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ABSTRACT 

This paper addresses some pervasive problems in using secondary data in 
actuarial research, These problems include: 
• Reconciling and matching information from two or more sources 
• Estimating the probability and other statistics using banded data 
• Reconstructing the distribution function from summarized secondary 

data 
• Incorporating information into derivation of life or loss distributions. 
An approach to solving these problems is based on information theory. Ex- 
plicit mathematical formulas for the probability distributions under study are 
presented in several specific settings with incomplete or grouped data and 
concomitant auxiliary information. 

1. INTRODUCTION 

This paper addresses certain pervasive problems in using secondary data 
in actuarial research. Those problems include the following situations: 
• The data are summarized in a histogram or tabular (grouped data) format, 

perhaps with additional mean or median information (for example, pub- 
lished medical research, demographic data, and so on), which must be 
incorporated into actuarial analysis. 

• Two published sources yield histogram or tabular summaries with the 
same variable, but the two sources do not group the values of the variable 
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the same way (for example, mortality rates grouped into age intervals 
can be distinctly different in different medical studies). 

• The researcher wishes to answer a question by using information from 
several distinctly grouped data streams, and the original, detailed data 
underlying the published summary (which might give a better answer to 
the question) are unavailable. 

Reconciling and matching information from two or more sources is a 
common analytic problem faced by practicing actuaries. Data reported by 
magazines, medical journals, or government publications are often given in 
grouped histogram form. Because these information sources operate inde- 
pendently of one another, their reports usually have incompatibly grouped 
data. The summary presentation of such information frequently is accom- 
panied by values of some of its moments or the conditional moments with 
certain subintervals. This data-matching problem is a specific case of the 
more general question, "How can we make statistical inferences from sec- 
ondary data and incorporate this information into our actuarial analysis?" In 
this paper we present a method (a maximum-entropy procedure) that is based 
on the concepts of statistical information theory and that shows how to use 
all the information available (and no other) to answer such questions. 

Applications with real data often involve conflicting or missing data ele- 
ments. A publication may provide a histogram along with its overall mean 
and one conditional mean (that is, the mean of some subinterval), in which 
the latter two do not agree because of typographical error or because they 
are a summarization of two different studies. 

Situations can also arise in which the data given are insufficient even to 
apply information theoretic techniques, but a uniform treatment is s011 
needed. Accordingly, the rigorous statistical procedures detailed in Brockett 
[3] must be supplemented with some heuristics to handle these cases. These 
heuristic procedures also are discussed. 

In this paper we present a procedure for generating maximum-entropy 
density estimates from data in histogram form with the possibility that ad- 
ditional means and medians may be known. With the computing power now 
available, completely rigorous maximum-entropy estimates can be obtained 
for nearly any consistent "information scenario" (combinations of infor- 
mation about moments and conditional moments of the density function that 
are consistent with at least one probability distribution). This paper provides 
illustrations of this. 

While in general the histograms analyzed are analogous to probability 
densities, the procedure can also be used in some cases for more general 
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"y=f(x)" variate relationships, where y is a continuous function of x. Grad- 
uation of mortality rates by information theoretic methods provides an ex- 
ample (compare Brockett and Zhang [10] and Brockett, Li, et al. [8]). Other 
applications are risk analysis and individual risk profile analysis. 

2. DEFINITION 

The early literature on statistical information theory was developed by 
Kullback and Leihler [16] following the work of Khinchine [14] and grew 
out of the engineering literature on communication theory. A complete in- 
troduction and description as well as applications of information theory to 
problems in actuarial science can be found in Brockett [3]. To summarize, 
in information theoretic notation, the expected information for distinguishing 
between two measures, p and q, is denoted by l(plq)- This expected infor- 
mation is mathematically quantified by the expected log-odds ratio; that is, 

where p and q are discrete with masses Pi and qi for each i. Extensive 
discussion of the information functional (2.1) and its role as a unifying 
concept for statistics can be extracted from Kullback [15]. Brockett [3] also 
places the functional in perspective for actuarial science. 

By applying Jensen's inequality to the function h(x)=x-lnx, l(plq)-->0 
with l(plq)=0 if and only if p=q .  As a consequence, the quantity l(plq) 
can be thought of as the (pseudo-) distance or "closeness measure" between 
p and q within the space of all measures having equal total mass. In our 
case, we want to choose that measure p that is "as close as possible" to 
some given measure q and that satisfies certain additional knowledge we 
have about p. The measure q is the benchmark, or beginning measure, and 
p is the measure we want to obtain. The additional information about p is 
written in the form of constraints that p must satisfy. Accordingly, our prob- 
lem becomes one of minimizing l(plq) over all possible p, subject to the 
given constraints on p. The solution p* to minimizing (2. l) subject to con- 
straints is referred to as the minimum discrimination information (MDI) 
estimate. 

