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he purpose of this article is to provide
a high level summary of the paper
“Variance of the CTE Estimator” by
B. John Manistre and Geoffrey H. Hancock
that appeared in the North American Actuarial

Journal in 2005. We also expand on some of
the results.

An actuary who is responsible for estimating
reserves and capital using stochastic methods
must deal with a wide range of issues. Not only
must the actuary worry about the underlying
stochastic model, it’s parameterization, data,
assumptions and calculation formulae but he/
she now has (or should have) the new issue of
trying to quantify the precision of the estimated

risk measure.

The Value-at-Risk (VaR) estimator (i.e., per-
centile or quantile value) is still often used
as a risk measure. However, the Conditional
Tail Expectation (CTE, also called Expected
Shortfall or Tail-VaR) is becoming increasingly
prevalent due to its desirable properties and
ease of interpretation. A tool that can quantify
the statistical precision of an estimated CTE is
therefore important. That is, the sampling error
in the estimate can be placed in perspective
with other modeling issues, including param-

eter, model and assumption risk.

If all we were interested in was a regular mean
then we would know what to do. We draw a
sample (x1 3 Xy geen X, ) of size n from our model

and calculate the sample average » _ |
p 8 =~ Zx,. .
n-;
Statistical theory tells us three things
1. The sample average is an unbiased estimator

i.e., E[i] = u the true mean. We expect to get

the right answer.

2. The variance of the sample average is

VAR[ 1] = 6* / nwhere o is the true variance.

3.1If the sample size is large enough, and a few
other technical conditions are satisfied, the
estimator £ has an approximate normal dis-

tribution.

The distribution’s variance can be esti-
N 1 N

mated from &*=——3(x -4’ and the actuary

would then report the result of the work as

Z giving any potential user a sense of how
n

at
large the sampling error (i.e., statistical uncer-
tainty) might be. Users can then judge whether
this is large or small relative to other model sen-
sitivities, such as a change in lapse assumptions
for example, and react appropriately. In par-
ticular, users can judge whether the precision
of the estimate is high enough for the intended

application.

How does this process change when we start
estimating Conditional Tail Expectations?

First, the bad news. There is no general set
of formulas that are guaranteed to work in all
circumstances. The distribution of a CTE es-
timator depends on a wide range of variables
such as sample size, the actual distribution
you are sampling from and the method of
estimation itself.

Now, the (really) good news.

1. If the sample size being used is large enough,
then there are approximate formulas analo-
gous to those that apply for an ordinary mean.
Itis therefore possible to quantify the statisti-
cal precision of an estimated CTE.

2. There is a practical process, called a “vari-

ance verification” exercise in this article,

continued on page 38
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that one can execute to test (and confirm) the
validity of the approximate formulas for any
particular application. An example is given

at the end this article.

3. Some standard variance reduction tools such
as importance sampling and control variate
methods can be adapted to the CTE problem
to improve, sometimes dramatically, the
precision of a CTE estimator for a given com-
putational cost. These techniques will be the

topic of asecond article on CTE variance.

So what are the approximate formulas? First,
we need some notation. Suppose we want to
estimate the Conditional Tail Expectation of a
random variable X, with cumulative distribu-
tion Pr{X <x}=F(x) atthe level . Thus,we

want to calculate the conditional expectation
CTE(a)=E[X | X >q,]

where g, is the a-quantile, defined as the small-

estvalue satisfying

Pr{X >q, }=1-a

The a-quantile, is often called Value-at-Risk
(VaR) and is used extensively in the financial
management of trading risk over afixed (usually

short) time horizon.

The standard approach to this problem is to
start with arandom sample (x,,x,,...,x, ) of size n
from the model and then sort the sample in
descending order to obtain the order statistics
(x(l) 2 X 22 X, )- We can then calculate the
plug-in estimators for the required parameters
by looking at the observed empirical distribu-
tion. Let a =1 75 sothat practical expressions

for the plug-in estimators are

. 1 &
CTEn(a): %ZX(,‘)’
i=1

VaRr, (a) =X

In terms of this notation statistical theory has

the following three things to say

1. If the sample size is large enough, and a few
other very technical conditions hold, then
the pair (CTE,,VaR,) has an approximate

multivariate normal distribution.

2.The estimator pair is asymptotically unbi-
ased. For any finite sample size the CTE
plug-in estimator is negatively biased i.e.
E[CTE]<CTE,but the bias goes to
0 as n—>o0. Practical experience sug-
gests the bias is usually much smaller than

the sampling error.

3. The following approximate variance/covari-

ance formulas are also asymptotically valid

VAR(CTE,) ~

VAR(X | X 2VaR) + a(CTE —VaR)*

n(l-a)
_al-a)
nlfy(VaR)]*’
a(CTE —VaR)
nfy(VaR) '

VAR(VR,) ~

CoV(CTE,,VaR,) ~

The notation fx (VaR) refers to the probability
density [ (%) of the random variable X at the
point x = VaR.

Several comments are in order

e CTEis clearly easier to work with than VaR. If
we were using VaR as a risk measure then we
would have to find a way to estimate the prob-
ability density f, (VaR) in order to apply the
asymptotic formula. This canbe very difficult
in practice, especially in the tails of the dis-

tribution.

