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T he purpose of this article is to provide 
a high level summary of the paper 
“Variance of the CTE Estimator” by 

B. John Manistre and Geoffrey H. Hancock 
that appeared in the North American Actuarial 
Journal in 2005. We also expand on some of 
the results.

An actuary who is responsible for estimating 
reserves and capital using stochastic methods 
must deal with a wide range of issues.  Not only 
must the actuary worry about the underlying 
stochastic model, it’s parameterization, data, 
assumptions and calculation formulae but he/
she now has (or should have) the new issue of 
trying to quantify the precision of the estimated 
risk measure.  

The Value-at-Risk (VaR) estimator (i.e., per-
centile or quantile value) is still often used 
as a risk measure.  However, the Conditional 
Tail Expectation (CTE, also called Expected 
Shortfall or Tail-VaR) is becoming increasingly 
prevalent due to its desirable properties and 
ease of interpretation.  A tool that can quantify 
the statistical precision of an estimated CTE is 
therefore important.  That is, the sampling error 
in the estimate can be placed in perspective 
with other modeling issues, including param-
eter, model and assumption risk.

If all we were interested in was a regular mean 
then we would know what to do.  We draw a 
sample 

 
                                  of size n from our model 

and calculate the sample average

Statistical theory tells us three things

1.  The sample average is an unbiased estimator 
i.e.,                   the true mean. We expect to get 
the right answer.

2.  The variance of the sample average is   
                    is the true variance.

3.  If the sample size is large enough, and a few 
other technical conditions are satisfied, the 
estimator       has an approximate normal dis-
tribution.

The distribution’s variance can be esti-
mated from      and the actuary 
would then report the result of the work as                    
             giving any potential user a sense of how 
large the sampling error (i.e., statistical uncer-
tainty) might be.  Users can then judge whether 
this is large or small relative to other model sen-
sitivities, such as a change in lapse assumptions 
for example, and react appropriately. In par-
ticular, users can judge whether the precision 
of the estimate is high enough for the intended 
application.

How does this process change when we start 
estimating Conditional Tail Expectations?

First, the bad news. There is no general set 
of formulas that are guaranteed to work in all 
circumstances. The distribution of a CTE es-
timator depends on a wide range of variables 
such as sample size, the actual distribution 
you are sampling from and the method of  
estimation itself.

Now, the (really) good news. 

1.  If the sample size being used is large enough, 
then there are approximate formulas analo-
gous to those that apply for an ordinary mean.  
It is therefore possible to quantify the statisti-
cal precision of an estimated CTE.

2.  There is a practical process, called a “vari-
ance verification” exercise in this article, 
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that one can execute to test (and confirm) the 
validity of the approximate formulas for any 
particular application. An example is given 
at the end this article.

3.  Some standard variance reduction tools such 
as importance sampling and control variate 
methods can be adapted to the CTE problem 
to improve, sometimes dramatically, the 
precision of a CTE estimator for a given com-
putational cost.  These techniques will be the 
topic of a second article on CTE variance.  

So what are the approximate formulas?  First, 
we need some notation. Suppose we want to 
estimate the Conditional Tail Expectation of a 
random variable X, with cumulative distribu-
tion                         Thus, we 
want to calculate the conditional expectation 

where                                                     defined as the small-
est value satisfying

 

The            is often called Value-at-Risk 
(VaR) and is used extensively in the financial 
management of trading risk over a fixed (usually 
short) time horizon.

The standard approach to this problem is to  
start with a random sample        of size n  
from the model and then sort the sample in 
descending order to obtain the order statistics 
        We can then calculate the 
plug-in estimators for the required parameters 
by looking at the observed empirical distribu-
tion.                                                            so that practical expressions  

for the plug-in estimators are 
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Practical experience suggests the bias is usually much smaller than the sampling error. 
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The notation refers to the probability density of the random variable X at the 
point x = VaR. 
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Several comments are in order 

CTE is clearly easier to work with than VaR. If we were using VaR as a risk measure then 
we would have to find a way to estimate the probability density  in order to 
apply the asymptotic formula.  This can be very difficult in practice, especially in the tails 
of the distribution. 

)(VaRf X

The VaR and CTE estimators are positively correlated. This makes intuitive sense. 