In many applications, however, there is no such a priori, benchmark, or 
starting-point measure q from which to derive p. In this case, we express 
our ignorance about q by choosing all values of q to be equally likely; that 
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is, q,.= 1 for all i in the discrete measure case or q (x )= l  for all x in the 
continuous density case. Accordingly, our objective function (in the discrete 
case) is of form 

Mi.,+,+ 

or equivalently 

(2.2) 

The quantity X i Pi ln(pi) is called the entropy of p, and the distribution 
that solves (2.2) is called the maximum-entropy (ME) distribution. The en- 
tropy of a distribution conceptually measures the dispersion of the distri- 
bution: the maximum-entropy distribution is the uniform distribution (most 
uniformly dispersed distribution) and the maximum entropy distribution is 
a point mass distribution with all its mass at a single point (the most con- 
centrated distribution possible). 

The principles used in this paper are set forth by Kullback [15], Theil and 
Feibig [20], Brockett [3], and Brockett, Charnes, et al. [4]. What follows 
most closely resembles the latter two works, in that inferences are based on 
data that have already been summarized, rather than on original sample 
observations. The heuristic that connects with the maximum-entropy choice 
of  probability distribution is that, all the information that is known about 
the unknown distribution p is written down. This information constitutes the 
constraint set that p must satisfy. The uncertainty (entropy) of p is then 
maximized subject to these constraints. In essence, what is known is used, 
and the uncertainty of what is not known is maximized. 

3. SOME MOTIVATING EXAMPLES 

To illustrate the problems discussed in Section 1, we examine the medical 
study by DeVivo et al. [11] on the mortality effects of incomplete and com- 
plete paraplegia and quadriplegia resulting in the relative mortality ratio data 
extracted in Table 1. The age intervals used in the medical study were de- 
fined as: 1-24, 25-49, and 50+, and the published reports are based on 
these intervals. 
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TABLE 1 

RELATIVE MORTALITY RATIOS 
FOR 5,131 SPINAL CORD INJURY PATENTS 

INJURED BETWEEN 1973 AND 1980 
WHO SURVIVED AT LEAST 24 HOURS 

AFTER INJURY; BY NEUROLOGICAL CATEGORY 
AND AGE GROUP AT TIME OF INJURY [l !] 

Neurological Category Relative 
and Age Group at Injury Mortality Ratio 

Incomplete Paraplegia 
1-24 
25--49 
50+ 

Complete Paraplegia 
1-24 
25--49 
50+ 

Incomplete Quadriplegia 
1-24 
25--49 
50+ 

Complete Quadriplegia 
1-24 
25-49 
50+ 

4.82 
6.59 
3.26 

4.93 
6.93 
3.26 

4.22 
6.71 
3.95 

12.4 
20.78 
14.11 

93 

An actuary might attempt to use these data for adjusting a mortality table 
for use in such cases as wrongful injury damage award compensation cal- 
culations and life insurance premium determination for medically impaired 
lives. A reasonable question is: Is there a statistically rigorous way to esti- 
mate, consistent with the data given in Table 1, the mortality rates for, say, 
incomplete paraplegics that is as close as possible to some presupposed 
standard table without actually having access to the original detailed data? ~ 
The answer is "yes." Brockett and Song [9] provide a life table adjustment 
method based on a constrained information theoretic methodology. This 
model minimizes the "information theoretic distance" (2.1) between the 
adjusted mortality rates and the corresponding standard rates subject to con- 
straints that reflect the known characteristics of the individual. An interesting 
subproblem in their study is how to estimate the exposure level, E~, that 
must be used in the calculation. To be most accurate, E x should be taken as 
actually exhibited by the patient study population; however, when secondary 

~By "the original detailed data," we mean the original sample observations, including both the 
sampling frame and the sample size--all the information that would have been available had the 
actuary done the primary research. 
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data are used, this detailed information about the precise age distribution of 
the patient study population is often unavailable. In fact, DeVivo et al. [11] 
in their report only give partial information on E x for the three age categories 
in Table 1. Accordingly, the study of Brockett and Song [9] must develop 
a method to derive the values Ex for the study population distribution. They 
show how information theoretic techniques can be used to obtain a set of 
exposure values, E~, that are as close as possible to the exposure profile of 
the standard population but that are consistent with the information about 
the study patient population profile given in DeVivo et al. [11]. 

As another example of a situation in which the actuary may be asked to 
use secondary data to answer questions, consider the loss distribution infor- 
mation presented in Table 2. 

TABLE 2 

EXPECTED LOSS EXPERIENCE 
FOR 1000 CLAIMS 

ExpeCted 
Loss Interval Number of 

[a, b] Claims 

0 
1, 1,000 
1,001, 5,000 
5,001, 10,000 
10,001, 100,000 
100,001,500,000 
500,001, 1,000,000 
1,000,000+ 

Total / Average 

Average 
Claim Size 

in the 
Interval 

75 $ 0 
500 900 
250 4,000 
150 9,000 
20 20,000 

4 200,000 
0.8 650,000 
0.2 1,500,000 

1,000 $ 4,820 

Note that Table 2 gives both the conditional probabilities and conditional 
means of the loss size subintervals. These may have arisen as summary 
statistics for a very large data set that has only been saved in "banded" 
form (compare Reitano [17]) or may have come from a published secondary 
data source. 