® The VaR and CTE estimators are positively
correlated. This makes intuitive sense.

¢ The variance of the CTE estimator has two
terms. The first term is the “obvious” exten-
sion of what was happening in the first (= 0)
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case. The origin of the second term can be
seen by conditioning on the observation of
the estimated VaR. We can then write

VAR[CTE,| = E{VAR[CTE, | V4R, 1} + VAR{E[CTE, |VéR,1}.

Intuitively, we can say that when we estimate
the CTE we are estimating both the CTE and
the VaR and uncertainty in the VaR estimate
increases the uncertainty of the CTE estimate.

This is the origin of the second term.

Simple Example—
The European Put

One way to test the formulas presented above
is to pick an example that is simple enough that
we can get closed form expressions for all the
relevant risk measures. We can then perform
simulations on the model to see how well the
variance estimators perform. In the formal
paper we chose the example of an “in-the-
money” European Put option' at the & = 0.95
confidence level. Here is an edited excerpt from

the paper.

To be more specific, assume the option matures
in T'=10 years with a strike price of X =110.
The current stock price is S = 100 and as-
sumed to follow alog normal return process with
4 =8% and o =15%. Thatis, the stock price at
maturity is given by:

S(T)=§ - elroT2]

where Z is a standard Normal variate with mean

zero and unit variance.

Using a continuous discount rate of § = 6%, the
random variable whose CTE we wish to calcu-
late is then the present value payoff function:

C=e"’". max[o, X - §-eliroi7)

Using spreadsheet software, we can generate
n = 1000 samples of this variable. From this
sample, we can calculate the plug-in estima-
tors for the CTE and VaR using the formulas
developed earlier. To estimate the probability
density f(VaR) use the estimator:

i d
E N a)-F (a-¢&)

with &= 1.

We can then calculate the Formula Standard
Error (FSE) of each estimator as

F(VaR) =

FSE(CTE) = pTI
FSE(VaR) = ——. “'(1_"‘),
f(VaR) n
X a-(CTE-X,,,)
Cov(CTE,VaR) = ————®~°
n- f(VaR)

Table 1 shows the results of two trials (first and
last) and also the results of repeating the entire
simulation 1000 times. The table also shows the
exact values of the CTE and VaR for this prob-
lem, which can be calculated from closed form

expressions that are given in the paper.

Table 1:

\/ VAR(X 0o X )+ @ (CTE = X )’

s
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Monte Carlo Simulation without Variance Reduction CTE(95%) for a 10-year
European Put Option (1000 Trials), X=$110,5=$100

CTE©sW) | FSE(CTE) | wvar | FSE(WVAR) | CoWCTE,VaR) | j(vak)

Closed Form 13.80 n/a 4.39 n/a 2.37 n/a
First Trial 13.67 1.54 5.09 1.40 1.65 0.49%
Last Trial 14.93 1.95 3.33 3.07 4.91 0.22%
Minimum 772 101 0 0.19 0.22 0.09%
Average | 13.70 163 4.50 191 242 0.40%
Maximum 18.89 2.27 9.17 7.31 13.05 3.65%
Std Deviation 163 0.18 176 0.77 106 0.19%

continued on page 40

'A European put option gives the holder the right to sell the underlying asset on the maturity date for the specified strike price.
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Some key takeaways from this table are:

® Any given trial provides a reasonable es-
timate of what would happen if the simu-
lation were repeated, but with a sample
size of n=1000 there is considerable vari-
ability, especially for VaR.

The CTE plug-in estimator is biased below
the true closed form value of 13.80 (i.e., aver-
age CTE is 13.70). However the bias is much
smaller than the sampling error.

The asymptotic variance formula for the CTE
estimator performs quite well on average (i.e.,
average FSE(CfE) = empirical standard
deviation of CTE ).

The VaR plug-in estimator is biased high

(average is 4.50), but again the bias is much

smaller than the sampling error.

The sample covariance forall 1000 pairs of es-
timators is 2.37, which is higher (lower) than
the estimated covariance from the first (last)
trials, but close to the mean of all covariance

estimators.

A number of more realistic examples are docu-
mented in the paper using the same method-
ology as described above. In each case the
asymptotic theory worked as expected. The
examples were chosen to test a wide range of
possible behaviours and practical problems

facing insurers.

A More Practical Example—

A more practical process for confirming the
asymptotic variance formula, which we call

Variance Verification, is as follows:

1. As part of model development, or in an off
peak time, generate (once) a larger sample of
say N =5,000scenarios. Let CTE, be the es-
timated CTE based on this large sample and
FSE the formula standard error for a given
confidence level o..

2. From the large sample of size N, draw m=100
random sub-samples of size n=1,000 without
replacement.

3.For each of the m sub-samples calculate a
CTE estimate and an FSE estimate. Also
check to see whether our best answer CTE
lies in the approximate 95% confidence
interval CTE+2xFSE. If it does we set the
CI (Confidence Interval) count to 1 and 0
otherwise.

