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SELECT AND ULTIMATE MODELS 
IN MULTIPLE DECREMENT THEORY 

S. DAVID PROMISLOW 

ABSTRACT 

Usual treatments of multiple-decrement theory are on a nonselect basis, 
with all rates of decrement depending only on attained age. This paper 
develops the theory on a select basis, carried out fully in the stochastic 
framework. The relationship between select periods in a multiple-decrement 
model and those of the associated single-decrement models is investigated. 

1. INTRODUCTION 

In Jordan's Life Contingencies [3], the treatment of multiple-decrement 
theory is strictly deterministic. The theory is enriched considerably by the 
stochastic approach followed in Actuarial Mathematics [1], which draws on 
the earlier work of Hickman [2]. The approach in all these works is strictly 
on a nonselect basis; that is, the rates of all decrements depend on attained 
age only. In [1], the original definition suggests a select treatment, since the 
multiple-decrement model (T, J) is defined initially for a fLxed age x. The 
subsequent analysis, however, is carried out on a strictly nonselect basis, 
and no account is taken of select models. 

A nonselect model for a mortality table is often a reasonable approxi- 
mation. After all, there is an obvious connection between the decrement of 
death and age. But this need not hold for other decrements. Withdrawal 
rates, for example, almost certainly depend more on duration than on attained 
age. It is therefore of some importance to study select models. 

In this paper we consider various aspects of select and ultimate models 
in multiple-decrement theory. There are several goals, as follows: 

1. We develop the basic concepts of multiple-decrement theory on a select 
basis. There are no surprises here, and the resulting formulas are intu- 
itively obvious. We think, however, that it is useful to have a completely 
formal derivation of these formulas, particularly one that is carried out 
fully in the stochastic framework. Even in the single-decrement case, 
this provides some new insights. The treatment of this case in [1, Section 
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3.8] is for the most part deterministic. In fact, before discussing mul- 
tiple-decrement theory in Section 3, we begin in Section 2 by reviewing 
the single-decrement model in this stochastic context. 

2. We state explicitly the assumptions that justify the use of a nonselect 
model in the multiple-decrement case. In [1, Formulas 3.2.8 and 3.2.9] 
this is done for the single-decrement case, but the corresponding mul- 
tiple-decrement conditions are not given. The basic result is that the 
multiple-decrement model will be nonselect if and only if each of the 
associated single-decrement models has this property. We prove this 
fact in Theorem 3.1 below. 

3. In [1, Chapter 9] two different definitions are given for the force of 
decrement. Formula 9.2.10 states 

03 f(t,j) ,p~,). (1.1) 

In a discussion of the deterministic model, the formula above 9.4.5, 
states 

- 

P~.~+t03 = lilTlh_ 0 hl~ ) (1.2) 

It may be intuitively clear that these definitions yield the same result, 
but a formal derivation is not at all obvious. In fact, the attempt to carry 
this out motivated the present work, as it became clear that it was 
necessary to consider selection in order to do so. In Section 4, we show 
that with the appropriate assumptions, these definitions are equivalent. 
In fact, we produce a more general result; see (4.4) below. Along the 
way we introduce some new symbols that are useful. For example, we 
define the quantity 

tP~x 3, 
which does not seem to have appeared before; see (3.3) below. We 
then use this symbol to give stochastic definitions to the mortality table 
items l ~/) and dO3, which have appeared in the deterministic case only. 

4. A compromise between a nonselect model and a fully select model is 
a select and ultimate model, in which the duration of selection is mea- 
sured by a select period. The nonselect model arises when there is a 
select period of zero. The result mentioned in item 2 above says that 
the multiple-decrement model will have a select period of zero, if--and 
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only if--each of the associated single-decrement models has a select 
period of zero. In Section 4, we generalize this by comparing select 
periods in the multiple-decrement model and the associated single-dec- 
rement models. 

2. THE SINGLE-DECREMENT CASE 

In preparation for the multiple-decrement material, we review the normal 
single-decrement case, as outlined, for example, in [1, Chapter 3]. We begin 
with a family of random variables T(x), the time until failure of a life aged 
(x), defined for all x in some interval I =  [a,o~). In this section, for ease of 
notation, the initial age a is zero. This is the usual initial age for the dec- 
rement of mortality but need not be true for all causes of failure. 

We follow standard notation with the following addition. We assume that 
for each x in I, T(x) has a probability density function defined on [0, ®), 
and its value at t is denoted by £(t). 