The actuary may be asked to determine the probability that a claim will 
exceed a certain threshold level, say $50,000, and to determine the expected 
claim size if a policy were issued with this threshold level as a policy limit. 
Since $50,000 is strictly interior to one of  the intervals, the actuary must 
"interpolate" to find such an answer. The usual actuarial methods of as- 
suming a constant force or a uniform distribution within the individual 
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subinterval will not work, because they would produce probability distri- 
butions inconsistent with the known average claim sizes within the subin- 
tervals (since the mean of each subinterval is known and is not consistent 
with the uniform or constant force assumption). For example, the interval 
[1, 1,000] would have a mean of 500 under the uniform distribution as- 
sumption; however, this is incompatible with the fact that the mean for this 
interval is known to be 900. 

The data matching discussed previously can arise when two histograms 
are incompatible or when the subinterval endpoints on a single histogram 
are not convenient to the user of the published data. Figure 1 displays data 
on the use of a particular actuarial software program used in defined-benefit 
pension plan calculations by consulting actuaries. The marketing actuary for 
the developer of an improved software that can be used as an adjunct to the 
original actuarial software has determined the R&D costs of developing the 
program and ascertained that the purchase is only  cost-effective by the con- 
suiting actuary who performs this calculation more than 15 times per month. 
Accordingly, it is desired to know, "How many actuaries perform this cal- 
culation more than 15 times per month?" (The fact that usage is not evenly 
distributed over the 10-30 interval means that a quick proportional calcu- 
lation based on the histogram data would be unreliable.) 

FIGURE 1 
PERCENTAGE OF CONSULTING ACTUARIES REPORTING THE NUMBER OF USES 

OF DEFINED-BENEFIT CALCULATIONS OF THE GIVEN TYPE PER MONTH 
(THE AVAILABLE DATA DESCRIPTION LISTS THE MEAN AS 8.5 AND THE MEDIAN AS 4.5.) 

40°/o 

30o/o 

20°/o 

10°1o 

i 
Under 5.0 5.0 - 9.9 10.0 - 29.9 30.0 - 50.0 
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In this paper we propose a technique for addressing all these problems. 
This technique also shows how to solve a large collection of other problems, 
such as those that were originally motivated by Reitano's [17] article on 
banded data but that was actually left unsolved in his paper. This paper can 
be considered a follow-up to the papers of Reitano [17], Brockett and Cox 
[6], and Brockett [3]. 

Why might the primary data be unavailable to the actuary? The original 
researchers may have lost or discarded the detailed numbers. They may have 
kept them confidential. The data may have been summarized in the primary 
data collection in a manner that served the goals of the original investigators, 
but not those of the actuarial analyst. For example, for questionnaire-type 
data, rather than asking a respondent to give an age, the respondent might 
have been asked a categorizing question such as "Is your age under 18, 
between 18 and 25, or over 25?" Economic or personal questions, such as 
family income, which might be very pertinent to marketing actuaries, are 
often presented to the respondent in a categorical manner to increase truth- 
fulness and response rates. Moreover, this sort of "banded" data is often the 
accessible form of data that is stored by insurance companies (compare 
Reitano [17]). In addition, even if the specific numbers couM be provided 
(perhaps by accessing a much larger, more detailed, and different internal 
computer tape, or by contacting the authors of the original article and solic- 
iting their time and energy to make available all the original data in a form 
understandable to the actuarial analyst), the cost and delay in obtaining an 
answer may be more than the client (or actuary) is willing to bear. The 
alternative, of course, is to develop and use an estimation technique that uses 
the secondary data as they actually appear. 

4. COMPARISON WITH OTHER STATISTICAL 
GROUPED DATA METHODS 

A researcher presented with data like those in our examples may wish to 
estimate a density function based on one of the histogram summaries, to 
match it with other sources. Ordinarily, published histogram representations 
provide only grouped data rather than the detailed sample data on which 
they are constructed. In fact, in some cases not even the sample size is 
reported. Statistical methods that rely solely on the original observations are 
inapplicable in these situations and one must turn to group data statistical 
techniques. In many cases maximum likelihood estimates, usually the pre- 
ferred choice because of the desirable asymptotic behavior of the estimates, 
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cannot be used in their simplest form and a grouped data counterpart is 
necessary (compare Hogg and Klugman [13]). Other methods of fitting the 
data to either a polynomial or a specific parametric probability function are 
least squares (Blum and Rosenblatt [2, pp. 435]), moment matching (Blum 
and Rosenblatt [2, pp. 323]), or Lt estimation (Althanari and Dodge [1]). If 
the underlying density function is presupposed to have a specific parametric 
form, such as the exponential distribution (the constant force or hazard 
model), then summary knowledge of sufficient statistics may provide max- 
imum likelihood estimates; for example, the exponential assumption would 
require only the sample mean to fit the data. These methods still presuppose 
a parametric model for the data that may not be easily found. 

