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ABSTRACT 

The conventional wisdom about convexity is that positive convexity is 
good, and more is better. Paradoxically, while defensible in theory, this 
maxim has been found to fail in practice. In this paper, the relationship of 
convexity to the assumption of parallel shifts is explored, and new convexity 
measures are developed to reflect nonparallel shifts. These new measures 
can differ dramatically from the traditional values, providing insight into 
when convexity does not have to be good and when it does. 

1. INTRODUCTION 

It is generally assumed that positive convexity is good, and more con- 
vexity is better than less. However, actual performance studies do not nec- 
essarily bear out this conventional wisdom; see Kahn and Lochoff [5]. To 
understand why convexity need not be good, or more better, we must un- 
derstand the relationship between this measure and the manner in which the 
yield curve moves. 

Specifically, convexity is a measure, the definition of which relies on the 
assumption of parallel yield curve shifts. When the yield curve moves in 
parallel, convexity is indeed good, and more is indeed better. However, 
when the yield curve shift does not satisfy this defining property, a different 
definition of convexity is required. In this case, the appropriately redefined 
convexity measure can be dramatically different from the original. In ad- 
dition, with respect to this nonparallel shift, the resultant convexity value 
can have negative implications for portfolio performance. 

The significance of the dependence of convexity on an underlying as- 
sumption about yield curve shifts should be no surprise. A similar depend- 
ence has been demonstrated for duration in other articles; see Reitano [6], 
[7], [9], [10]. That is, while the duration of a bond may be 4.0, say, when 
the yield curve shifts in parallel, it can display a much greater or lesser 
sensitivity to other types of shifts. 

For more generality on the multivariate models employed, see Reitano 
[6], [10]. For the immunization implications of this theory, the reader is 
referred to Reitano [8], [11], [12], and [13]. In the following, we assume, 
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as is customary, that all price functions have two continuous derivatives in 
the variable(s) in which they are expressed and that these price functions are 
positive. 

2. WHY POSITIVE CONVEXITY SHOULD BE GOOD 

If A(0) is the current market value of an asset based on a given yield 
curve and D(0) is its modified duration, approximations can be made for the 
asset's value on parallel-shifted yield curves. For example, if each point on 
the yield curve shifts by amount Ai, the new market value, denoted A(Ai), 
is approximated by: 

A(Ai) = A(0)(1 - D(0)Ai). (1) 

Of course, Equation (1) is just a restatement of the familiar first-order 
Taylor series approximation for a differentiable function: 

A(Ai) --- A(0) + A'(0)Ai, (2) 

since the modified duration is defined for A(0)4:0 by: 

D(0) = A'(0) 
A(0)" (3) 

In the same way that duration reflects the first derivative or slope of the 
price function, convexity reflects its second derivative or curvature. In par- 
ticular, if the convexity, C(0), is positive (that is, we are " long"  convexity), 
it is possible to prove that the approximation in (1) is an understatement 
and: 

A(Ai) > A(0)[1 - D(0)Ai], (4) 

for Ai in an interval that contains 0, say: -a~Ai<_a. 
Again, this is a restatement of a familiar result from calculus. By an 

application of the Mean Value Theorem, we have that given Ai, there is a 
X, 0 < X < 1, so that: 

A(Ai) = A(O) + A'(O)Ai + 1/2A"(hAi)(Ai) 2. (5) 

Consequently, if A"(0)>0, then by continuity A"> 0 in an interval about 
0, and hence, the second-order correction term in Equation (5) is positive 
for Ai in this interval. Consequently, Inequality (4) holds. The same con- 
clusion can be drawn from the assumption that C(0)> 0. This is because the 
sign of A"(0) equals the sign of convexity, since A(0)>0 and: 
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A"(0) 
C(0) = A(0)" (6) 

For example, if D(0) is positive, the inequality in (4) implies that for 
positive yield curve shifts, the asset price will not fall as much as (1) implies, 
while for negative shifts, the price will increase more than (1) implies. 
Further, for fixed D(0), the extent of this relative extra performance increases 
as C(0) increases. 

To prove this last property, consider two assets, A1 and A2, with equal 
market values and durations, and with the convexity of A, greater than that 
of A2. The price function, A(,Sd)=AI(Ai)-A2(Ai), then has a market value 
and first derivative equal to 0, and a positive second derivative. An appli- 
cation of (5) then implies that A,(Ai) exceeds A2(Ai) for Ai in an interval 
about 0. 

If the convexity value, C(0), is negative (that is, we are "short" convex- 
ity), the inequality in (4) reverses, as is easily seen from (5). Consequently, 
positive yield curve shifts will decrease price more than implied by (1), 
while negative yield curve shifts will increase price less than that implied. 
Further, the extent of this underperformance worsens as C(0) becomes more 
negative. 

It is in the above sense that positive convexity is considered good and 
more is better, while negative convexity is bad, and more is worse. (See 
also the Appendix for an alternative, more rigorous derivation.) 

