(n) > 0, . . . , Uθ(T ) > 0|Uθ(n− 1) = un−1)

=Pr (Uθ(n) > 0, Uθ(n + 1) > 0, . . . , Uθ(T ) > 0|Uθ(n− 1) = un−1)

Define events A and B as

A ={Uθ(n) > 0|Uθ(n− 1) = un−1},
B ={Uθ(n + 1) > 0, . . . , Uθ(T ) > 0|Uθ(n− 1) = un−1}.
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Then, we have φθ
n−1(un−1) = Pr(A ∩B) = Pr(A) Pr(B|A). It is easy to derive that

P (A) = Pr (un−1 + c(θn)− θnXn > 0)

=Pr
(

Xn 6 1
θn

(
un−1 − µ− λ

α

)
+

1 + µ

α

)
,

P (B|A) = Pr (Uθ(n + 1) > 0, . . . , Uθ(T ) > 0|Uθ(n− 1) = un−1, Uθ(n) > 0)

=Pr
(

Uθ(n) > 0, Uθ(n + 1) > 0, . . . , Uθ(T ) > 0|Uθ(n) = un−1 − µ− λ

α

+
(

1 + µ

α
−Xn

)
θn > 0

)
.

In the light of un−1 < µ−λ
α and the expressions above, we can see that P (A) is strictly

increasing with θn. Also, taking advantage of

un−1 <
µ− λ

α
,Uθ(n) = un−1 − µ− λ

α
+

(
1 + µ

α
−Xn

)
θn > 0,

we can easily derive that 1+µ
α − Xn > 0, namely Uθ(n) increases as θn increases. It

is clear that P (B|A) is the survival probability in time interval [n, T ] under strategy
θ, given the initial surplus Uθ(n) > 0 at time n. Therefore, according to Lemma 6,
P (B|A) increases as θn increases. Accordingly, φθ

n−1(un−1) strictly increases as θn in-
creases. Hence, the optimal reinsurance strategy θ∗ = (θ∗1, θ

∗
2, . . . , θ

∗
T ) satisfies that

θ∗n = 1. The proof is completed. ¤

The proof of Lemma 3:
We prove the lemma by apagoge. Suppose that θ = {θ1, θ2, . . . , θT } is an optimal
reinsurance strategy. Then, according to Lemma 1 and its proof, the substrategy
θk−1,T = (θk, θk+1, . . . , θT ) minimizes the insurer’s ruin probability in time interval
[k − 1, T ].

Applying Lemma 2 to θ, which is supposed to be the optimal strategy, and noticing
that Uθ(k) = Uθ(k−1)+c(θk)−θkXk < µ−λ

α , we have θk+1 = 1. For brevity, we denote
u = Uθ(k − 1) > 0. By the definition of φ

θk−1,T

k−1 (u) and θk+1 = 1, we have

φ
θk−1,T

k−1 (u)

=Pr(Uθ(k − 1) > 0, Uθ(k) > 0, . . . , Uθ(T ) > 0|Uθ(k − 1) = u)

=Pr
(

u + c(θk)− θkXk > 0, u +
1 + λ

α
+ c(θk)− θkXk −Xk+1 > 0,

Uθ(k + 2) > 0, . . . , Uθ(T ) > 0
)

6Pr
(

u +
1 + λ

α
+ c(θk)− θkXk −Xk+1 > 0, Uθ(k + 2) > 0, . . . , Uθ(T ) > 0

)

=Pr
(

u +
1 + λ

α
+ c(θk) > Xk+1, u +

1 + λ

α
+ c(θk)− θkXk −Xk+1 > 0,

Uθ(k + 2) > 0, . . . , Uθ(T ) > 0
)

, (22)
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where the last equation holds because

{u +
1 + λ

α
+ c(θk)− θkXk −Xk+1 > 0} ⊆ {u +

1 + λ

α
+ c(θk) > Xk+1}.

In order to derive a contradiction, we construct a different reinsurance strategy
θ̂k−1,T = {θ̂k, θ̂k+1, . . . , θ̂T } as follows:

θ̂k = 1, θ̂i = θi (k + 2 6 i 6 T ), θ̂k+1 =





θk if Xk 6 Uθ(k − 1) +
1 + λ

α
+ c(θk),

1 if Xk > Uθ(k − 1) +
1 + λ

α
+ c(θk).

We are going to prove that in time interval [k− 1, T ], the insurer’s survival probability
under the strategy θ̂k−1,T is larger than that under the strategy θk−1,T .

According to the definition of φ
θ̂k−1,T

k−1 (u) and θ̂k−1,T , we have

φ
θ̂k−1,T

k−1 (u)

=Pr(Uθ̂(k − 1) > 0, Uθ̂(k) > 0, . . . , Uθ̂(T ) > 0|Uθ̂(k − 1) = u)

=Pr
(

u +
1 + λ

α
−Xk > 0, u +

1 + λ

α
−Xk + c(θ̂k+1)− θ̂k+1Xk+1 > 0,

Uθ̂(k + 2) > 0, . . . , Uθ̂(T ) > 0
)

.

Applying the law of total probability to the right hand side of the above equation, we
have

φ
θ̂k−1,T

k−1 (u) = Pr
(

u +
1 + λ

α
+ c(θk) > Xk, u +

1 + λ

α
+ c(θk)− θkXk+1 −Xk > 0,

Uθ(k + 2) > 0, . . . , Uθ(T ) > 0
)

+ Pr
(

u +
1 + λ

α
+ c(θk) < Xk 6 u +

1 + λ

α
, u +

2(1 + λ)
α

−Xk −Xk+1 > 0,

Uθ(k + 2) > 0, . . . , Uθ(T ) > 0
)

.

Since f(x) > 0 for x ∈ R, the second term of the right hand side of the above equation
is strictly positive. Thus

φ
θ̂k−1,T

k−1 (u) >Pr
(

u +
1 + λ

α
+ c(θk) > Xk, u +

1 + λ

α
+ c(θk)− θkXk+1 −Xk > 0,

Uθ(k + 2) > 0, . . . , Uθ(T ) > 0
)

.

(23)
Noting that {Xi}T

i=1 are independent and identically distributed random variables, we
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have

Pr
(

u +
1 + λ

α
+ c(θk) > Xk, u +

1 + λ

α
+ c(θk)− θkXk+1 −Xk > 0,

Uθ(k + 2) > 0, . . . , Uθ(T ) > 0
)

=Pr
(

u +
1 + λ

α
+ c(θk) > Xk+1, u +

1 + λ

α
+ c(θk)− θkXk −Xk+1 > 0,

Uθ(k + 2) > 0, . . . , Uθ(T ) > 0
)

.

(24)

Expressions (22), (23) and (24) implies that

φ
θ̂k−1,T

k−1 (u) > φ
θk−1,T

k−1 (u),

which is equivalent to

ψ
θk−1,T

k−1 (u) > ψ
θ̂k−1,T

k−1 (u).

This contradicts with that the substrategy θk−1,T = (θk, θk+1, . . . , θT ) minimizes the
insurer’s ruin probability in time interval [k − 1, T ]. The lemma is proven. ¤
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