The rule for defining failure can be arbitrary, and in fact, we allow for 
the case in which failure need not necessarily occur. We think of these as 
legitimate survival distributions. It simply means that T(x) is not necessarily 
a real valued random variable but rather one that also takes 0o as a possible 
value. (The associated distribution is sometimes referred to in the literature 
as a defective distribution.) The survival functions need not approach 0 at 
® but rather an arbitrary a,  with 0_<a< 1. The probability density function 
now integrates to 1 -  a,  and there is a point mass of ot at ®. In any event, 
these cases cannot be avoided in our context, for they can automatically 
appear as the associated single-decrement distributions for a multiple-dec- 
rement model; see [1, Section 9.4]. (In fact, a familiar occurrence of this 
phenomenon arises in contingent function theory. Given two lives (x) and 
(y), consider the rule that defines failure as occurring on the death of (x), 
should it occur before that of (,v). This is a particular example of an associated 
single-decrement distribution. The double-decrement model involves the joint 
status, (xy), rather than a single life, and the two causes of failure are death 
of (x), death of (y).) 

Without any assumptions, we can say very little about the linkage between 
the infinite family of distribution T(x). To reflect this situation, we need to 
develop various select symbols. We therefore define, for x in I and all t 
such that ,px> 0, 

p~(t) = fx(t) _ 1 d 
dgx d~ dt dg~ (2.1) 
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~/[xl+, = .+At,, - ,q,, (2.2) 
.o,, 

• Ptxl+, = s+,Px = 1 - ,q t x j+ , .  (2.3) 
,P,, 

For convenience, throughout the paper we proceed on the assumption that 
all distributions are unbounded, so that the definitions given in (2.1)-(2.3) 
apply for all t_>0. Consistent with this, we assume that co = 00, since with a 
finite co, we normally would expect that T(x) is bounded by to - x .  Of course, 
all the theory applies in the general case, with appropriate modifications. 

Remarks  on Notation. Note that the left-hand side of (2.1) is not written 
as ~x+,. Without prior assumptions we cannot assert that this quantity de- 
pends on attained age only, and we must distinguish between the variables 
x and t. (For example, we cannot use V,5o to denote both ~3o(20) and IZ4o(10) 
because the two quantities may be quite different.) In the Survival Models 
text [4, Formula 2.9(b)], London writes the same formula using ~t,,l÷, for 
the left-hand side. This is the more traditional notation and has been used 
by several other authors. It is consistent with that used in Formulas (2.2) 
and (2.3). We prefer the subscripted x, however. It is far less awkward, and 
it is consistent with notation for density functions introduced above. (The 
subscript notation for hazard rate functions has been used for joint lives in 
[1, p. 253].) 

The quantities defined in (2.2) and (2.3) have obvious interpretations. For 
example,//v,l+, denotes the probability that a life now age x + t ,  first ob- 
served at age x, will fail in the following s periods. 

From (2.3) and (2.4), we easily obtain the multiplication rule 

,+sP~l+, = rPt~l+, sPtxl+t+r (2.4) 

forx, r, S, t,_>0. 
We have the usual relationship between the survival and hazard rate func- 

tions. From (2.1) 

exp[ 
The assumption that leads to a nonselect model can be stated in various 
equivalent ways, depending on whether one describes it in terms of distri- 
bution, survival, density, or hazard rate functions. These are given in the 
following theorem. 
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Theorem 2.1 
The following are equivalent: 

(a) ,qx = ,qtol+x, for all t, x _> 0. 

(b) ,Px = ,Ptol+x, for all t, x -> 0. 

(c) f~(t) - f°(x + t_______~), for all t, x _> 0. 
d~o 

(d) ~(t)  = I~o(X + t), for all t, x -> 0. 

Proof 
We sketch the proof briefly, because the more general multiple-decrement 

case appears in the next section. However, we will need to use this single- 
decrement result in the course of that proof. 

Obviously (a) and Co) are equivalent. (In fact, in view of (2.2) and (2.3), 
they are just restatements of [1, Formulas 3.2.8 and 3.2.9].) Formula (a) 
implies (c) by differentiating, while (c) implies (a) by integrating and making 
a change of variable. If Co) and (c) hold, then (d) follows from (2.1) using 
(2.3) and (2.4). Finally, (2.5) can be used to show.that (d) implies (c) after 
an obvious change of variable. [ ]  

It is of interest to picture (c) geometrically. It says that, for any age z, 
the graph of the density function of T(z) is essentially obtained from that of 
T(0) by chopping off everything to the left of the line x =z.  Of course, we 
must also divide by the area of the region to the right of this line, which is 
~Po, in order to obtain a total area of one. 

