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ABSTRACT 

This paper presents best upper and lower bounds on the expected value 
of a reinsurance payment under the terms of a contract written on a random 
loss with known moments. The bounds are based on results from Kemper- 
man's survey [13] of moment problems. Bounds on the expected exercise 
value of a financial option are considered also, because the mathematical 
model used for valuing options is similar to that used for calculating rein- 
surance net premiums. 

1. INTRODUCTION 

Actuaries construct stochastic financial models to assist insurance com- 
pany managers in determining the future financial impact of insured events. 
Some areas in which these models are applied include determination of 
insurance premiums, calculation of benefit reserves, and estimation of in- 
surance fund solvency. The two sources of errors in these models are: (1) 
misspecification of the model's statistical distribution and (2) estimation 
errors in determining the parameters of the distributions involved. As an 
example, consider a fire insurance policy on a house that is worth b. The 
value X of fire damage to the house is to be paid to the policyholder, less 
a deductible, at the end of the policy period. The total loss X is bounded, 
O<_X<_b. The insurance company pays the policyholder the excess (if any) 
of the loss, X, over the deductible, d, that is specified in the policy. Let 
h(x) = max{0, x - d } .  The benefit to the policyholder is h(X). When the policy 
is written, X is modeled as a random variable. For determining premiums, 
an actuary would be interested in the distribution of the discounted value of 
Y=h(X), perhaps for various values of the deductible d. For this example, 
suppose that the interest rate variation can be ignored; thus the problem 
reduces to studying the distribution of Y. 

Usually moments of X are known from company or industry experience. 
In determining premiums, reserves, and so on, an actuary would need es- 
timates of the moments of Y=h(X), but would have available estimates of 
moments of X. To be specific, suppose that only two moments are used and 
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estimates of the mean I~ and variance 0 .2 of X are provided. An example of 
misspecification would be to suppose that X is normally distributed, even 
though it is known that X cannot be normal (because O<_X<_b, for example). 
Occasionally this sort of error is acceptable because it is convenient or 
because only crude estimates are required. The second type of error is at- 
tributed to error in estimating the parameters, ~ and ~ .  Errors arise because 
of inflation, changes in the risks insured (in the fire insurance example, a 
change in the method of constructing houses is an example of this phenom- 
enon) or changes in coverage (perhaps mandated by regulation or law). This 
paper is concerned only with model misspecification error. The proposed 
technique of dealing with it in this example is to determine the extremes of 
E[h(X)] as Xvaries over all random variables X bounded by 0 and b, having 
mean ~ and variance 0 "2. 

The bounds that are developed below follow from results surveyed by 
Kemperman [13]. Many of these are due to Kemperman. A very special 
case of the upper bound (two moments and h(x) = min{d, x}), using the same 
fundamental principles (polynomial bounds and contact sets), appears earlier 
in Scarf [17]. Bowers [2] obtained the upper bound independently, but in a 
slightly different formulation. We introduce the following notation in order 
to describe the solution. ~ denotes the set of all cumulative distribution 
functions F concentrated on [a, b]. M(,v) is the subset of M having moments 
Y = Cvl, y2 . . . .  , yn). By this we mean that 

*'dF(x) = 1 (F is concentrated on [a, b]), 1 

and 

f [ x  ~ dF(x) = Yi for each i = 1, ..., n (F has the correct moments). 

~The symbol fb, h(x) dF(x) denotes the Riemann-Stieltjes integral of h with respect to F. This 
may be interpreted correctly as the usual integral of introductory calculus with integrand h(x) f(x), 
where F'(x)=f(x), in case the cumulative distribution function F is differentiable. If F is discrete 
with probability density f, the Riemann-Stieltjes integral reduces to the sum of h0:)f(x) over the 
countably many values of x for which f(x) is positive. The Riemann-Stieltjes integral generalizes 
these two types of expectations and handles the mixed distributions correctly as well. See Apostol 
[1] for a development of Riemann-Stieltjes integration and Shiu [18] for another actuarial application 
of Riemann-Stieltjes integration. 



BOUNDS ON EXPECTED VALUES 233 

The best bounds on E[h(X)] are denoted formally by 

L(hly ) -- inf h(x)dF(x) :F ~ M(y) 

and 

U(hly) = sup ( f[ h(x)dF(x) : F E M(y)} 

where y denotes the specified vector of moments. In the situation considered 
by Bowers [2] and Scarf [17], the vector of moments is y=(p. ,  p~2+o-2). 
The best bounds on the expected policyholder's loss for an insurance policy 
with a deductible, d, are developed in Section 3. The loss retained by the 
policyholder is given by the function h(x)=rain{x, d}, where x is the loss, 
0<_x_<b. This function is not differentiable a t x = 0 ,  x=d o r x = b ,  but it is 
continuous, so Kemperman's approach applies. This results in formulas for 
L(hly ) and U(hly) in terms of the moments p, and o -2 and the parameters d 
and b. 

The general approach to bounds on E[h(X)] in terms of given moments 
of X has been investigated also by Brockett and Cox [5], [6], by Kaas and 
Goovaerts [11], and by Chang [7]. The major difference is that these methods 
require h to be very smooth. Kemperman's approach does not require smooth- 
ness or convexity; only mild continuity conditions are required of h. 

However, the strong differentiability requirements yield stronger results. 
In these papers the function h does not enter into the determination of the 
probability distributions at which the optimal bounds are obtained. The dif- 
ferentiability requirements can be reduced somewhat without changing the 
results. See Chang [7] or Brockett and Cox [6] for examples. We review 
some interesting actuarial applications of these results in Section 2. 

In Section 3 Kemperman's approach is used to derive the best bounds 
described above in the case of two known moments of a bounded random 
variable for the functions g(x)=min{x, d} and h(x)=max{0, x - d } .  The 
application of these to insurance and option prices is discussed briefly in 
Sections 4 and 5, respectively. 

We briefly review the notion of the loss elimination ratio from Hogg and 
Klugman [10]. The LER is the ratio of the expected loss eliminated (from 
the insurer's viewpoint) to the expected loss. The LER is then 
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E[min{X, d}] E[X, d] 
E[X] g, ' 

and tight bounds are obtained by dividing L(h[y) and U(h[y) by ~, where 
h(x) = min{x, d}. These are described in Section 4. 