Various nonparametric methods have also been proposed to reconcile data 
in histogram form. Perhaps the most naive method is the "frequency curve" 
approach in which the midpoints of the tops of the histogram's bars are 
connected to create a "frequency polygon" (compare Brockett and Levine 
[7]). Another method very familiar to actuaries involves fitting a higher- 
order polynomial (for example, a cubic spline) through the midpoints of the 
tops of the histogram's bars (Sard and Weintraub [18]). Polynomial fitting 
is a familiar and fairly obvious strategy that has the advantage that many 
computer programs are available to execute the procedure. Also, this tech- 
nique uses the shape of larger sections of the histogram rather than simply 
treating each interval individually. However, these advantages are often out- 
weighed by the imperfect estimates that result. Moreover, the estimated den- 
sities may not satisfy the auxiliary known moment constraints, necessitating 
some ad-hoc corrective mechanism. Nonparametric kernel density estimates 
might also be attempted; however, readily available programs to implement 
this analysis do not apply to grouped data. 

In this paper, to make such an estimation in an objective way, we propose 
using an information theoretic technique involving maximum-entropy esti- 
mation. This technique is also a nonparametric approach and is a generali- 
zation of Laplace's "Principle of Insufficient Information," which postulates 
a uniform distribution in situations in which no additional information about 
the distribution is available. When auxiliary information is available, the 
maximum-entropy method selects the distribution that is "as close to uni- 
form" as possible, subject to the information that is actually known (compare 
Brockett [3]). This method can be shown to provide a justification for the 
common uniform distribution of deaths and constant force of mortality as- 
sumptions used in the theory of life contingencies (comPare Brockett [3]). 
Moreover, when unimodality of the distribution can be justifiably assumed, 
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this technique can be extended without difficulty to incorporate this addi- 
tional knowledge (compare Brockett, Charnes et al. [5]). 

This technique's minimum discrimination information (MDI) objective 
function criterion also provides a goodness-of-fit measure with many desir- 
able properties (see Brockett [3, Part IV]). It is often said that the maximum- 
entropy method provides estimates that are the closest to the observed data 
(in the sense that it is most difficult to discriminate between the estimated 
density function and the observed data), subject to the known information 
that is incorporated as constraint in the model. The estimates are also some- 
times said to be maximally unprejudiced in the sense that all available in- 
formation is used, with the least injection of extraneous assumptions and 
considerations. See Theil and Feibig [20] for details. To paraphrase Albert 
Einstein "The model should be as simple as possible, but no simpler." Here 
the information theoretic approach uses only the data and knowledge con- 
straints and derives the density as a consequence  of the analysis, rather than 
presupposing a parametric density before the analysis. 

5. MAXIMUM-ENTROPY ESTIMATION APPLIED 
TO HISTOGRAM DATA 

A histogram of a variable X shows frequencies or counts corresponding 
to n intervals of X. Each such interval is of the form (a;, b,.], where one or 
both of a i and b i are finite for each i = 1 . . . . .  n, and ai÷ j <-b i (with the usual 
case being ai+l=bi)  for every i. In graphic form, the height, h i, of each 
interval, divided by the total H=~,~hi  of all interval heights, can be taken to 
represent the probability mass associated with the interval. 

Accordingly, the variable under investigation, X, can be regarded as a 
random variable and the maximum-entropy algorithm estimates f ( x ) ,  the 
density of X, or F ( x ) ,  the cumulative distribution function of X. When a 
reallocation of the probability mass to new intervals (a~, b~] is desired (as 
when trying to transform the histogram from one secondary data source into 
a histogram using intervals (a~, b'] so they can be incorporated with a second 
data source that used the intervals (a~, b~]), the reallocation can simply be 
calculated as 

F(b; )  - F(a;) ,  (5.1) 

where F is the derived distribution function for X. 
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A naive estimate of the density is a piecewise uniform distribution, if a~ 
and b n are finite, that is, 

h i 
Pi(X) - for x E (a i, bi]. (5.2) 

(b i - ai)H 

This is, for example, the estimate used in mortality table analysis when the 
uniform distribution of deaths assumption is used and yields the familiar 
"bar chart." 

When further auxiliary information is available on certain moments (or 
conditional moments) off(x) ,  then the ME procedure yields a more desirable 
estimate p(x) in a manner consistent with maximum-entropy estimation the- 
ory. 2 When no such information is given, p(x) becomes the final estimate 
of f (x) .  3 

The conditional moments that might be available are the conditional 
means E(Xlai<X<-b~)=~i and/or the conditional medians M(X 
lai<X<-bi)=Mi of the individual subintervals (a i, bi] (here M denotes the 
median). 

Returning to the general topic of determining a distribution that is close 
to some distribution q but that satisfies certain constraints, we define the 
minimum discrimination information (compare Brockett [3]) estimate of q 
to be the distribution p, which solves the extremization problem: 

Minimize 

Subject to 

p(x) 
f p(x)ln - ~ )  dx 

0 i = ~ Ti(x)p(x)dx 
d 

i : 1 . . . . .  n. 