When any of the equivalent conditions of Theorem 2.1 hold, we have the 
usual nonselect model. Part (d) of the theorem shows that we can use the 
symbol ~x÷, to unambiguously stand for ~x(t). (Referring again to our pre- 
vious example, we now can use P, so to denote each of ~3o (20) and ~4o (10), 
since they are both equal to ~o (50).) From part (b) and (2.3), we have 

and using (2.3) again 

x+tPo 
t P x  ---- 

x P O  ' 

x+t+sPO 
sP[xl+t  - x + t P o  
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so we can unambiguously denote this latter quantity by ~x+,. Similarly, we 
can remove the square bracket from ,qtxl÷,- 

I 

3. THE MULTIPLE-DECREMENT MODEL 

We now consider the multiple-decrement model. As outlined in [1, Sec- 
tion 9.1], a multiple-decrement survival distribution is a joint distribution 
(T, ./), where T is the time until failure and J={1,  2 . . . . .  m} is the cause of 
failure. We assume that we have a family of multiple-decrement distribu- 
tions, (T(x), dO, x>-a, where T(x) is the time until failure of (x). (We now 
write our formulas with the more general initial age a.) As in the single- 
decrement case, we do not a priori postulate any connection between the 
distributions of (T(x), dO for various values of the entry age x. 

We will follow the notation in [1], except that, as in Section 2, we will 
take care to distinguish all quantities by the entry age, using either a subscript 
or the select symbol [ ]. Hence, we let fx(t,j) = the joint density function 
of (T(x), J) and hx(j) = the marginal probability function for J,  with respect 
to (r(x), J). 

We then define, analogously to (2.1) and (2.2), 

lx(x,3(t ) _ fx (t,j) (3.1) 
,p~') ' 

and 

• - 'qIJ  (3.2) ,q~]+, = ,pC,> 

Recall that, associated to our multiple-decrement model is the single-dec- 
rement distribution related to total decrement (denoted by 'r). Functions re- 
lated to the r-distribution are generally obtained by summing the corresponding 
function over all causes j .  

We find it convenient to introduce a completely new symbol. Let 
w 

,p(J3 = hx(j) - ,q(~ = I fx(s,j)ds. (3.3) 
t 

Note that we do not define 

,p~J~ = 1 - ,qx o~. 
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The clue to the proper definition is to realize that, while we often interpret 
the general symbol ,p as the probability of surviving t periods, we can 
alternatively think of it as the probability of failure after t periods. (In the 
usual case of nondefective distributions, the two interpretations are obviously 
equivalent.) The symbol @JJ3, as defined, gives the probability that (x) will 
terminate from cause j ,  after t periods. 

Suppose that the 'r-distribution is nondefective. Summing (3.3) over all j 
and using the fact that 

~. hx(j) = 1 
J 

yields 

y 

as we would expect. In the case in which the -r-distribution has a point mass 
of ~x at co, the above formula becomes 

Z ,pP = ,p~"-  o,. 
J 

This is easily verified intuitively. We must deduct the probability of surviv- 
ing forever from the right-hand side because it is not included in the left- 
hand side. 

We now define the corresponding select survivorship function 

• p[J] +, = , +,p~'~ ,p~,) , (3.4) 

the probability that in the model for age x, an individual succumbs to cause 
j after time s + t given that he or she has survived all causes up to time t. 
We similarly define 

• P [ ; ]  ÷,  

by summation over all j .  
From (3.4), we can easily obtain the analog of the multiplication rule 

(2.4), 
.÷,p[;]+, = .p[;l÷,.p[.'~+,+. (3.5) 

Recall that for each cause j ,  we have an associated family of single- 
decrement distributions indexed by x. These are, namely, the distributions 
with hazard rate function given by V,JJ)(t). In other words, in the associated 
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single-decrement distribution for cause j ,  the probability of surviving t pe- 
riods is given by 

t 

(3.6) 

We can now prove equivalent conditions for a nonselect model analogous 
to those of Theorem 2.1. 

Theorem 3.1 

The following are equivalent: 
(a) ,q~'~ O~ = ,qta]+,-o, for al lx _> a, t -> 0, j = 1, 2 . . . . .  m. 

(b) ,p~n u') = ,p[o]+,,_o, for al lx -> a, t -> 0, j = 1, 2, ..., m. 

f~ (x - a + t,j) 
(c) L(t,j) = ,,_,p~,) , for all x -> a, t > 0, j = 1, 2 . . . .  , m. 

(d) i,~ j ) ( t ) =  I~o)(x + t -  a), for al lx >- a, t -> 0, j =  1 ,2  . . . . .  m. 

(e) For each j ,  the conditions of Theorem 2.1 hold in the family of 
associated single-decrement distributions for cause j ,  as given by 
(3.6). 

Proof  

(a) ~ (c). 

(c) => (b). Assuming (c), then 
z 

This follows directly by differentiating with respect to t. 