When the policyholder is also an insurance company, the policy is usually 
called reinsurance. Reinsurance contracts are usually more complex because 
they typically pay a portion of the excess of the loss over the deductible, 
subject to a policy limit. Of course, policies sold to individuals can also be 
more complex and often have policy maximums in addition to deductibles. 
Thus a more practical function, h(x), describing the policyholder's benefit 
resulting from a loss o fx  would be described as follows: 

0 for 0 _< x -< d~ 

h(x) = x - dl for dl -< x -< d2 

d2 dl for d2 -< x -< b, 

where O<dl<d2<b and d 2 - d l  is the policy limit. An example of this type 
of, policy is a fire insurance policy with a deductible of $5,000 on a dwelling 
worth $2,000,000, and maximum payment under the policy of $1,000,000. 
In this case, d l=  $5,000, d2 = $1,005,000, and b = $2,000,000. Bounds for 
this type of policy are obtained at the end of Section 4. 

Option contracts are reviewed in Section 5. The owner of an option con- 
tract has the right to buy (or sell) an asset at time T for a price of X(T), at 
the striking price, d, set by the contract. One purpose of option-pricing 
theory is to determine the value of these rights at the time the option is 
written in terms of market conditions, contract values, and the distribution 
of the price X(T). The common financial models specify that X(T) is a 
stochastic process with parameters estimated from past prices. That is, mo- 
ments of X can be estimated from past price changes and appear in the 
formula for the current value of the option. Merton [15] established condi- 
tions for which the current values of European call and put options are their 
expected values, discounted for interest. A popular reference for the details 
is Cox and Rubinstein [8]. As a final application, best bounds on European 
put and call option prices are given in Section 5, in the case that their prices 
are discounted expected values with given moments, as described by Merton. 
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2. BEST BOUNDS FOR E[h(X)] BASED ON KEMPERMAN'S APPROACH 

The following is a special case of the development of Kemperman [13]. 
As described earlier, ~ denotes the set of all cumulative distribution func- 
tions on [a, b] and ;~/tr(y) is the subset of ~ having moments y = (Yl, Y2 ,  . . . .  

y,,). It is useful to use the more general notion of moments that Kemperman 
describes. The polynomials x, x 2, ..., x" are replaced by general functions 
gi integrable over [a,b] for i =  1 . . . .  , n. The usual situation is that gi(x) =x ~ 
for each i =  1, ..., n. Some other interesting examples are given by Kem- 
perman, others appropriate to insurance calculations are discussed below. In 
general, 

~ ( y )  = F E :~ : &(x) dF(x) = y~ for all i = 1, ..., n . 

We will develop formulas for 

L(hly) = inf h(x) dF(x) : F ~ Vt(y) 

and 

U(hly)=su p h(x) dF(x) : F ~ M(y) 

for real-valued functions h defined on [a,b], which satisfy mild continuity 
conditions. The methods yield distributions Fv and FL in :~/tr(y) for which 
the bounds are obtained. That is, there are very special distributions, FL and 
F v, which X might have and for which the largest and smallest values of 
E[h(X)] are actually attained: 

L(hly) = h(x) dFL(x) 

and 

U(hly ) = h(x) dFrAx) 

In general, the distributions FL ~ind Fu depend on the vector of specified 
moments y, the values of a, b, and the function h. However, if strong 
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geometric conditions are required of h, the distributions do not depend on 
h. 

Here is how to determine the bounds from the contact polynomial and 
contact set. Suppose there is a polynomial of degree n, q(x)= E~=o djxJ, for 
which h(x)>_q(x) for allx in [a,b]. Let Z denote the contact set of q, which 
is defined by 

Z = {x e [a, b] :h(x) = q(x)}. 

Assume that there is a cumulative distribution F in 7g(y) with its support 
entirely within the contact set Z, that is, 

Iz dF(x) = 1. 

In other words, i fX has the distribution specified by F, then Prob[X e Z] = 1. 
Then, for every cumulative distribution G in M(y), 

Ii h(x) dF(x) = Iz h(x) dF(x) because F is concentrated on Z 

= fz q(x) dF(x) because h = q on Z 

= ~ dj Iz x '  dF(x) because qOc) = do + dlx + d2x 2 + ... + d,n* 
i - 0  

= ~ dj I~ x '  dF(x) because F is concentrated on Z 

= ~ dj yj because F is in M(y) 
i=0 

= dj x ~ dGOc) because G is in M(y) 
j=l 

= I~ q(x)dG(x) because q(x) = do + dt x + d2 x 2 + ... + d,,x-" 

<- I~ h(x) dG(x) because q(x) <- h(x) on [a, b]. 

This establishes that E[hlF] is equal to the greatest lower bound; that is, 
E[h[F]=L(hlY ). Kemperman shows [13, p. 36] that in the circumstances 
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considered here (h and gl,  -.., g,, continuous functions), such a polynomial 
q with contact set Z and distribution F concentrated on Z always exists. This 
means that to determine the best lower bound on E[h(X)] for a given h, we 
need only (if we can) determine q, Z and F. Similarly, to determine U(hly ), 
we need only study polynomials q(x) of degree n for which q(x)>_h(x) on 
[a, b] and distributions with support contained in the contact set {x c [a, b]: 
h(x) = q(x)}. We note that this is essentially the method used by Scarf and 
by Bowers, although they considered only very special cases. 

The following is an illustrative example. 
Let X be a random variable on [a,b] with mean Iz and h a continuous real 

valued function defined on [a,b]. Suppose that h is convex. By convex we 
mean that, for each x and y in [a,b], 

h[kx + (1 - k)y] _< kh(x) + (1 - k)h(y) 

for all k in [0, 1]. The geometric interpretation is that the chord joining the 
two points Ix, h(x)] and [y, h(y)] is entirely above the graph of h. For 
example, if h is twice differentiable and h"(x)>0, then the graph of h is 
convex. However, h need not be differentiable in order to be convex 
(h(x) =max{O, x - d }  is an example of a convex function which is not dif- 
ferentiable). We will use Kemperman's approach to show that in this case 

h(~) -< E[h(X)] _< h(a)p + h(b)(1 - p) 

where p = (b - ~)/(b - a). 
I fX is the random variable that is always equal to ~ (that is, a degenerate 

or constant random variable), then E[h(X)]=h(~) and the lower bound is 
obtained. That is, in this case FL is the discrete distribution with all its 
probability at I~. If X is the random variable that takes the value a with 
probability p and the value b with probability 1 - p ,  then its distribution 
function Fu is in 7g(v) because p = ( b -  ~)/(b-a) and the upper bound is 
E[h(X)] =h(a)p +h(b) (1-p) .  Note that neither L(hly ) nor U(hly ) depend on 
h, only on its convexity. This contrasts with the example given earlier, 
h(x) = min {d, x}, for which L(hly ) and U(hly) depend on d. 