(5.3) 

where In is the natural logarithm, 0i is a given parameter value; T,(x) is a 
given function of X whose known or given expectation defines the i-th con- 
straint; and the distribution q that is to be estimated may arise from empirical 
data (as in graduation problems) or from a known distribution (as in ad- 
justing a standard mortality table to reflect certain known mortality ratios at 
given ages). As previously discussed, the objective function can be construed 

2Since the algorithm used in this paper is concerned only with continuous density functions, we 
use the notation p(x) and f ( x )  interchangeably in this discussion. 

3However, when a t or b. is infinite, different strategies must be used because the uniform distri- 
bution is not acceptable in these situations. 
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as finding the "closest" distribution to q (in flae sense that the distribution 
found is least distinguishable from q; compare Brockett [3]), which is con- 
sistent with the known information stated in (5.3). 

The analysis given in Brockett [3] implies that the optimal solution of the 
problem above is a density function p° of the form 

q( x )e ~a,r,~) 
p'(x) = (5.4) 

f q(t)e ~'13ir~') dt 

(called the minimum discrimination information or MDI density) where [3 i 
are a set of parameters to be estimated in such a way that the constraints 
are all satisfied. Essentially, the final estimate adjusts the prior estimate q in 
a multiplicative manner to obtain consistency with the known information 
constraints. 

There are now special cases to consider. First, when the distribution 
q(x) is a uniform density (like an "ignorance" prior in Bayesian statistics), 
the optimal solution p* for (5.3) is found by solving a maximum-entropy 
problem 

f 1 Maximize p(x) In p - ~  dx 

Second, when the data or standard distribution q that is to be estimated 
is in histogram form, q can be modeled as a piecewise-uniform density 
q(x), and the integral 

bn 

f(x) 
fS(x)  In q-~x) dx 
al 

in the objective function of (5.3) can be expressed as 

bi 

p p(x) 

ai 
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Each integral in this sum is equivalent (up to a constant) to a corre- 
sponding entropy expression over the same interval. We use this equivalency 
when f ( x )  must be estimated separately for each interval, rather than 
"systemwide." 

Since the MDI statistic is additive, the estimation o f f ( x )  interval by in- 
terval, in fact, provides a global MDI estimate of the entire density, provided 
that only mass constraints are given (for example, histogram values without 
auxiliary information). We show below how (5.3) is developed for our piece- 
wise constant choice of q(x) when certain conditional means are also known 
for each interval in a subset I of the n intervals. 

To minimize (5.3) subject to conditional mean constraints of the form 

bi 

f x p( x )dx 
ai 

bi 

f p( x )dx 
ai 

= Ixi i E I, (5.5) 

for that subset 1 of indices of subintervals for which this conditional mean 
type of information is given, we rewrite (5.5) as 

bn 

f (x - I.~i)ll~,. b,lP(X)dx = O, 
al  

(5.6) 

where lt~,. b,1 denotes the indicator function of the interval [a i, bi]. This can 
be written in the global expectation constraint formulation of (5.3) by 
defining 

Ti(x) = f x  Ix i 

L 0 

for a i < x <-- b i 

otherwise 
i ~ I. (5.7) 

For intervals i ~ I, we know only the mass (or histogram height) informa- 
tion, which can be written as 
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bl 

f p( x )dx hi 
H '  

al  

(5.8) 

which can also be put into the global expectational constraint form of (5.3) 
by defining 

10 for a~ < x <- b i 
T~(x) = i ~ 1. (5.9) 

otherwise 

Note that in the numerator of (5.4), only one of the T~(x) is nonzero for any 
given value of x, so that we can reformulate the solution as 

I q( x )ea,~-~,~ / C 

f* (x )  = I,q(x) ea'lC 

for x E (a i, bi], i ~ I 

f o r x E ( a  i, bi], i ~ I 
(5.10) 

Here the denominator of (5.4), which can be viewed as a normalization 
constant, is abbreviated by the symbol C. The first expression in (5.10) is a 
truncated exponential conditional density, and the second expression is a 
uniform conditional density. 

This result also encompasses cases in which (conditional) medians or, 
more generally, percentiles are known. Using the algebra of densities and 
expectations, such median knowledge merely translates into additional con- 
straints of the type in (5.3), with Ti(x) again defined by (5.7) or (5.9). 