The variance of the CTE estimator has two terms.  The first term is the “obvious” 
extension of what was happening in the first ( 0 ) case.  The origin of the second term 
can be seen by conditioning on the observation of the estimated .  We can then write  RaV ˆ
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Intuitively, we can say that when we estimate the CTE we are estimating both the CTE
and the VaR and uncertainty in the VaR estimate increases the uncertainty of the CTE 
estimate.  This is the origin of the second term. 

Simple Example – The European Put 

One way to test the formulas presented above is to pick an example that is simple enough that we 
can get closed form expressions for all the relevant risk measures.  We can then perform 
simulations on the model to see how well the variance estimators perform.  In the formal paper 
we chose the example of an “in-the-money” European Put option1 at the 95.0  confidence 
level.  Here is an edited excerpt from the paper. 
                                                          
1 A European put option gives the holder the right to sell the underlying asset on the maturity date for the specified 

strike price. 
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Several comments are in order 

CTE is clearly easier to work with than VaR. If we were using VaR as a risk measure then 
we would have to find a way to estimate the probability density  in order to 
apply the asymptotic formula.  This can be very difficult in practice, especially in the tails 
of the distribution. 
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The VaR and CTE estimators are positively correlated. This makes intuitive sense. 

The variance of the CTE estimator has two terms.  The first term is the “obvious” 
extension of what was happening in the first ( 0 ) case.  The origin of the second term 
can be seen by conditioning on the observation of the estimated .  We can then write  RaV ˆ
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Intuitively, we can say that when we estimate the CTE we are estimating both the CTE
and the VaR and uncertainty in the VaR estimate increases the uncertainty of the CTE 
estimate.  This is the origin of the second term. 

Simple Example – The European Put 

One way to test the formulas presented above is to pick an example that is simple enough that we 
can get closed form expressions for all the relevant risk measures.  We can then perform 
simulations on the model to see how well the variance estimators perform.  In the formal paper 
we chose the example of an “in-the-money” European Put option1 at the 95.0  confidence 
level.  Here is an edited excerpt from the paper. 
                                                          
1 A European put option gives the holder the right to sell the underlying asset on the maturity date for the specified 

strike price. 
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Table 1 shows the results of two trials (first and last) and also the results of repeating the entire 
simulation 1000 times.  The table also shows the exact values of the CTE and VaR for this 
problem, which can be calculated from closed form expressions that are given in the paper. 
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repeated, but with a sample size of 1000n  there is considerable variability, especially for 
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The CTE plug-in estimator is biased below the true closed form value of 13.80 (i.e., average 

The asymptotic variance formula for the CTE estimator performs quite well on average (i.e., 

ETC ˆ  is 13.70). However the bias is much smaller than the sampling error. 

average ETCFSE ˆ empirical standard deviation of ETC ˆ ).

The VaR plug-in estimator is biased high (average is 4.50), but again the bias is much smaller 

ators is 2.37, which is higher (lower) than 

A number of more realistic examples are documented in the paper using the same methodology 

 More Practical Example – Variance Verification 

uppose you have a model that takes all night to run n = 1,000 scenarios. It would be impractical 

 more practical process for confirming the asymptotic variance formula, which we call 
Variance Verification, is as follows: 

than the sampling error. 

The sample covariance for all 1000 pairs of estim
the estimated covariance from the first (last) trials, but close to the mean of all covariance 
estimators.  

as described above.  In each case the asymptotic theory worked as expected.  The examples were 
chosen to test a wide range of possible behaviours and practical problems facing insurers. 
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Variance of the CTE Estimator

Monte carlo Simulation without Variance Reduction cTE(95%) for a 10-year 
European Put option (1000 Trials), X=$110, S=$100

Now, the (really) good news.

1.
ean.  It is therefore possible to quantify 

the statistical precision of an estimated CTE.

2.
te formulas for any 

particular application. An example is given at the end this article. 