Note also that the first inequality is Jensen's inequality. Usually Jensen's 
inequality is stated with the hypothesis that h is twice differentiable and 
h(2)(x)->0 on [a,b]. See Bowers et al. [3, p. 9], for example. Kemperman's 
approach shows that the inequality is valid in greater generality, h need not 
be differentiable. 
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Proposition 2.1: 

Let X be a random variable on [a,b] with known mean Ix. If h is a 
continuous function that is convex over [a,b], then 

h(ix) -< E[h(X)] _< h(a)p + h(b)(1 - p) 

where p = (b - Ix)/(b - a). 
Proof." In this case, there is one moment: n = 1 and gl(x)=x.  By Kem- 

perman's results, the lower bound is obtained by a distribution F with mean 
Ix concentrated on the contact set Z of a polynomial q(x) of degree n = 1. 
That is, we may assume L(h[y) =E[h~V]. The graph of q is a straight line, 
lying below the graph of h, which touches the graph of h at the points of Z. 
If the graph of h is strictly convex, Z consists of single point, c. Then F is a 
degenerate distribution concentrated at c and so c=0.  and L(hly)=E[h~] 
=h(ix). In general, the convexity of h and linearity of g imply that Z is at 
most a subinterval of [a,b]. Moreover, since q =h on Z, h is a linear function 
when restricted to Z. Hence, E[hlF] =h(E[X]) by the linearity of h and the 
fact that F is concentrated on Z. In either case, L(h[y) =h(ix). 

For the upper bound, q is above h over the interval [a,b]. Since h is 
convex, the chord joining [a,h(a)] and [b,h(b)] lies over the graph of h. And 
since q is linear and above h, its graph lies over the chord too. Thus the 
contact set Z is at most {a,b}. Because F is concentrated on Z, its probability 
density, f, satisfies f (a)=p and f (b)= 1 - p ,  where ap+b(1 - p ) =  Ix. This 
implies p = (b - Ix )/(b - a). Hence 

U(hly) = e[hlFl = h(a)p + h(b)(1 - p ) ,  

which completes the proof. 
The proposition applies to functions h that are twice differentiable and 

hC2)(x)>_0 on [a,b]. This was developed by Brockett and Cox [5] using results 
from Karlin and Studden [12]. Here are several actuarial applications. Let 
T= T(x) be the complete lifetime of a person age (x). Suppose that the 
expected lifetime E[T] is known; for notational convenience we use ~x to 
denote this moment. Also, in this case, a = 0 and b = to -x .  Consider the 
function h ( t ) = ( l + i ) - t = v '  for O<_t<to-x, where i is the annual interest 
rate. Then ~,,=E[h(T)] is the net single premium for a life insurance of 1 
paid at the moment of death. Since ht2)(t) is positive, we can apply the 
inequalities just developed: 

O O 

v~-< ,4x -< to - x  - ex + v~,_ x ~ e x  
to - - X  to - - X  
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A similar application with h(t) = (1 -v')/~, where a = log(1 + i), gives bounds 
on E[h(T)]=~x, the life annuity of 1 per year paid continuously. In this 
example, the function - h  is convex, so the inequalities are reversed: 

1-v ~-~ 8~ 1-v~ 

The next example is the expected value of the benefit payment of an 
insurance policy with a deductible d. Suppose that the policy covers a ran- 
dom loss X with O<_X<_b and mean I~ and that the policy has a deductible 
d, 0<d<b.  In this case h(x) = max{0, x - d }  is convex. Hence, we can write 
that 

p. 
max{0, I~-d} _< E[max{0, X-d}]  _< (b - d) b" 

The loss not covered by the policy, the retention, is min {d, X}. Bounds on 
the expected retention are obtained by the relation min {d, X}=X-max{0,  
X - d }  and the bounds on E[h(X)]. In the next section, we consider these 
functions and two given moments. 

The last example gives crude bounds on the price of an option. Suppose 
that the option valuation model assumptions are such that option prices are 
discounted expected exercise values (discussed in greater detail later). Con- 
sider a call option that conveys the fight to buy at time T a stock at a price 
of K, when the market price is S(T). The current stock price is S and the 
risk-free force of interest is r, under the assumptions of such valuation 
models. The exercise value is h[S(T)], where h(s) = max{0, s -K}. The price, 
which we denote by C(S,T,K), is equal to e-'rE{h[S(T)]}, where r is the 
force of interest, since we are assuming prices are discounted expected val- 
ues. And for the same reason, E[S(T)] =Se "r. By the equation above, we 
have 

_ Se "r 
e-'rmax{0, Se "r - K} <_ C(S, T, K) <_ e-~r(b - 10 b 

max{0, S - Ke -'r} <- C(S, T, K) <_ - -  
b - K  

b 

Simple bounds such as these can also be derived from economic consid- 
erations. For the case b = + co, these bounds are derived on an economic 
basis by Cox and Rubenstein [8, p. 154]. 

We derive sharper bounds based on two moments in Section 5. 
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3. BEST BOUNDS FOR E [min(d, S } ] ,  GIVEN ~ AND 0 2 

The function h(x)=min{x,d} describes the loss retained by the policy- 
holder who buys a policy with a deductible d to cover a random loss X, 
conditional on X=x .  The exercise value of a put option is closely related to 
h: The exercise value of a put option on an asset with price X and exercise 
price d is d - X ,  i f X  is less than d; it is 0, i f X  is greater than d. Hence the 
exercise value is d - h ( X ) .  

In this section we develop best bounds on E[h(X)] for a random variable 
X on [a,b] with two known moments, ~=E[X]  and 02+ Ij.2=E[X2]. For 
most applications a = 0. The results are easier to state when a = 0 and the 
general case is obtainable from the case a = 0 by a change of variables. 
Hence, we assume that a = 0. 

Proposition 3.1: 

Let h(x)= min {x,d} for 0<..<_x_<b, where 0 <d <b are given constants. Let 
X be a random variable with mean + and variance o'2 > 0 for which Pr[O<X<b] 
= 1. Then the best lower bound on E[h(X)] is 

f .  dl x2 
i o.f '-~-ix 2 for 0 -< d -< - -  

L(hly) = t ~ [ i x + d -  X/ ( IX-d)2+  o a] for 

b _ (a  _+ 
1,. (b  - Ix)2 + o a for 

The best upper bound on E[h(X)] is 

U(hly) = < 

o.2+ IX2 
2~ 

<d_< 
2IX 2(b - Ix) 

b 2 _ I X 2  _ o a 

<d<.b 
2(b - IX) 

"d for 0 ~ d ~ i x  b - IX 

Ix(b + d) - Ix2 _ o a for °a °'2 
- - - < d < l ~ + - -  

b b - I ~  Ix 

o a 
Ix for I x + - - < d < _ b  
• IX 

where y = (p,, p2+02) .  
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The proof is omitted because this result is a special case of Proposition 
4.1 obtained by setting dl = d2. 