= f L ( s , j ) d s  = 

(b) ~ (d). 

t 

w 

1 I f ~ ( x - a  +s,j)ds 
l 

1 f nO') x - a + t r a  n(J) 
x_oP(,) f ,(r, j)dr = x_,p~, ) = a-'t,l+,,-o" 

x - a + l  

Suppose (b) holds. First, note that (c) also holds by differen- 
tiation with respect to t. By summation over all j in (b) the 
same statement holds with j replaced by 'r. Hence, part (b) of 
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Theorem (2.1) holds for the "r-family. Taking the multiplication 
rule (2.4) for this family and dropping the square brackets from 
the subscripts, we can write 

x-o +,P~') = x-oP~ ") ,P~'). (3.7) 

Using (3.1), part (c), and (3.7) implies 

l~)(t) = £( t , j )  = 1 fo(X - a + t,j) = ixo>( x + t - a).  

(d) ¢~ (e). For eachj, the statement in (d) of the present theorem is simply 
statement (d) of Theorem 2.1 applied to the distributions given 
in (3.6), so it is clear that (d) and (e) say exactly the same thing. 

(d) => (a). From (d), by summation over all j ,  we again use Theorem 2.1 
to derive (3.7). Now 

X--O +I 

- ~_o q~'3 = J ,p~') ix~'3(r) dr. f/(J') 
X + t - - °  " I °  

X - - O  

We now change the variable to s = r - ( x - a )  and invoke (d) 
and (3.7). The integral above then becomes 

x-o P~') i "p(~'~ ~ '~ (s) ds = x_op~ ~> , q~n. 

# 

o 

We now see from (3.1) that (a) is established. 

The proof of the theorem is now complete. []  

Suppose the conditions of the theorem hold. Arguing similarly to the 
remarks following Theorem 2.1 and using (3.2) and (3.4), we easily show 
we have a nonselect model, with all quantities depending only on attained 
age. That is, we can let 

unambiguously denote 

respectively. 

~ Q , ,  ,qO2,, and "(J3 
$.P'X+t 

l~n (t), ,q~J].,, and ,PixY., 
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One of the main consequences of the theorem is shown by statement (e), 
which says that the multiple-decrement model will be nonselect if and only 
if each of the associated single-decrement models is nonselect. 

Example 3.1 

It is possible for the nonselect assumption to apply to the ,r-decrement 
without applying to the individual decrements. Consider the case of two 
decrements, each of which depend solely on duration (which, as indicated, 
may be typical of withdrawal). Suppose our model for each age x is given 
by 

1 t 
fx(t,1) = e-' fx(t,2) = e - ' -  

l + t '  1 + t '  

It is then easy to calculate that 

1 
= - -  for allx, )~o)(t) 1 + t '  

and 

t 
l~(2)(t) = 1 + t '  for all x. 

We see immediately that statement (d) of Theorem 3.1 fails for both 
decrements. However, since 

I~')(t) = 1, for all t, x -> 0, 

part (d) of Theorem (2.1) applies for the 'r-distributions. 

4. MULTIPLE=DECREMENT TABLE SYMBOLS 

We now define the select table symbols in a stochastic way. 
Choose l(~ arbitrarily for each x, and define for t_>0 and j =  1, 2 . . . .  , m 

l[/]+, = l[~] ,px 0"). (4.1) 

We then define for t_>0 

I~]+, = ~ I~I+, = I~] tp~('). (4.2) 
j = l  
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Clearly, l~3+, denotes the expected number of individuals who will terminate 
from cause j ,  at age x + t or higher, out of an original group of l~  people 
age x. In order to so terminate, (x) must ~rst survive to age x + t  and then 
terminate from cause j .  This suggests the identity 

1~}+, = l~}+, ®q~+,. (4.3) 

This is easily verified formally as follows. 

which from (3.2) 

.q~]+t = lim,_® :/~]+t, 

- -  = - -  

Now (4.3) follows immediately from (4.1) and (4.2). 
We can express the forces of decrement in terms of l, 's as follows. 

d 

I~{g~+,  = f=(t , j )  _ ~ ,qO') = Jim t+kq°~) - 'q(J) 
,p(;) k,p(;) 

n(,~ - = l~ ]+ , -  l~]+,+k (4.4) = lim ,r,, '+kP~3 lim 
k-.O k,p~) k-.o k l~}+, 

(We obtain the last equality by multiplying all terms by l~.)  
We indicate at the end of the section how this achieves the goal of showing 

that the two different definitions of the force of decrement, given in [1], are 
equivalent. 