So far, we have shown that the maximum-entropy density over a closed 
interval [a, b], when no moment information is available, is the uniform 
density. When a mean for a similar interval is known, the maximum-entropy 
distribution is the truncated exponential (see Brockett, Charnes, and Paick 
[5] and Theil and Feibig [20]). Similarly, some other well-known special 
cases of (5.4) are listed in Table 3 (taken in part from Theil and Feibig [20, 
pp. 9]). 4 

4Note the x-axis scaling on the expressions for the exponential and truncated exponential distribu- 
tions in the table. These density functions are usually applied to intervals with one endpoint at x=O. 
In analyzing histograms, it may be necessary to fit these density functions for individual intervals 
of x with arbitrary endpoints; for this reason the table displays the most general forms of 
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TABLE 3 

SUMMARY OF MAXIMUM ENTROPY DISTRIBUTION 
FOR DIFFERENT KNOWN INFORMATION SCENARIOS 

Interval Moments Known ME Density 

[a. b] 

[a, bl 

[42, O0] 

[-ao, b] 

[ - = ,  ool 

None 
Mean ~, 

Mean p~ 

Mean O, 

Mean p, and 
Variance tr 2 

Uniform: f (x )  = 1 / (b -a )  
Truncated exponential: 
f ( x ) = a  e ~ ' l ( e ~ - e  *') 

is an implicit function of p,. 
Exponential: 
f ( x ) = e  -t~-°m'-°~l/(p,-a) 

Exponential: 
f ( x )  = e-lV'-'~)t(b-v')ll(b-p,) 

Normal: 
I 

f(x) = ~ e - ~ ' - ~  2,,2 

6. THE HEURISTIC PROCEDURE FOR DENSITY ESTIMATION 
IN SOME SPECIFIC INFORMATIONAL SETI'INGS 

In a given information scenario, any combination of  the following may 
be known: the unconditional mean of f (x ) ;  the unconditional median of 
f (x) ;  and conditional (interval) means and/or medians for a number of  the 
intervals [a i, bi]. The distributional scenarios must be treated differently for 
the cases of a~=-oo  and/or b=oo .  For brevity, in this paper we do not 
consider moments other than means and quantiles, because such higher-order 
generalized moments are unlikely to be realized from published secondary 
data or from subjective estimation methods (although the mathematics for 
accomplishing their inclusion poses no problems, for example, see Brockett 
[3]). 

The order of precedence for the use of this information in the  heuristic 
algorithm implemented via computer as described in this paper is as follows: 
If two or more interval means are known, they are used. The unconditional 
mean, then, is not used, nor are medians for those intervals. Any known 
medians for the remaining intervals are used. The unconditional median, if 
it is known and if it does not fall into one of the intervals for which a mean 
is known, is used. If only one interval mean is known and the overall mean 
is known, the user can choose which one to use. Any information sets not 
prohibited by the above rules can be used in their entirety. 

the function. Also, the exponential distribution on (-oo, b] is written to be monotonically increasing. 
Other combinations of moments and intervals result in ME distributions that can be derived by 
using the same procedure demonstrated in (5.5)-(5.10). 
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A restatement may clarify these rules: If a conditional mean and median 
for the same interval are known, priority is arbitrarily given to the interval 
mean. Also, a known conditional median simply results in the splitting of 
an interval into two new subintervals, each with half the probability mass 
of the original. A known overall median likewise results in the splitting of 
an interval, although this will usually be an uneven division. Median-only 
operations always result in a new q(x),  which has the same form as (6.2). 
From the context of the available data, no interval means will be known for 
these newly created intervals, but the unconditional mean still may be known 
and used. 

The following (not all encompassing set of) illustrations provide estimates 
for use as building blocks for the inference of the desired but unknown true 
distribution function F(x) .  These building blocks can then be composed 5 
according to the rules given earlier in this section to obtain the desired global 
estimates of F. These discussions and those of Brockett [3] show how to 
include any and all information in the analysis if desired. 

/L When the C o n d t t i o n a l  M e a n  f o r  a B o u n d e d  I n t e r v a l  (a, b] 
Is K n o w n  

The ME conditional distribution for the interval is the truncated exponen- 
tial. The known mean, Ix, is related to the parameter a of the exponential 
distribution by the equation 

be etb __ a e ' ~  
a -t. (6.1) 

p,  = e a b  _ e a a  

The segment of the distribution function for x~[a,  b] is then 

F ( x )  = F(a) + (6.2) 
eab - eO~ • 

Now, however, we must adjust the vertical scaling because, as F ( x )  is writ- 
ten in (6.2), we have F ( b ) - F ( a ) =  1. To be consistent with the histogram 
data we started with, this quantity must be scaled upward or downward to 
reflect the particular interval mass h J H  (if this is the i-th interval and a=a i 
and b=bi), which may not be unity. Accordingly, we revise F(x )  to 

~These estimates assume that the user-provided moment information is correct. 
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hi(e ~x -- eotal) 
F*(x) = F*(ai) + H ( e ~  ' _ e ~ )  for x E (a i, bi]. (6.3) 

B. When the C o n d i t i o n a l  M e d i a n  o f  (at, b~] Is K n o w n  

The ME conditional distribution is piecewise-uniform in this situation. The 
"mass" in this interval is h i according to the histogram data. In this case 
(a,., bi] is split into two subintervals (ai, Mi) and (Mi, bi], each of which 
now is given a mass equal to h i 2 .  No additional information is available 
for the newly created intervals, so each such subinterval j is associated with 
a ME distribution that is uniform on that subinterval. When x belongs to 
(a j, b j], 

h j (x  - aj) 
F* (x )  = F*(aj) + [H(bj - aj)]" (6.4) 