Proposition 3. 2: 

Let g(x) = max {0, x - d }  for 0-< x<-b, where 0 < d < b are given constants. 
Let X be a random variable with mean p, and variance 0-2> 0 for which 
Pr[O<_X<_b] = 1. Then the best lower bound on E[g(X)] is 

I x - d  for O ~ d < i x  b -  p. 

2 +  ~ -  Ixd for °'2 
L(gIY) = l  b Ix - -b~- IX < d < IX + "-~ 

[o for Ix + °~ < d <- b. p, 

The best upper bound on E[g(X)] is 

~(o ~ + Ix~ - dix) 
o.2+ IXz 

U(gly ) = -~ p  ̀ - d + V(ix - dy + 

(b - d ) ~  

(b :- Ix)~ + o a 

where y = I ~, p2 + o-2). 

for 0 < d  < ~  + Ix.___..____~2 
2p` 

o a + IX2 b 2 _  p`2_ o.2 
for ~ < d - <  

2p` 2 (b -  Ix) 

b 2 - i x 2 - ~  
~r < d ~ b  

2 0 - IX) 

Proof: Consider the lower bound L(g ly  ). Since g ( x ) + h ( x ) = x ,  then for 
all F ~ ( y ) ,  E[g~ ~] +e[hlF] = ~. Hence, L(gly ) = inf{E[g~"] : F,l~(v)} 
= inf{~ -E[h~F] : F~Tg(y)} = ~-sup{E[hlF]  : FcTg(y)} = ~ -  U(hly). The 
best lower bounds are obtained by subtracting the best upper bounds of 
Proposition 3.1 from the mean. Similarly U(g ly )=  p , - L ( h l y  ). This com- 
pletes the proof. 

Both of these results could be extended to the case of  three given moments. 
This is important for insurance applications for which the third moment may 
measure the skewness of the distribution. The calculations are conceptually 
straightforward, but rather challenging. The analogous results for unimodal 
distributions would also be useful. Evidently the same method used in Brock- 
ett and Cox [5] to transfer (via Khinchine's characterization of unimodality) 
from the unimodal setting can be applied here. 
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The lower bound given in Proposition 3.1 is a slight generalization of the 
results of Scarf [17] and Bowers [2], which can be obtained by letting b 
tend to infinity. Figure 1 shows the graphs of L(hly) and U(hly) for a mean 
of ~ = 50, a standard deviation of tr = 30, and an upper bound of b = 100 as 
functions of the deductible d, varying from 0 to 100, and h(x)= min {x,d}. 
Figure 2 is the graph of the difference U(hly )-L(hly ) for the same values 
of d. 

FIGURE 1 

UPPER AND LOWER BOUNDS OF POLICYHOLDER'S LOSS 
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Analogous bounds are similarly obtainable for closely related functions 
such as h(x)= min{0, x - d } ,  which is the benefit paid to the policyholder if 
a loss of x occurs. The lower bound for E[min{X,d}] was obtained by Scarf 
[17]. Bowers [2] obtained the upper bound for E[max{0, X-d}] ,  which is 
essentially the same result. Because the policyholder's share, min{d, x}, and 
the insurer's share, max{0, x -d} ,  add up to the total loss x, min{d, x} + max{0, 
x - d }  =x, then L(hlY) + U(gly) = W and U(hly) +L(gly)  = ~. Hence the best 
bounds for g(x) = max{0, x -  d} are determined in terms of the bounds on 
h(x) = min{x,d}: 

U(gly ) = ~ - L(hly ) 

and 

L(gly ) = ~ - U(hly ). 

Scarf and Bowers considered only the case that b = + ®. Lo [14] used Scarf's 
lower bound on min{d,X} to obtain the upper bound on max{0,X-d}, which 
he then applied to option pricing. We review option-pricing applications 
later. 

Figure 3 is a graph of U(gly) and L(giy) for a mean of ~ = 50, a standard 
deviation of o-= 30, and an upper bound of b = 100 as functions of the 
deductible d, varying from 0 to 100. In this example, g(x) = max {0, x -  d}. 
Because of the relations U(glY) = ~ -  L(hlY) and L(gly ) = 0 . -U(hly) ,  the 
excess of U(g[y) over L(g[y) is equal to U(hlY ) -L(h[y) ,  which we already 
illustrated in Figure 2. 
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4. BOUNDS ON INSURANCE POLICY VALUES 

In this section we consider applications to insurance in greater detail. 
Consider the problem of determining premiums after a change in deductible. 
The concepts are discussed in detail by Hogg and Klugman [10], which is 
summarized briefly as follows. The expected value of benefits paid under a 
policy is often referred to as the pure premium. Let p be the frequency of 
loss for the policy period. This means that the probability of an insured loss 
(of some size) occurring is p.  The random amount is X. We assume that its 
mean IX and variance o .2 are known and that O<X<_b with probability 1, 
where b is a given upper bound. The pure premium for a full coverage policy 
then is pE[X]. When the policy deductible of d>0  is introduced, then the 
benefit to the policyholder changes from X to g(X), where g(x)= max{0, 
x-d}. The new pure premium is pE[g(X)], the frequency times the new 
expected benefit. 2 The loss elimination ratio is 

EtX;d] e[h(a3] 

Ix E[X] ' 

where h(x)= min{d,x}. The excess pure premium ratio is the ratio of the 
pure premium with deductible d to the pure premium without the deductible. 
It is equal to E[g(X)]/E[X], and since g(x)=x-h(x), this reduces to 
1-E[X; d]/~. Propositions 3.1 and 3.2 apply to give bounds on loss elim- 
ination ratios and excess pure premiums. A graph of the resulting effect of 
upper and lower bounds on the loss elimination ratios is given in Figure 4. 

Figure 4 is a graph of the upper and lower bounds E[X;d]/IX for a mean 
of Ix = 50, a standard deviation of o- = 30, and an upper bound of b = 100 as 
functions of the deductible d, varying from 0 to 100. 

Figure 5 is a graph of the difference of the upper and lower bounds of 
E[X;d]/IX for a mean of Ix = 50, a standard deviation of or = 30, and an upper 
bound of b = 100 as functions of the deductible d, varying from 0 to 100. 

The methods used here can also be applied to determine bounds applicable 
to franchise deductibles and policies subject to a deductible and a maximum 
payment. The franchise deductible is described by Hogg and Klugman [10] 
as follows. A policy that specifies a franchise deductible of d pays nothing 
for losses X=x ifx<_d but pays the full loss X=x i fx>d .  In this case, we 

2The frequency of (non-zero) payments, but not loss occurrences, would change to pPr[X>d]. 
Best upper and lower bounds on Pr[X>d] subject to the moment constraints can be obtained by. 
applying the method recommended by Kemperman to the function h(x) = 1 forx>d and h(x) = 0 for 
0<_x<d. 
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define h(x)= 0 if 0<_x_<d and h(x)=x if d <x<_b. The Kemperman approach 
to bounding E[h(X)] applies; it does not require that h be continuous. 