We now define for all x > a ,  t>_O, k>_O, j =  1, 2, . . . .  m,  

k d~'q+, = 1[/'}+,- /~]+,+k- 

From (4.1) and (3.3) 

kd~]+t = l~] [t+kqO= 3 -- ,qO3] 

= l~] ,p~;)*q~]+t 

= l~,]+, kq~}+," (4.5) 

This is the select analog of [1, formula 9.3.4]. 
SO, kd~J~+t is just the expected number of the original l~  individuals age 

x, who survive t years and then succumb to cause j within the subsequent k 
years. 
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Formula (4.5) is important, because it allows us to compare this stochastic 
definition of l and d with the deterministic one given in [1, Section 9.4]. A 
natural question that arises is whether these agree. This is not as trivial a 
point as it may seem. In fact, the issue is already present in the single- 
variable nonselect case discussed, for example, in [1, Section 3.4]. We 
briefly review this. Suppose, for example, that qo=0.10 and that we start 
with lo = 1000. In the stochastic model, the number of survivors at age 1 is 
a binomial random variable, and ll represents its expected value of 900. In 
the deterministic model, we assume that exactly 10 percent of those age 0 
will die within 1 year. There is still randomness present, but only due to the 
fact that we don't know which particular individuals will fail. In this case, 
11 represents the exact number of lives who remain alive at age 1. Despite 
two very different interpretations, the two values of 11 are the same. Is this 
true for lx for all integers x? This is not completely obvious, but it can be 
readily established by induction. The same considerations apply to the mul- 
tiple-decrement select case. 

We temporarily use [ to denote deterministic l's~ For a natural determin- 
istic construction of the multiple-decrement table, choose [[~ arbitrarily for 
each integer x, and then, thinking of the q's as exact rates of decrement, 
define inductively for integers x and t 

d~+, = l[~]+, q[~+,, j = 1, 2 . . . . .  m 

= 

j= l  

Now, provided we have 

l[~] = l~], for all x, 

we can use induction, taking k = 1 and reversing the steps in the derivation 
of (4.5) to show that 

l[/]+, = l~,~+, (4.6) 

for all integers x>_a, all positive integers t, and j = 1, 2, ..., m or 'r. We 
leave the details to the reader. 
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Suppose now that the conditions of Theorem 3.1 hold, and suppose more- 
over that we choose 

Then 

1~] = 1t,~] x_~p~a "). 

l~]÷t  = ll'~ -(') -[a] x-a~-Ja tP(~ J3, 
which, substituting from statement (b) of Theorem 3.1 and using (3.5), 

= 1[~ x+,_o/; o') = lg']+,,+,_o. 

We can therefore remove the select brackets and write 

l~]+, = I~,. (4.7) 

Consider now formulas (1.1) and (1.2), in which the latter is to be interpreted 
deterministically. Assume the conditions of Theorem 3.1 and that the de- 
terministic model is constructed as noted above, so that (4.6) and (4.7) hold. 
Then we see from (4.4) that (1.1) and (1.2) are indeed equivalent. 

5. SELECT PERIODS IN THE SINGLE-DECREMENT MODEL 

We do not always have the simple situation, in which rates of decrement 
depend on attained age only. A compromise between this and a fully select 
model is the select and ultimate model, in which we postulate that the effect 
of selection wears off after a certain time interval, known as the select 
period. We wish to compare select periods in the multiple-decrement model 
and the associated single-decrement models. The goal is to show that in 
order to keep select periods small in the multiple-decrement model, it is 
necessary and sufficient to have all the associated single-decrement select 
periods small. The first step is to give precise definitions. In the multiple- 
decrement case, it is not completely obvious how to define the select period. 
We will motivate this by first carrying out a complete discussion of this 
concept in the single-decrement case. 

Suppose that we have the family T(x), x>_a, as given in Section 2. 
We define the select period of this family as the infimum (that is, greatest 

lower bound) of the set of all r such that 

tP[xl+r" = ,Ptal+,"+x-a, for all x --- a, t >- 0, r '  > r. (5.1) 

If no such r exists, the select period will be ®. 
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(The last statement requires some modification in the general case of 
bounded random variables. We would then postulate that (5.1) holds if both 
sides of the equation are undefined. Suppose, for example, that there is a 
limiting age co, and each T(x) is bounded by co-x. We can show that with 
this definition the select period will always be less than or equal to t o - a .  
This is clear intuitively. Selection has worn off at time t o - a ,  in a vacuous 
way, because nobody is surviving at this time.) 

If there is a finite select period ro, one can show by the right continuity 
of survival functions that (5.1) will hold for r=ro, so the infimum is in fact 
a minimum in this case. 

Often it will be more convenient to write the equation in (5.1) as 

,-. +,P~ = ,.. +, +x-,,P,, (5.2) 

,-.P~ :+x-,P,  

The form of the definition of select period has been chosen with the 
multiple-decrement case in mind. In this single-decrement model, some sim- 
plification is possible. 