C. When the U n c o n d i t i o n a l  M e a n  Is K n o w n  a n d  All  
S u b i n t e r v a l s  Are B o u n d e d  

We apply (5.3) with q(x)=hi l [H(bi -a i ) ]  for xG(a i, bi] and with the con- 
straint set 

f xp (  x )dx = 

ai 

bo 

p ( x ) d x  = 1 

ai 

(6.5) 

The ME distribution is then a piecewise truncated exponential: 

p ( x )  = 

hi e - ~  

H(b i - ai) 

f q(t)e -~t dt 

for x E (a i, bi], i = 1 . . . . .  n. (6.6) 

where the same limits of integration apply. Substituting (6.6) into (6.5) yields 
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~i b i - -  4- - -  + 

= (6.7) 
Ix ~ b~-a~ [ h' ] [e-a°'-e-ab'] 

While Equation (6.7) is not easily solvable for 13 in terms of Ix, the value 
of 13 can easily be obtained by numerical techniques. By integrating (6.6), 
where F*(a~)=0, the corresponding distribution function F*(x) can be writ- 
ten as 

F*(x) = F*(a~) + , x E (a i, b i] (6.8) 

D. When No Subinterval  Moment  Information Is Available f o r  
a Half-Unbounded Interval 

This situation must be broken down into two cases: when the overall 
(unconditional) mean is not known and when this overall mean is known. 

(1) When the Unconditional Mean Is Not Known 

To be able to use the results of the previous section, the unbounded in- 
tervals are closed by means of an ad hoc procedure called the "rule of ten." 
The total width of the histogram's interior intervals is b.-a m. An exterior 
interval that is unbounded is given a width of ten times this quantity. For 
example, if both exterior intervals of the histogram are half-unbounded, the 
leftmost interval is given endpoints [(a m- lO(b.-am), at], and the rightmost 
is given endpoints [b., b.+ 10(b.-am)]. These bounded intervals are accorded 
uniform ME conditional densities, with distribution functions as in (6.4). 
The rule of ten is justified by the idea that the resulting interval widths 
would contain 99% of the mass of any monotonically decaying "true" den- 
sity function. This is a heuristic and may, of course, understate probabilities 
near the interior endpoint. 
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(2) IVben the Uncondiu'onal Mean Is Known 

The half-unbounded interval must be an exterior interval of the histogram; 
if n>2,  it will be adjacent to a bounded interior interval. The rule used in 
this case is: assign a conditional mean to the half-unbounded interval such 
that the conditional mean of the two intervals combined is located at their 
mutual boundary (endpoint). 

For example, suppose the histogram's rightmost interval is unbounded on 
the right. Its endpoints are a. and +oo. The next-to-rightmost interval is 
(a._ l , b._l], where b._l=a . and whose conditional mean is Ix.-I. We assign 
a value to Ix. such that 

hn-I Ixn-I + h .  Ix. 
h._ t + h .  = an (6.14) 

that is, 

a. (hn_ I + h.)  - h._ I Ix.-I 
(6.15) Ix" = h .  

The conditional ME density is exponential with mean Ix.. The segment of 
the distribution function is 

hn 
F*(x) = F(a.) + -~ [1 - e <a"-x)l¢~"-~")] for x E (a., oo]. (6.16) 

For the opposite instance, where the leftmost interval ( i= 1) is unbounded 
on the left, we assign 

a2(h I + h 2) - h2ix2 
(6.17) Ixl = hi 

whence 

h 
F*(x) = =.! eta~-x)/t~,-a2) for x • ( - ~ ,  a2]. (6.18) 

H 
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7. APPLICATION EXAMPLES 

In this section, we apply the formulas derived in Section 6 to solve the 
problems posed previously. 

Adjusting the Life Table by Incorporating Medical 
Study Resul ts  

Table 1 contained the relative mortality ratios for 5,131 spinal cord injury 
patients by neurological category and age group at time of injury. Starting 
with the 1980 Standard U.S. Life Table, Brockett and Song [9] incorporated 
the results in Table 1 to derive an adjusted life table for calculating wrongful 
injury damage award compensation and for determining life insurance pre- 
miums for medically impaired lives by minimizing the "information dis- 
tance" between the adjusted life table and the standard life table subject to 
the applicable constraints. These constraints are formulated to fulfill the 
characteristics of a life table as well as the medical study results. Their 
method provides a way to adjust a standard life table to reflect the known 
characteristics of the individual while remaining as close as possible to a 
given standard table. Figure 2 shows the standard and adjusted survival 
curves for incomplete paraplegia patients. 

B. Expec ted  Loss Calculat ion 

Table 2 concerns the expected loss experience for 1,000 claims. We note 
that when the conditional mean, Ix, and probability, p, for a bounded interval 
[a, b] are known, the ME conditional distribution for the interval is a trun- 
cated exponential. Suppose the ME conditional distribution for the interval 
[a, b] is parametrically expressed as 

fL(x) = e "+1~. 