4. Use the standard deviation of the CTE esti-
mates from Step 3 to check the validity of the
asymptotic formula. As we will see shortly a
simple adjustment needs to be made to this
number before comparing it to the formula

estimates.

The table below shows the results of applying
the above process to an inforce portfolio of U.S.
variable annuities with GMDB, GMAB and
GMWAB features. The book is slightly out of the

money. 5000 real world (P measure) scenarios

Variance Verification
Table 2: Variance Verification

Suppose you have a model that

takes all night to run n = 1,000 a= 90% N =5,000 Samples

scenarios. It would be impractical CTEy = 2214 FSEy = 159

to repeat the run process hundreds m =100 Random Sub Samples of Size n = 1,000

of time in order to test the validity of

the variance formulas as described CTE FSE | CT Count
Mean 2,111 346 94%

above. First 2,004 355 1
Last 2,242 353 1
Min 1,558 262 0
Max 3,120 376 0
Std Dev'n 316 30 2%

Adjusted Std Dev'n 354 =Std Dev'n/ (1-n/N)"1/2




were generated and for each scenario the pres-
ent value of guarantee benefits (claims) less the
present value of related fees was captured.

The claims have been normalized so the mean
CTE(0) is 1,000. The fees were scaled so that
CTE(75) of the net (PV claims — PV fees) is zero.
The example itself is for CTE(90).

The first thing we note is that if the F'SE based
on the sample of size 5,0001s correct then we ex-
pectan FSE of about 1594/5 ~ 355 when dealing
with a sample size of 1,000. The F'SE estimates
are clearly consistent with this, but the standard
deviation of 316 (of the 100 CTE estimates) is
not. One possible explanation for this discrep-
ancy is sampling error, but more testing shows

this is not the case.

The standard deviation of the m=100 sub-sam-
ples is a biased estimate of the sampling error
and it is not hard to understand why. The vari-
ous sub-samples (each of size n=1,000) were all
drawn from the same universe of N=5,000 so
they are not independent. Because the various
CTE estimates are using some of the same data
they are positively correlated and so the set of
estimates is more tightly clustered than if they
were truly independent. This intuitive result is

very easy to understand as n — N.

It is possible to use the methods in our paper?
to show that, in the large sample limit, the
correlation of two sub-sample estimates is
just o =n/N . A better estimate for the sam-
pling error when using a sample size of 1,000 is
therefore not 316, but?

316 316

— ~

\/l_n _\/1_1000 )
N 5000

Our variance verification test is therefore to
compare the empirical error estimate 354 with
the mean formula estimate 346. We conclude
thatthe asymptotic theory appears to be working
for this model. That is, the asymptotic variance
of the CTE Estimator agrees with “experiment,”
after adjusting for the non-independence of the

sub-samples.

The CI Count result is also consistent with
the idea that the formula standard errors are
working. The actual count of 94 is very close
to expected value of 95 (i.e., a 95% confidence

interval).

Finally, it might appear from Table 2 that
there is evidence of material small sample
bias since the mean of the 100 sub-sample
estimates is 2,111, with an apparent precision
of 316/\/@ ~ 32 ,which is much less than
the value 2,214 obtained from the sample of
size 5,000. However, this analysis is mislead-
ing, again due to the non-independence of the

sub-samples.

When samples are positively correlated
the variance of the sample mean is larger
VAR(X) = c’[p+(1—p)/m] than it would
otherwise be. A better estimate for the

precision of the 2,111 number is then

346 w+(l—w)/100 ~158

5000 5000
which is not materially different from the sam-
plingerrorinthe 2,214 value. Thus, while there
is some evidence of small sample bias in that
2,111 < 2,214, there is not enough data here to
quantify it. The bias is lost in the sampling error.
This is usually the case.

continued on page 42

“This result is not in the original paper.

°If we have m identically distributed, but correlated, samples from a distribution with finite mean and variance o then
E[ZM] =c*(1-p) where p is the correlation between samples.
— m-—1
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After going through a variance verification ex- If simply increasing the run size is impractical
ercise afewtimesapracticingactuarywillknow  then there are other tools that can be used to im-
whetherthe asymptotic formulas described here prove the precision of the CTE estimator without
are working for his/her particular situation. significantly increasing the computational cost.

That will be the subject of our next article.

Conclusions

In the authors’ experience, so far, we have yet
to see a practical situation where the theory
outlined here fails in a material way. Hence, we
believe that practitioners can use the asymp-
totic formulas presented here to understand the
sampling errorin a given CTE estimate. A prac-
titioner can go through a variance verification
exercise if they want to prove to themselves, or
others, that the asymptotic formulas are working

in their particular situation.

Finally, we note that if a practitioner were
using this tool then, on the basis of the first run
of 1,000 scenarios, they would report a CTE
estimate of 2,004+355. Is a relative sampling
error of roughly 355/2,004 ~18% accept-
able? The answer to that question depends on

the circumstances.

If 18% is not an acceptable error then what are
the alternatives? Ome option is to increase the
number of scenarios. If we increase the number
of scenarios by a factor of K then the sampling
error scales by a factor of 1/vK . Cutting the
sampling error by a factor of 4 would require us

torun 16,000 scenarios.
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