3. te

ational cost.  These techniques will be 
the topic of a second article on CTE variance.

estimate the Cond ibution 
r xFxX  at the level Thus, we want to calculate the conditional expectation  

If the sample size being used is large enough, then there are approximate formulas 
analogous to those that apply for an ordinary m

There is a practical process, called a “variance verification” exercise in this article, that
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Some key takeaways from this table are:

•  Any given trial provides a reasonable es-
timate of what would happen if the simu-
lation were repeated, but with a sample                                                               
size                                  there is considerable vari-
ability, especially for 

•  The CTE plug-in estimator is biased below 
the true closed form value of 13.80 (i.e., aver-
age  
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13.80 n/a 4.39 n/a 2.37 n/aClosed Form 

First Trial 13.67 1 1.40 0.49%.54 5.09 1.65

Last Trial 14.93 1.95 3.33 3.07 4.91 0.22%

Minimum 7.72 1.01 0 0.19 0.22 0.09%

Average 13.70 1.63 4.50 1.91 2.42 0.40%

M 13.05aximum 18.89 2.27 9.17 7.31 3.65%

Std Deviation 1.63 0.18 1.76 0.77 1.06 0.19%
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The CTE plug-in estimator is biased below the true closed form value of 13.80 (i.e., average 

The asymptotic variance formula for the CTE estimator performs quite well on average (i.e., 

ETC ˆ  is 13.70). However the bias is much smaller than the sampling error. 

average ETCFSE ˆ empirical standard deviation of ETC ˆ ).

The VaR plug-in estimator is biased high (average is 4.50), but again the bias is much smaller 

ators is 2.37, which is higher (lower) than 

A number of more realistic examples are documented in the paper using the same methodology 

 More Practical Example – Variance Verification 

uppose you have a model that takes all night to run n = 1,000 scenarios. It would be impractical 

 more practical process for confirming the asymptotic variance formula, which we call 
Variance Verification, is as follows: 

than the sampling error. 

The sample covariance for all 1000 pairs of estim
the estimated covariance from the first (last) trials, but close to the mean of all covariance 
estimators.  

as described above.  In each case the asymptotic theory worked as expected.  The examples were 
chosen to test a wide range of possible behaviours and practical problems facing insurers. 

A

S
to repeat the run process hundreds of time in order to test the validity of the variance formulas as 
described above. 
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scenarios. It would be impractical 
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the variance formulas as described 
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check to see whether our best answer CTE

N
 

lies in the approximate 95% confidence 
interval CTE+2xFSE. If it does we set the 
CI (Confidence Interval) count to 1 and 0 
otherwise.

4.  Use the standard deviation of the CTE esti-
mates from Step 3 to check the validity of the 
asymptotic formula. As we will see shortly a 
simple adjustment needs to be made to this 
number before comparing it to the formula 
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The table below shows the results of applying 
the above process to an inforce portfolio of U.S. 
variable annuities with GMDB, GMAB and 
GMWB features. The book is slightly out of the 
money. 5000 real world (P measure) scenarios  
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Variance of the CTE Estimator
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1. As part of model development, or in an off peak time, generate (once) a larger sample of 
say N = 5,000 scenarios.  Let CTEN  be the estimated CTE based on this large sample and 

2. s of size n=1,000
without replacement.  

3. amples calculate a CTE estimate and an FSE estimate.  Also 
check to see whether our best answer CTEN lies in the approximate 95% confidence 

 0 

4. dard deviation of the CTE estimates from Step 3 to check the validity of the 
asymptotic formula.  As we will see shortly a simple adjustment needs to be made to this 

The tab ss to an inforce portfolio of U.S.
ariable annuities with GMDB, GMAB and GMWB features.   The book is slightly out of the 

t

hat
TE(75) of the net (PV claims – PV fees) is zero.    The example itself is for CTE(90).

FSEN the formula standard error for a given confidence level .

From the large sample of size N, draw m=100 random sub-sample

For each of the m sub-s

interval FSECTE 2 .  If it does we set the CI (Confidence Interval) count to 1 and
otherwise.

Use the stan

number before comparing it to the formula estimates. 

le below shows the results of applying the above proce
v
money.  5000 real world (P measure) scenarios were generated and for each scenario the presen
value of guarantee benefits (claims) less the present value of related fees was captured.  

The claims have been normalized so the mean CTE(0) is 1,000. The fees were scaled so t
C

Table 2: Variance Verification  

90% N = 5,000 Samples
CTE N = 2214 FSE N = 159

m = 100 Random Sub Samples of Size n = 1,000

CTE FSE CI Count
Mean 2,111          346             94%
First 2,004          355             1
Last 2,242          353             1
Min 1,558          262             0
Max 3,120          376             0
Std Dev'n 316             30               2%

Adjusted Std Dev'n 354             =Std Dev'n/ (1-n/N)^1/2

The first thing we note is that if the FSE based on the sample of size 5,000 is correct then we 
xpect an FSE of about 3555159e  when dealing with a sample size of 1,000.  The FSE

0 sub-samples is a biased estimate of the sampling error and 
 is not hard to understand why.  The various sub-samples (each of size n=1,000) were all drawn 

estimates are clearly consistent with this, but the standard deviation of 316 (of the 100 CTE
estimates) is not.  One possible explanation for this discrepancy is sampling error, but more 
testing shows this is not the case.   