Reinsurance contracts are the insurance policies that one company buys 
from another. The model we are using applies to these as well, of course. 
However, these contracts (as well as some contracts sold to individuals) 
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usually require a more complex definition of the function h than the simple 
deductible policy (to which Propositions 3.1 and 3.2) apply. The next level 
of complexity is a policy that specifies a maximum benefit. Proposition 4.1 
provides the bounds for such policies. 

Proposition 4.1: 

Let 

,or 

h(x) = for 

- d2 + d~ for 

O . < x  ~ dl 

d l  < - X  < d 2 

d 2 < _ x < b  

where O < - d l < - d 2 < - b  are given constants. Let X be a random variable with 
mean p, and variance 0-2>0 for which Pr[0_<X-<b]= 1. Then L(hly),  the 
best lower bound on E[h(X)], is a function of the two variables, defined on 
the triangle {(dl, d2)lO<dl<-d2<b}, and is described as follows: For values 
of d2 satisfying 0--<d2-< Ix - o~/(b - Ix), 

L(h~)  = IX - d2 + dl. 

For values of d2 satisfying I~ - 02/(b - Ix) <d2 -< Ix + 0"2/ix, 

L(hly) = bdt(bix - Ix2 _ 0.2) + d2(b - d2+ d~)(ix 2 + 0 2 - d2ix) 

bd (b - as) 

For values of d2 satisfying Ix + o'2/ix<d2<_b, 

dip. 2 ~ o a 
o ~ + ~2 for O ~ ; d l < ~  + 2-~ 

1[  J I~ o a ~ -  1~2-o a 
L(hIY) = ~ I~ + d, - ~/(1~ - d,) 2 + o 2 for ~ + ~  < d , <  2 (dz-  p,) 

. ( d 2 - . ) 2 + ( d , + . - d 2 ) o  ~ for ~ -  ~ 2 _ o . 2  < dt < d2. 
(d~ - ~)~ + o ~ 2(/~ - ~) 

Similarly, U(hly), the best upper bound on E[h(X)], is described as follows: 
For values of dl satisfying O<_d~<_bix- Ix2_ 0 2 / ( b -  Ix), 
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U(hly)  = 

(ix - d2 + dl)(ix -d l )  2 + Ixo "2 o.2 + IX2 _ d 2 
for d~ -< d2 

(ix-d~)2+o a 2(ix-d~) 

1[ ] ----<a2< d~+~ Ix-d2+~/(d2-ix)2+o "2 for ~+ix2-d~2 " b2-° '2-ix2 
2(IX -d~) 2(b - Ix) 

d~(b-p.)2+(b-d2+d~) o a b2-cr2_--ix2<,¢ <1. 
(b - IX)2 + o a for 2(b - IX) - " 2 - " "  

< d l < - -  

For values of  dl satisfying 

b ~  - 1,1, 2 - 0 r2  

b - ~ ,  

and values of  d~<d2<-b, we have 

1 ~ 2 + o  a 

UChly) = bCblx - 0 a - p2) + (b - d2 + dz)(~ 2 + 0 2 - d~p~) 

bCb - d~) 

For values of  d~ and d2 satisfying dl>-la,2+o2/i.t, and dl<_d2<_b, we have 
U(hly ) = ~ .  The proof is presented in the appendix. The bounds for both 
h(x) and g(x)  are quite a bit simpler in the limit as b tends to infinity. We 
restate this special case as a corollary. 

Corollary 4.1: 

Let 

{! h(x) = 1 for 

- d2 + da for 

O < x < _ d x  

dl <-x < d2 

d2 <_x <_ ®, 

where O<_dl<_d2 are given constants. Let X be a random variable with mean 
I~ and variance 0-2>0 for which Pr[X>-O] = 1, Then L(hly) ,  the best lower 
bound on E[h(X)], is a function of  the two variables, defined on the triangle 
{(dl, d2)lO<-dl<-d2< ®}, and is described as follows: For values of  d2 satis- 
fying O_<d2_< I~, 

L(hlY) = ~ - d2 + dl.  

For values of  d2 satisfying ~_<d2_< ~ + tr2/l~, 
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L ( h l y )  = Ozta 
d2" 

For values of d2 satisfying d2 _> I~ + oa/~, 

li I 
o" 2 + 0" 2 for 0 -< d l<  "~ + 2V, 

1 la. o .2 4 -  V , ' - o a  
L(hly) = ~ ~ + dl - X/(V. - dl) 2 + o a for T + ~ < d ~ <  2(d2- ~) 

~(d~ - ~)~ + (d, + V- - d2)o ~ d~ - ~ - 
( d , -  ix) 2 + 0 .2 for 2 ( d 2 -  la,) < d l - < d 2 .  

Similarly, U(h[y) ,  the best upper bound on E[h(X)], is described as follows: 
For values of dx satisfying 0_<dl< V,, 

{ ( ~  - as + d l ) ( ~  - d~) ~ + ~ ~ + ~ - d~ 
- ( ~  Z - ~ ) 2 + - ' - ~ -  - for d~ -< d2 < 2(~ - dr) 

U(hly ) = 

+ ~ [ ~ - d 2 + X / ( d 2  V. )2+~]for  ~+V'~-~<d2"2(v.-dl) 

For values of d~ satisfying d~>_ l~, U(hly)= v.. 
The analog of Proposition 4.1 for the function g (x )=x-h(x )  is established 

by subtracting the bounds of 4.1 from the expected value of X. The bounds 
on expected values are found by the relations U ( g J y ) = w - L ( h [ y )  and 
L ( g [ y )  = ~ -  U(h l y  ) and Proposition 4.1. 

5. BOUNDS ON OPTION PRICES 

An option is a contract that conveys the right to buy or sell specified 
property at a specified price for a specified time. The person who offers the 
contract for sale is called the writer, or seller. The other party is called the 
owner, or buyer. When the contract is made, the buyer pays for the right to 
buy or sell at a known price, which removes some risk in a future transaction. 
The seller is paid up front to accept the risk of having to buy or sell the 
asset later at a price that is above or below the market value. The owner of 
the option contract has the right to buy or sell the underlying asset but has 
no obligation to do so. 