Proposition 5.1 
The select period is the infimum of the set of all r such that, 

tP~l+,- = tP[al+r+x-a, for all x --- a, t ~ 0. (5.3) 

Proof 
Suppose that (5.3) holds for r. Given any r' >r, 

,"+tP~ _ ,-+t+~,-'-,-)Px ,-P~ 

r'P~ ,-Px ~+(,'-~)Px 

and applying (5.3) to both fractions in the product yields the right-hand side 
of (5.2). []  

Proposition (5.1) is useful in the following way. Suppose we want to 
show that the select period is less than or equal to r. Arguing directly from 
the definition, we would have to illustrate (5.1) for all r '  _>r. The proposition 
says that it is sufficient to do so for the single value, r. 

It is immediate from Proposition (5.1) that the conditions of Theorem 2.1 
hold if and only if the select period is 0. Simply look at part (b) of the 
theorem. 
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We can compare our definition with the criteria for r given in [1, bottom 
of page 73], that 

q[x-j]+j+r = q~,l+,, J > O. 

This is (5.3) with q replacing p ,  x - j  =a ,  and t =  1. This last simplification 
is possible in the context of the mortality table, where one is essentially 
interested only in integer values of t. 

It is convenient to have the equivalent hazard rate or density function 
formulation for select periods. We can take the select period to be the in- 
fimum of the set of all r,  such that 

f,,(r + t) = f°(r + t + x - a), for a l lx  _> a, t _ > 0  (5.4) 
rPx r+x-aPa 

o r  

I.~(r') = p,a(r' + x - a), for all r' > r. (5.5) 

To see this, we note that if (5.3) holds for r, then we can obtain (5.4) by 
differentiating with respect to t. Moreover, by Proposition (5.1) we know 
that (5.4) is true for all r '  >r.  We now can derive (5.5) by simply setting 
t = 0 in (5.4). Finally, we can use (2.5) to derive (5.3) from (5.5). 

6. SELECT PERXODS XN THE MtJL'nPLE-DECREMEYr MODEL 

Given the multiple-decrement model of Section 3, we define the select 
period for  cause j ,  which we will denote by sel(j)  as the infimum of the set 
of all r satisfying 

,PIll+,' = ,Pt-q+r'+x-a for a l lx  > a, t _> 0, r' > r. (6.1) 

That is, 

,.. + tpx0") n(J)  
- "+'+~'-"~'--------'---~ • for all x > a, t > 0, r '  > r. (6.2) 

r f l ( T )  n ( ~ )  ' - -  - -  r" + x - a ~ a  

When no such r exists, se l ( j )= ®. (In the bounded case we have the same 
modifications as discussed in Section 5.) 

Equivalently, sel(j)  will equal the infimum of the set of all r satisfying 

f,,(r' + t,j) f~(r' + t + x - a,j), 
r.p~,) = e+x_op~, ) ' for all x >- a, t -> O, r '  _> r. (6.3) 
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We differentiate with respect to t to show that (6.2) implies (6.3) and inte- 
grate to show the converse. 

If (6.3) holds, we can take t = 0 to show that 

I.t~J)(r ') = I.Z(,/)(r' + x - a), for all x > a, r '  :> r. 

As we will see later, we cannot go back the other way. Condition (6.4) is 
not equivalent to (6.3). 

The following proposition shows that, as in the single-decrement case, 
our multiple-decrement definition of select period works as we expect in the 
nonselect model. 

Proposition 6.1 

The conditions of Theorem (3.1) hold if and only if 

set(j) = 0, for all j .  

Proof 

If (6.1) holds for all j ,  with r = 0 ,  we immediately obtain statement (b) 
of Theorem 3.1. Conversely, assume (b) of Theorem 3.1. By summation, 
the same statement holds for "r. Then, for any non-negative r '  and t 

r,+t+x_,,p~ ,,C/) x_,,p~') r '  4- t + X - -  a . / ~ a  

r.+,,_,,p~ ") ,,_,,p~"~ r.÷x_,,p~ ~) 

_ _, ,,px 

,.p[:l+x-o ' 

so that (6.2) holds with r= O. [] 

We now let sel'(j) denote the select period in the associated single-dec- 
rement model for cause j ,  and let sel(. 0 denote the select period in the "r- 
distribution. The main result of this section gives the relationship between 
these select periods. 

Theorem 6.1 

For all x>_a 

(a) sel('r) <_ max {set'(j): j = 1, 2 . . . .  , m} 
(b) sel('r) <_ max {sel(j): j = 1, 2, ..., m} 
(c) For all j, set(j) = max {set'(j), set(r)}. 
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Proof 
Fix any x>_a. 

(a) Take any r'_>max {sel(j):j= 1, 2, . . . ,  m}. Then from (5.5) applied to 
the associated single-decrement distributions, (6.4) holds for all j .  By 
summation it holds for % showing that sel('O<-r'. Since r '  was arbi- 
trary, we have 

sel('r) <_ max{sel'(j):j = 1, 2, .... m}. 