The standard deviation of the m=10
it

6
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from the same universe of N=5,000 so they are not independent.  Because the various CTE
estimates are using some of the same data they are positively correlated and so the set of 
estimates is more tightly clustered than if they were truly independent.  This intuitive result 
very easy to understand as n N .

It is possible to use the meth  o

is

ods in ur paper2 to show that, in the large sample limit, the 
orrelation of two sub-sample estimates is just Nn / .c    A better estimate for the sampling 

error when using a sample size of 1,000 is therefore not 316, but3 316 316 354
1000n

 .

this model.  That is, the asymptotic variance of the CTE Estimator agrees with “experiment”, 
after adjusting for the non-independence of the sub-samples.   

The CI Count result is also consistent with the idea that the form

1 1
5000N

Our variance verification test is therefore to compare the empirical error estimate 354 with the 
mean formula estimate 346 .  We conclude that the asymptotic theory appears to be working for 

ula standard errors are working. 
he actual count of 94 is very close to expected value of 95 (i.e., a 95% confidence interval). 

e mean of the 100 sub-sample estimates is 2,111, with an apparent precision of 

T

Finally, it might appear from Table 2 that there is evidence of material small sample bias since
th

32100/316 ,  which is much less than the value 2,214 obtained from the sample of size 
5,000.  However, this analysis is misleading, again due to the non-independence o

When sam

f the sub-
samples. 

ples are positively correlated the variance of the sample mean is larger 
]/)1([)( 2 mxVAR   than it would otherwise be.  A better estimate for the precision of 

the 2,111 number is then 158100/)
5000
10001(

5000
1000   which is not materially different 

from the sampling error in e is some evidence of small sample

sampling error.  This is usually the case. 

After going through a variance verificatio

346

 the 2,214 value.  Thus, while ther
bias in that 2,111 < 2,214, there is not enough data here to quantify it.  The bias is lost in the 

n exercise a few times a practicing actuary will know 
hether the asymptotic formulas described here are working for his/her particular situation. 

onclusions

 experience, so far, we have yet to see a practical situation where the theory 
utlined here fails in a material way.  Hence, we believe that practitioners can use the asymptotic 

                                                          

w

C

In the authors’
o

2 This result is not in the original paper. 
3 If we have m identically distributed, but correlated, samples from a distribution with finite 

mean and variance  then2 )1(]
1
)([ 2

2

i

i

m
xxE where is the correlation between 

samples.  
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 continued on page 42

were generated and for each scenario the pres-
ent value of guarantee benefits (claims) less the 
present value of related fees was captured. 

The claims have been normalized so the mean 
CTE(0) is 1,000. The fees were scaled so that 
CTE(75) of the net (PV claims – PV fees) is zero.    
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After going through a variance verification ex-
ercise a few times a practicing actuary will know 
whether the asymptotic formulas described here 
are working for his/her particular situation.

Conclusions

In the authors’ experience, so far, we have yet 
to see a practical situation where the theory 
outlined here fails in a material way.  Hence, we 
believe that practitioners can use the asymp-
totic formulas presented here to understand the 
sampling error in a given CTE estimate.  A prac-
titioner can go through a variance verification 
exercise if they want to prove to themselves, or 
others, that the asymptotic formulas are working 
in their particular situation.

Finally, we note that if a practitioner were 
using this tool then, on the basis of the first run 
of 1,000 scenarios, they would report a CTE 
estimate of 2,004+355. Is a relative sampling 
error of roughly  
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cceptable error then what are the alternatives?   One option is to increase the 
umber of scenarios.  If we increase the number of scenarios by a factor of  then the sampling 

of roughly %18004,2/355  acceptable?  The answer to that question depends on the 
circumstances.   

If 18% is not an a
n K
error scales by a factor of K/1 .  Cutting the sampling error by a factor of 4 would require us 
run 16,000 scenarios. 

If simply increasing th

to

e run size is impractical then there are other tools that can be used to 
prove the precision of the CTE estimator without significantly increasing the computational im

cost. That will be the subject of our next article.    
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