In modern financial and commodity markets, exchanges arrange all the 
contracts. Traders deal only with the exchange (perhaps through brokers, 
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but we are ignoring them). The exchange assures that the terms of the 
contract will be met. For example, consider an option owner with the right 
to buy 100 shares of stock at a contract value of 20 dollars per share, at a 
time that the stock market price is 25 dollars per share. If the option is 
exercised, the exchange credits the owner's account with 100(25-20) = 
500 dollars (less commissions) and collects that amount from the other par- 
ty's account. The exchange stands behind the contract for the full exercise 
value even if the seller's account is short of the required $500. To avoid 
having to cover a trader's loss, the exchange requires cash margins, in this 
case, of the seller. 

For contracts that are settled in cash, the "assets or property" on which 
the options are written need not be concrete (for example, the American 
Stock Exchange offers options on the Major Market Index). However, all 
parties must agree on the market price of the asset. For example, the "asset" 
could be the value of a stock index, a futures price, or foreign currency. 
These values are published widely and cannot be controlled by any of the 
market participants. 

By valuing a contract we mean calculating the market value C(S, T,K) in 
terms of parameters of the contract, market price statistics of the asset on 
which the contract is written, and interest rates. Two widely used models 
are the binomial option-pricing model and the Black/Scholes option-pricing 
model. 

Each of the models applies to options on tangible assets as well as intan- 
gibles such as stock indexes, futures contracts, and other option contracts. 
The distinguishing feature of the models is the asset price distribution. The 
asset price movement in the binomial option-pricing model is assumed to 
be binomial. On the other hand, for the Black/Scfioles model the asset price 
is lognormally distributed. Although each model can be generalized to fit 
more realistic conditions, in their usual context the most important feature 
is constant interest rates. In this form they are applicable only to short-term 
contracts written on assets whose prices change even though interest rates 
do not. For example, the models are not applicable to pricing options on 
bonds. 

There are five elements that describe an option contract: 

a. The type of option--put or call. 
b. The underlying asset--the particular common stock, tract of land, or 

contract rights, which the owner of the option contract buys or sells if 
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the contract is exercised. We say the option is written on the underlying 
asset or contract. Sometimes this is called the spot asset. 

c. The expiration date of the option. 
d. The exercise (or striking) price. 
e. The rule describing the exercise--American or European. 

A call option is a contract that permits the holder to buy an asset during 
a specified time interval and for a specified price, and requires the seller of 
the option to sell. Sometimes the seller is called the writer, and selling an 
option is called writing an option. At the time the contract is written, both 
parties agree on the price at which the purchase can be made and the period 
within which the option can be exercised. A put option differs from a call 
option in that it allows the holder to sell an asset rather than purchase it. 

Option contracts are also described by the type of restriction placed on 
the time the contract may be exercised. A European option contract can be 
exercised only at the termination of the contract, that is, on its expiration 
date, whereas an American option can be exercised at any time up to and 
including the exercise date. The American option obviously offers the holder 
greater flexibility, which, apparently, makes its valuation more difficult. 
The American-style option is by far the more common throughout the world, 
but there are a few exchanges in which European options are traded. An 
example is the Philadelphia exchange, which offers both American- and 
European-style currency options. 

The underlying asset's market price is denoted by S. In option-pricing 
models, S is a random variable, usually with a specified distribution. In all 
cases, S_>0. In some cases, such as the binomial option-pricing model, S is 
bounded above as well. In general, the asset could be a stock, a bond, a 
stock index, a bond index, a foreign currency, or a commodity such as 
frozen pork bellies or gold. The contract price at which the owner has the 
right to exercise the contract is denoted by K. When S exceeds K, the owner 
of a call option can buy the asset for K under the terms of the contract and 
then sell it in the market for S, making a gain of S - K .  The right to do this, 
should such an opportunity occur, is what the owner purchased when the 
contract was written. The seller suffers a loss of S - K  when the contract is 
exercised in this way. Thus, the exercise value of a call option is g(S), where 
g(s) = max {0, s -K} .  

The Black/Scholes model [4], [8] results in the following formula for 
European call options. We present the version applicable to a European call 
Option on a stock that pays no dividends during the term of the option. The 
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risk-free annual, continuously compounded interest rate is denoted by r. In 
this model the stock price S satisfies a stochastic differential equation dS = 
IxSdt + ~Sdw, where ~ and 8 are constants and w(t) is a standard Brownian 
motion. Thus in this model option m~arket value is calculated as if the asset 
price is lognormally distributed with known mean and variance. The result- 
ing market value of a European call option that matures in T years is 
e-~rE[max{O,S(T)-K}]. See Merton [15] for a derivation based on Ito's 
formula. 

The Black/Scholes call option formula is" 

c ( s ,  T, K )  = S (z) - K e - ' * a , ( z  - 

where z = [log(S) + r T -  log(x) + o~T]/o'x~, S is the current price, r is the 
risk-free force of interest, T is the maturity of the option, K is the exercise 
price, and 0-2 is the volatility of the log-return (this means ~ T =  Var[log{S(T)/ 
S}]). • denotes the standard normal cumulative distribution function. 

The binomial option-pricing model also yields a formula for the option 
price of European call option of the form e-rrE{g[S(T)]}. In this model log 
[S(T)] is binomially distributed with known mean and variance. Such for- 
mulas (discounted expected values) for European options follow in very 
general circumstances. Follmer and Schweizer [9] discuss this in detail. In 
all these models, only one parameter, rather ihan both mean and variance, 
is needed because the valuation distribution specifies that the mean price at 
time T is the current price accumulated T years at the risk-free rate. The 
second moment of S(T) about Se "r is a parameter of the valuation distribu- 
tion. That is, the model assumptions allow us to assume that E[S(T)] = Se "r 
and hence we need only determine E[{S(T)- Se"r} 2] in order to apply Prop- 
osition 3.2. 

When S is less than K, the owner of a put option can buy the asset in the 
market for S and sell it to the option writer for K, making a gain of K -  S. 
Thus the exercise value isf(S), wheref(s) =max {0, K-s} .  Note that f(s) +s  - d  
is equal to 0 if O<_s<_K and is equal to s - K  if s>_K, that is, f ( s )+s -  K=g(s). 
As a result, European put option prices can be determined from European 
call option prices: Se-rrE{f [S(T)]} = Se-rrE{g[S(T)]} + S - e-rrK. This car- 
ries over to bounds on European prices as well. Thus whenever the model 
assumptions are sufficient to imply that the market value of an option, either 
put or call, is the discounted value, the expected payoff to the owner, Prop- 
osition 3.2, can be applied to determine optimal bounds on the option's 
price. 
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Propos i t ion  5.1:  

Suppose that the European call option is given by the formula: 

C(S, T ,K)  = e - r rE[max{O,S ( I )  - 1l}] 

where S is the current asset price, S(T) is the asset price when the option 
matures, K is the exercise price, and r the risk-free annual interest rate. Let 

V = E[IS(73 - Se~}~] 
S 2 

Then the best lower bound on C(S, T ,K)  is _C_C(S, T,K) given by 

VS 2 

-C(S,T, I O =  I I s - K e - ' r +  X / ( S - K e - ' r ) 2 +  S2Ve -~'r] 

VS + Se 2"r b 2 - S2e 2"r - S W  
when < K < 2e "r 2(b - Se "r) 

(b - K)S2VSe -rr b" - S2e z'r - S~V 
C(S,T,K) = (b - Se"r) 2 + S2V when 2(b - Se "r) < K < b. 