(b) Take any r>max{sel(j= 1, 2, . . . .  m}. We sum the equation in (6.1) 
over a l l j  to conclude that sel(,)<_r. Since r is arbitrary, we have 

sel('¢) < max{sel(j):j = 1, 2, .... m}. 

(c) Fix any j .  Let rl=max{sel('r), sel'(j) and let ro=sel(j). Apply (5.2) 
to the ,r-family with u = r + t, to obtain 

,p~') = "P~) "(') for all u, r > rl.  (6.5) 

Choose any r > rl.  Then 
m 

rpOx3 = J uP(x ") ~°x3(u)du , 
r 

and substituting from (6.5) and (6.4), 

rP(x,3 = rP(x') . ( ' 3  (6.6) 
n ( T )  r + x - a ~ a  • 

r + x - a . l "  a 

For any r'>rl,  divide (6.6) with r = r ' + t ,  by Equation (6.5) with 
u =r' ,  to obtain 

,." +,Pff) r" +,+,,-oPO~) 
r.P(x ~) n(T) ' r" + x - a Y a  

and we conclude that 
sel(j) <- rl. (6.7) 

From (6.4) we see immediately that 

sel('O <- sel(j). (6.8) 
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Using (6.3), we can integrate to obtain 

rP(x ~) n("r) 
- -  r + x - a Y a  tx~3 (r + x - a), r > ro. 
roPx(.r) ~l~ ) (7") ~--- r r l( ' )  

O +x-a l - "  a 

Invoking (6.4) again, we cancel out the hazard rate terms to conclude that 

sel(r) < ro = sel(j). (6.9) 

Inequalities (6.7)-(6.9) complete the proof. []  

Define the select period o f  the entire model to be the maximum of sel(j) 
over all j .  Then we have the following, as a consequence of parts (a) and 
(c). 

Corollary to Theorem 6.1 

For any r>_0, the select period of the model is less than, or equal to, r, 
if and only if sel'(j)<_r for allj. [ ]  

We have now generalized the Section 3 result, in which we derived the 
statement of this corollary for r = 0. 

In this paper we have followed the traditional viewpoint that the effects 
of selection wear off after some fixed select period applicable to all attained 
ages. Conceivably, this period could vary by attained age. It is possible to 
formulate a very general definition of select period, which will handle all 
such cases, and then derive the same result as in Theorem 6.1. We will not 
pursue this further in this work. 

Note from part (c) that sel(j) can be larger that sel'(j),  illustrating the 
assertion made above that (6.4) does not imply (6.2). 

We saw already, from Example 3.1, that equality need not hold in part 
(a). A curious fact is that when this does not hold, then sel('r) must be less 
than the "second highest" of the values of sel'(j).  The precise statement is 
as follows. 

Proposition 6. Z 

Suppose that 

(i) sel'(j) <- ro, j = 1 , 2 , . . . , m  - 1, 
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and 

(ii) sel'(m) > to. 

Then either sel(~)=sel(m), or sel(~)<-ro. 

Proof 

If sel(~) >ro, then for r>sel(~), 

~')(r) = ixtl)(r + x - a). 

Write the above terms as summations over allj .  Since r>ro, we can cancel 
out all terms with j = m to arrive at 

v $ ( r )  = + x - a), 
and we conclude that sel(m)<_sel(v). From Theorem (6.1)(a), equality holds. 

D 

We conclude the paper by showing that it is not equivalent to define sel(j) 
as the infimum of all r satisfying 

,P~]+, = ,P[~.]+,+x-o, x >- a, t >_ 0, (6.10) 

as one may be tempted to do, by analogy with the single-decrement case. 
We cannot employ the same trick as in proving Proposition (5.1), since the 
denominators involve T rather than j .  The following example shows this 
conclusively. 

Example 6.1 

Consider the double-decrement model, with a = 0, in which for all x and 
t ,  

1 1 
L(t,1) = ~ e-',  f~(t,2) = ~ $(x) e -'t'¢~) 

where qb is a non-negative function such that $(0) = 1, but $ is not identically 
1. From this we integrate to get 

1 , 1 
,p~') = ~ e- , ,p~2) = i e-'*¢~)" 

1 
,p~') = ~ [e-' + e-'*¢')], 
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x +r+tp~ 1) e -(x +r +O 1 

and 

r+tptx 1) 
,P[~t + r  rP(x, ) 

e-(r+O 

e -r  + e - r ~ ) "  

Takej  = 1. The above calculations show that (6.10) holds for r = 0. However 
if r > 0  andx  is such that ~b(x) is not equal to 1, the equation in (6.10) fails. 
Therefore, sel(1)  = oo. 
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DISCUSSION OF PRECEDING PAPER 

ELIAS S .W.  SHIU: 

Dr. Promislow is to be thanked for writing this paper, extending the 
classical theory of multiple decrements to incorporate select and ultimate 
models. I am particularly appreciative of the insightful definition for the 
symbol 

For the past 15 years I had been telling my students that such a symbol made 
no sense. 