Then the following set of equations must hold for the derived conditional 
probability and mean to be as given 

b 

f e Q+I~' dx = p, 
a 

b 

f xe ~'+l~ dx = plx. 
d 

(7.1) 
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FIGURE 2 
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Transforming the equations on the previous page, we obtain 

and 

1 1 + p.13 -- a ~  
13 = - -  In (7.2a) 

b -  a 1 + Ix13- b13 

p13 
ot = In (7.2b) 

ebl3 _ eaf~" 

We can then obtain the numerical results, answering any probabilistic 
questions concerning this example. Because Table 2 shows that the condi- 
tional mean for the first interval (loss=S0) is 0, all the mass (that is, 0.075) 
is put in one point. The parameters a and [3 for the next six bounded intervals 
are presented in Table 4. 
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TABLE 4 

NUMERICAL RESULTS FOR ME CONDITIONAL 
PROBABILITY FUNCTION 

Loss Interval 
[a, bl ~ 13 

l ,  lO00 - -15 .294  0 .009995 
lOO1, 5000 -- 12.865 0 .000898 
5001,  10000 -- 18.439 0 .000960 
10001, 100000 - 1 2 . 1 2 4  - 0 .000100 
1 0 0 0 0 1 ,  500000  - 1 6 . 2 1 5  - 0 . 0 0 0 0 0 9  
500001,  1 ~  - 16.527 - 0 . 0 0 0 0 0 5  

Note that the last loss interval in Table 2 (that is, $1,000,000+)  is a half- 
bounded interval with its conditional mean given. The results in Table 3 can 
then be applied to obtain the distributional function for this interval. 

Based on the ME distribution obtained for this example, those questions 
raised in the introduction can be answered easily. For example, if it is desired 
to know the probability that a claim will exceed a certain threshold level, 
say, $50,000, and also to know the expected claim size if a policy were 
issued with this threshold level as a policy limit, we then calculate 

P = Pr[Loss -> $50,000] = f fL (x)dx 
50,000 

50,000 

= 1 - f fL(x)dx 
0 

10,000 50,0011 

0 10,000 

50,000 

= 1 - 0 . 9 7 5 -  f e- lZ124-° '~dx 
10.000 

= 0.0054. 
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Similarly, 

E[Claimlclaim limit = $50,000] 

50.000 
/ I  

= I xfL(X)dx + 50,000 Pr[Loss --> $50,000] 
i 

0 

= (0)(0.075) + (900)(0.5) + (4,000)(0.25) 

+ (9,000)(0.15) 

50,000 

+ f xfL(xldx 
10,000 

+ (50,000)(0.0054) 

= 0 + 450 + 1,000 + 1,350 + 378 + 270 

= $3,448, 

where the integral from $10,000 to $50,000 is easily obtained by calculation 
using the exponential formula for fL(x) over the interval. 

(7. The  Actuarial Software Marketer 
The percentages corresponding to the bars of Figure 1 were 36%, 39%, 

19%, and 5%. The report stated the maximum observed number of uses was 
50. It is apparent the median cannot possibly be 4.5; that would make at 
least 73% of the observations greater than the median. We ran the estimation 
several times; once without using the untrustworthy median, and also under 
the assumption that the 4.5 was a typographical error and the true median 
was 5.5, 6.5, or 7.5. It was also nature to check the feasibility of the mean. 
Using the endpoints of the published histogram, we can bound the mean: 

0.36(0) + 0.39(5.0) + 0.19(10.0) + 0.05(30.0) = 5.4 <-- p, 

-< 12.1 = 0.36(5.0) + 0.39(9.9) + 0.19(29.9) + 0.05(50.0). 

A mean of 8.5 appears reasonable, and we can proceed with the estima- 
tion. The results are presented in Table 5. 
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TABLE 5 

SENSITIVITY OF THE INFORMATION 
THEORETIC DISTRIBUTION ESTIMATE 

OF THE PERCENTAGE OF FIRMS 
WITH SIXTEEN OR MORE USES 

OF THE GIVEN DEFINED-BENEFIT 
CALCULATION AS THE SUPPLIED 

MEDIAN USE CHANGES 

Median 

none 
4.5 
5.5 
6.5 
7.5 

Number of Firms Using 

0-15 Times 16 or More Times 

84.6% 15.4% 
84.6 15.4 
83.9 16.1 
84.5 15.5 
85.2 14.8 

The insensitivity of the far fight column to the choice of median provided 
some degree of comfort with the initial market estimate for the software 
product. 

8. CONCLUDING REMARKS 

The heuristic statistical procedure described in this paper (use what is 
known and maximize the uncertainty of what is not known) can be cate- 
gorized as problem-solving for grouped data with auxiliary information. 
Such problems arise naturally in the actuarial analysis of secondary data. 
Responding to data interpretation needs that arise in actuarial practice, the 
algorithmic portion uses available information theoretic techniques when 
possible. In other cases, when data are missing or in conflict, ad hoc mea- 
sures (based on practical logic and experience) are taken to facilitate the use 
of the same techniques. A variety of solved application examples were pro- 
vided, and further application areas indicated. 
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