The lower bound on the corresponding put option is equal to C _ ( S , T , K ) - S  
+ K e  -rr, and the upper bound is equal to-C(S, T , K ) - S + K e  -rr. 

Many of the popular option-pricing formulas are discounted expected value 
formulas. As such, they must all give values between the bounds described 
above. This includes the Black/Scholes formula, the binomial formula, and 
the formula Merton [16] developed using a mixed diffusion-jump process. 
Just as Lo [14] did, we are using V for the variance of S(T)/S ,  rather than 
o a. The reason for this notation is that, in working with options, the symbol 
o a is often reserved for the volatility, which is defined to be the variance 

I S - Ke -rr 0 <- K < Se "r b - Se "-----------~ 

C(S, T, K) ~ S~e'r + e- ' r  _ SK Se, r VS 2 = _ V ~  _ ~ < K < S e  "r + VSe-rr 

( o Se "r + VSe -rr < K < b. 

The best upper bound on C(S, T,K) is C S, T,K), where 

-C(S,T,K) = VS + Se z'r - Ke "r V + e 2"r when 0 -< K <- VS 2e Se z'r 
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per unit time (that is, the variance per year) of the log-return on the under- 
lying asset; that is, o-2T = Var[log S(T)/S]. For a given model, we can de- 
termine the relation between o .2 and V explicitly. For example, in the Black/ 
Scholes setting, the asset price S(T) is lognormal. Hence, the random var- 
iable X=  log S(T)/S is normal, and its variance is o'2T; let IzT denote its 
mean. Then the moment-generating function of X is 

Mx(s) = exp(slzZ + s2o-ZT/2), 

and hence 

E[S(T)] = SE{exp[logS(T)/S]} = SE[e r] = SMx(1) = Sexp(~T + o-2TI2) 

and similarly 
E[S(T) 2] = S2Mx(2) = S2exp(2~Z + 2o-2T). 

Since the valuation distribution has the same mean as a risk-free investment, 
E[S(T)] = Se "r. This finally gives 

V = exp(21zT + 2o~T) - exp(2~T + o-2T) 

= exp(2[izT + tr2T/2]){exp(o-2T) - 1} 

= eZ'r{exp(o-ZT) - 1}. 

The relationship between o-2T and V must be considered when calculating 
the bounds (for which V is a parameter) and the data available include price 
volatilities (that is, 0-2). 

As an illustration, we present the graphs of Black/Scholes option prices 
and the corresponding bounds. Similar comparisons can be made of the other 
popular models that yield discounted expected value formulas such as the 
binomial and jump-diffusion models (see [8] for the formulas and discussions 
of these models). 

In Figure 6, the heavy lines are the graphs of C(S, T, x) and C(S, T, x) for 
r =  0.06, S =40, tr= 0.20 (and the corresponding V calculated as described 
above), T= 12 weeks = 12/52 years and exercise price x varying from 0 to 
60. The lighter line is the graph of C(S, T,x) given by the Black/Scholes 
formula: 

C(S, T, x) = S~(z) - x e - ' r e ; ( z  - o'X/--T) 

where z=[log(S)+rT-log(x)+o-2T]/oN/-T and • is the standard normal 
cumulative distribution function. 
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6. CONCLUSION 

The upper and lower bounds for expected values of insurance benefits and 
European option prices have been derived here by using methods presented 
by Kemperman [13]. The option price bounds generalize the results of Lo 
[14]. There are several other areas in which these techniques might be used, 
but the details have not been worked out. One interesting situation arises 
when the insurance contract is a function of two (or more) loss random 
variables. For example, a homeowner's policy covers both property losses 
and liability losses. The moment problem would yield bounds on the ex- 
pected value of h(X, I0, where X is the property loss and Y is the liability 
loss during a given policy period, and h(x,y) is the policyholder's benefit; 
the bound would be functions of the moments of the joint distribution of X 
and Y. The same sort of problem arises for health insurance policies that 
cover hospital room costs per day as well as costs of treatment. 
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APPENDIX 

Proof: From Kemperman's survey ([13, Condition 4.7 on page 36] for 
example), we know that L(hly)--E[hlF], where F is a distribution concen- 
trated on [0,b] with support contained in the contact set 

Z = ~r e [0, b]: q(x) = h(x)} 



256 TRANSACTIONS,  VOLUME XLIII 

for a polynomial q(x)  of degree two or less for which q(x)<_h(x) for all x e S .  
Using the following property of q repeatedly, one can determine the nature 
of the relevant contact polynomials and contact sets: If ~eZ is an interior 
point of [0,b] and h is differentiable at ~, then q'(~)= h'(~), since q touches 
but does not cross h at ~. Once the contact sets and polynomials are known, 
we use the fact that F is concentrated on the contact set in order to determine 
F in terms of the moments and parameters. We only give the contact poly- 
nomials and contact sets, not their derivation, and the resulting distributions. 
The contact sets that come into play, the corresponding contact polynomials, 
probability distributions, and resulting lower bounds arise as one of the 
following five cases: 

I . Z  = [d2, b ]  

q(x) = x - d 2 + d 1 

L(hLY) = ~ - d2 + dl  

I b ~  - ~ 2  _ 
for 0 -< d2 -< and 0 -< dl -< d2 

b - ~  

For Case I any distribution concentrated on Z will do for FL; the distribution 
for which the lower bound is assumed is not unique. 