I agree with Dr. Promislow that "withdrawal r a tes . . ,  almost certainly 
depend more on duration than on attained age." Indeed, for some policies, 
withdrawals are permitted only at policy anniversary. Such forces of with- 
drawal are infinite at positive integers and zero elsewhere. Consequently, 
the corresponding probability density functions f(t,j) do not exist. A paper 
attempting to alleviate this difficulty is [8]. 

In the classical multiple-decrement theory, the various forces of decrement 
are assumed to act independently of each other. This may not be realistic. 
Actuaries have discussed this difficulty for more than a century. For ex- 
ample, in 1874 Makeham [5, p. 322] wrote: "It  will be observed that these 
solutions all proceed upon the assumption that the extermination of small 
pox does not affect the mortality arising from other causes. This must be 
proved before any reliance can be placed upon the conclusions arrived at.'" 
Another obvious example of this dependency problem is policy surrender. 
A policyholder knowing himself to be terminally ill is very unlikely to 
surrender his life insurance policy; that is, as soon as a policyholder finds 
out that he is terminally ill, his force of withdrawal becomes zero or very 
close to zero. I now quote Hilary Seal [7, p. 698]: "The policyholder who 
let his policy lapse by failure to pay a due premium was presumably not 
near death or disability so far as these hazards can be foreseen. Lapse is 
thus likely to be probabilistically dependent on the o the r . . ,  causes of dec- 
rement . . . .  This difficulty had been mentioned in the controversies of the 
1760s and 1870s, but to this day actuaries have not attempted to resolve it." 
It would be interesting to see a solution to this problem. 

I would like to take this opportunity to pose another problem. Exercise 
7.45 on page 229 of Actuarial Mathematics [1] is to derive a continuous 
version of the celebrated Hattendorff Theorem. Because of its difficulty, it 
is a starred problem. Indeed, in the earlier editions of the ACTEX Study 

301 
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Manual for the Course 150 Examination, no solution to this exercise was 
given. An elegant solution can be found on pages 6 and 7 of Hickman's 
paper [3]. In fact, the solution was given in the context of multiple decre- 
ments. The idea is to decompose the discounted premium into two parts-- 
the first part contributes to the discounted value of the reserve and the second 
part is the discounted cost of insurance based upon the instantaneous net 
amount at risk. The theorem then follows from a straightforward integration 
by parts. (Actually, the more general formula stated in exercise 16.13 on 
page 479 of Actuarial Mathematics [1] also follows from this method.) My 
question is whether one can adapt this elegant proof to the discrete case; 
that is, decompose the premium and then do a summation by parts. (Two 
recent papers on the Hattendorff Theorem are [6] and [9].) 

To conclude this discussion, I would like to mention that the theory of 
multiple decrements is related to the theory of competing risks in the statis- 
tical literature. A concise survey on competing risks is the article by Gail 
[2]. Chapter 7 of the book by Kalbfleisch and Prentice [4] is on competing 
risks. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

S. DAVID PROMISLOW" 

I thank Dr. Shiu for his informative remarks. He clearly indicates that 
there is much scope for future research in the field of multiple decrement 
theory. 

Particularly intriguing is his challenge to build dependence into the model. 
As Dr. Shiu indicates, this is a project of great practical significance, as 
well as one which could present many interesting mathematical and statistical 
problems. 

There is also practical interest in finding methods to handle decrements 
for which density functions and forces of decrement do not exist. Dr. Shiu 
mentions withdrawal as one example. Another common type of decrement 
with this same feature is retirement. 

Regarding Dr. Shiu's final problem, I do see one source of difficulty in 
adapting Hickman's proof of the Hattendorf Theorem to the discrete case. 
In the continuous case, it is shown that the second moment (and hence the 
variance) of L, the loss random variable, is the same as the s6cond moment 
of another random variable R, the discounted net amount at risk, that is, the 
present value of the difference between the benefit paid at the time of failure 
and the reserve at that time. This is not true in the discrete case. Looking 
at statement (b) of Theorem 7.1, on page 215 of Actuarial Mathematics by 
Bowers et al. (Shiu's reference [1]), we see that this would be true if the 
Px+h were missing from Formula (7.10.5) on the preceding page, since we 
would be left in that formula with the density function for K, the curtate- 
future-lifetime of (x). However, the presence of this extra term indicates that 
in the discrete case, the second moment of R will be greater than that of L. 
It seems to me an interesting problem to try to develop some good intuitive, 
verbal explanation for this behavior of the random variables L and R. 