II. Z = {0, d2, b} 

d l x ( b  - x )  (b - d2 + d l ) x ( x  - d2) 
q(x) = d2(b - d2) + b(b - d2) 

L(h[y) = b d l ( b ~  - o .2 - ~2) + (b - d2 + di)d2(~ 2 + o'2 - d21~) 

bd2(b - d2) 

- 1~2+o -2 
for b~ - 1,1, 2 0"2 ~ d 2 - - -  and 0 -< d~ -< d 2 

b - ~  i~ 

For Case II the distribution for which the lower bound is attained is unique. 
It is discrete and has the probability density function fL where 

b d 2 -  (b + d2) v, + W 2 + °'2 
h(O) = bd2 

bl~ - ~ L2 - -  0"2 

fL(d2) = (b - d )d 



BOUNDS ON EXPECTED VALUES 257 

0,2 + 02 - d 2 0 ,  
h ( b )  = 

(b - d2)b 

d 2 0 ,  _ 0,2 _ 0 2  
III. Z = {6, d2} where 6 = 

d 2 - v ,  

q ( x )  = x - h ( x  - 6) 2 where h = 

o2(d2  - -  d,) 
L ( h [ y )  = 0, - (d2 - 0,)2 + o-2 

d 2 - d 1 

(a~ - 6)2 

and 0 < 6 < dl 

for d2 - - 0,2 + 02.2 2 0,2 02.2 _< d~ < d2 and -< d2 -< b. 
2 ( , / 2 -  0,) 0, 

For Case III the distribution for which the lower bound is attained is unique. 
It is discrete and has the probability density function fL where 

( d 2 -  0,)2 and fL(d2) = 02.2 
fL(6) = (a2 - 0,)2 q.. 02.2 ( e  2 __ 0,)2 ..~ 0 2. 

IV. Z = {6, "1} where 6 = d l  - x/(dl - 0,)2 + 02 and "q = 2di - 

and0  < ~ < d l  < ~ < dz. 

1 
q ( x )  = d~ - h ( x  - ,q)2 where k = 

2(n - 6) 1[ ] 
L(hb,) = ~ [0, + a x -  X / ( a ,  - 0.) 2 + 02 

p2 + o.2 ~ _ p2 _ 02.2 0,2 + 0.2 
for < d: -< and < d2 -< b. 

20, 2(d2 - 0,) 0, 

For Case IV the distribution for which the lower bound is attained is unique. 
It is discrete and has the probability density function fL where 

1 ~ [  d ~ - 0 ,  ] 
fz(6) = ~ + ~/(d, - ~)~ + o'2 

and 

1 _1[" ] 
A('q) = 2 2LV( ,~  - ; , ) ;  + 0 2 J  
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IX2 + 0.2 
V. Z = {0,~l}where ~ = - -  and dl < "q < d2 

Ix 

dx 
q(x)  = dl  - X(x - .q)2 where h = - -  

rl 2 

1.12 + 0.2 IX2 + 0.2 
d l  IX2 for O < d l  < - -  and < d 2 -< b. 

L ( h ~ )  = [.I,2 ÷ 0.2 -- - 2IX IX 

For Case V the distribution for which the lower bound is attained is unique. 
It is discrete and has the probability density function fL where 

0.2 IX2 
fL(0) = IX2 + 0.2 and fL('q) = IX2 + 0.2 

The development of the upper bound U(h~,)  is similar. Again we present 
only an outline. 

I. Z = [0, d,] 

q(x)  = x 

I X 2 + 0 " 2  
U(h~,)  = IX for -< dl -< b and d~ _< d2 -< b 

Ix 

For Case I any distribution concentrated on Z will do for Fu;  the distribution 
for which the lower bound is assumed is not unique. 

II. Z = {13, all, b} 

d~x(b  - x )  (b - dE + d l ) x ( x  - d~) 
q(x) = + 

dl (b  - dx) b(b - dx) 

U(hL~) = b(bix  - o .2 - Ix2) + (b - d2 + d~)(ix 2 + o .2 dip,) 
b(b - d l )  

_ _ IX2+ 0.2 
for bix IX2 °2 < dx -< - -  and d 1 -< d 2 -< b. 

b - i x  Ix 

For Case II the distribution for which the lower bound is attained is unique. 
It is discrete and has the probability density function f u  where 

bdl  - (b + dl) ix  + IX2 ÷ 0.2 
fu(0) = bdl  
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b ~  - p ` 2 _  o.2 
f ~ d ~ )  = 

(b - d l )d l  

p`2 + cr 2 _ dip` 
f v (b )  = 

(b - d , )b  

III. Z = {d~, "q} where .q = p`2 + o a _ d l ~  and d 2 < "q < b 
p` - dl 

q(x) = x - d2 + d~ + h(x  - rl) 2 w h e r e h  = 

U(h[y) = I x -  
(p` - dl)2(d2 - d l )  

(p` - d~) 2 + tr 2 

for dl -< d2 -< ~2 + 02 _ d~ 1 
2(~ - d l )  

d2 u d l  
(xl - d l )  2 

and 0 -< dl -< 
bp` - p`2 _ 

b - p .  

For Case III the distribution for which the lower bound is attained is unique. 
It is discrete and has the probability density function fu  where 

o a (dl - p`)2 
f v (d l )  = (ds - p,)2 + o2 and fo(rl) = (d~ - p`)2 + 0 ~ 

IV. Z = {6, "q} where ~ = d2 - ~ / ( d 2  - p`)2 + 0 a 

a n d r  I = 2d 2 -  ~ a n d d l  < /~ < d2 < ' q  < b 

1 
q(x) = dl + k(x - 6) 2 where k = 

2(,q - 6)  

1[  Ix ] U ( h b , )  = + - d2 + V(d  - + 

p`2 + o.2 + d~ b 2 _  ~ 2 _  o.2 bp` - p `2_  0 a 
for < d2 < and 0 < d~ < 

2(1~ - d ~ )  2(b - p`) b - p` 

For Case IV the distribution for which the lower bound is attained is unqiue. 
It is discrete and has the probability density function f v  where 

f v ( { )  = ~ + V ( d 2  - ~ ) ~  + ¢r 2 
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and 

1 1[ ] 
fu(rl) = 2 2 L k / ( d  2 - -  ~)2-  + 0 ~ 

b l ~ -  ~ 2 _  o-2 
V . Z  = {6, b}where~ = b - ~ anddl  < ~ < dE 

b - d 2 
q(x) = dl + h(x - 0 2 where k = 

(b  - 0 2 

V(h~)  = d~(b - I J,) 2 + (b - d2 + dl)o 2 
(b - I~) 2 + 0 .2 

b 2 - 1.1, 2 - 0 .2 b~z - -  ~L 2 - -  0 .2 

for _< d 2 -< b and 0 -< dt -< 
2(b - I~) b - p~ 

For Case V the distribution for which the upper bound is attained is unique. 
It is discrete and has the probability density function fu where 

(b - 

f v ( O  = b 2 _ i j 2  _ o.2 

and 

(b - I~) 2 
fz(b) = 1 - b 2 _  ~ 2 _  

For the function g(x) = x - h ( x ) ,  best upper and lower bounds are obtained 
directly from Proposition 4.1. L(g[y)= ~ -  U(h[y) and U ( g ~ ) =  I~-  L(h~) .  
This completes the proof of Proposition 4.1. 