The approximation in (1) can be generalized to reflect the above properties 
of convexity by using a second-order Taylor series as follows: 

A(Ai) ---A(0)[1 - D(O)Ai + '/2 C(0)(Ai)2]. (7) 

As an example, assume that the current yield curve is given by the vector 
of "yield curve drivers" (0.075, 0.090, 0.100), representing bond yields at 
0.5, 5 and 10 years, respectively (Reitano [10]). In practice, one would 
typically assume more yield curve drivers, for example, at maturities of 1, 
3 and 7 years. However, this simple model is adequate to illustrate all the 
features of the more realistic model. 

We also assume for the illustrations below that bond yields at other ma- 
turities are linearly interpolated, and spot rates derived to price the various 
implied bonds to par. A calculation shows that a $50-million, 12 percent, 
10-year bond has a market value of $56.400, a duration of 6.16, and a 
convexity of 52.4. 
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A 100 basis point parallel increase in the yield curve to (0.085, 0.100, 
0.110) decreases the price of this bond to $53.065, while the duration ap- 
proximation in (1) produces an estimate of $52.926. Consistent with (4), 
the duration estimate produces an understatement, equal to $0.139 here. 
Making the convexity adjustment in (7) improves the estimate to $53.074, 
for a slight overstatement of $0.009. In this case, convexity improved the 
bond's performance relative to the duration estimate by 0.28 percent, while 
the actual price called for a somewhat smaller relative performance improve- 
ment of 0.26 percent. 

Similarly, a 100 basis point decrease in the yield curve to (0.065, 0.080, 
0.090) increases the price of this bond to $60.028, while the duration esti- 
mate in (1) calls for a price of $59.874. Again we see that (4) holds and 
the duration estimate understatement here is $0.154. Adding the convexity 
adjustment in (7) improves the estimate to $60.022, giving an understatement 
of $0.006. 

While rarely considered in practice, these approximations can be improved 
by developing higher-order derivatives of the price functions and general- 
izing (7). Mathematics aficionados recognize this process as a continued 
application of Taylor series expansions from calculus to the price function 
A(Ai). 

3. WHY POSITIVE CONVEXITY NEED NOT BE GOOD 

The mathematics underlying the above approximations and the resulting 
properties of convexity fundamentally reflect the assumption of parallel shifts. 
This is clear from the basic representation of price, A(Ai), as a function of 
this uniform shift amount, Ai. This approach was first developed in Fisher 
and Weil [3] and generalized to other models of yield curve shifts; see 
Bierwag [1] for a survey and references. 

By using the general price function models in Reitano [6], [10], greater 
insight can be obtained into the behavior of the price function under general 
nonparallel yield curve shifts. For the moment, we restrict our attention to 
yield curve shifts in a given direction, which we denote by N. The price 
function is again modeled as A(Ai), but with a new meaning. Here, Ai 
denotes the amount of shift 'in the direction of N'. 

For example, consider the yield curve vector (0.075, 0.090, 0.100) uti- 
lized above. Let N = (1,2,3), say. Then A(Ai) denotes the price of the asset 
when the yield curve shifts: 

(0.075, 0.090, 0.100) ---, (0.075 + Ai, 0.090 + 2Ai, 0.100 + 3Ai). (8) 
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In other words, N represents the shift for which the 5-year yield moves twice 
as much as the 6-month yield, while the 10-year yield moves three times as 
much. Naturally, for any given N, we can contemplate shifts in that direc- 
tion, while for N =  (1,1,1), this model reduces to the classical parallel shift 
model above. 

More generally, if io = (iou .... io,,) denotes an m-point representation of 
the yield curve, and N = (nl . . . .  , n,,) denotes the yield curve shift direction 
vector, a shift of Ai in the direction of N corresponds to: 

io ~ io + zSdN = (im + Ainl ,  i02 + Ainz . . . . .  io,, + Ain,~). (9) 

Given this model, the approximations in (1) and (7) generalize almost 
imperceptibly. Using the notation AN(Ai) to keep in mind the dependence 
on the direction vector N, the approximation in (7), for example, becomes: 

An(A/) = AN(0)[1 -D,v(0)Ai + 1/2 CN(0)(Ai):]. (10) 

In (10), the appropriate duration and convexity values also reflect N, and 
not surprisingly. These values are called "directional duration" and "direc- 
tional convexity," respectively. When N =  (1,1,1), these values reduce to 
the traditional D(0) and C(0) values above. Note also that in the above 
formula and below, AN(O)=A(0) and is independent of N. 

The reason for this easy generalization from (7) to (10) is that given N, 
the price function is still just a function of one variable, Ai. Consequently, 
Equation (2) still applies, as does its higher-order generalizations and the 
Mean Value Theorem of Equation (5). Here, however, the duration and 
convexity measures must be defined consistently with (3) and (6); that is: 

A;,(0) (11) 
DN(0) = An(0)' 

A%(0) (12) 
c .(o)  = A.(O)" 

The previous comments about convexity are consequently true for direc- 
tional convexity. That is, given N, if C,v(0) is positive, (4) again holds and 
the asset's performance will be better than that implied by the D~0) value. 
In addition, the larger CN(0) is, the better it is for asset performance in the 
direction of  N. 

The reader may wonder: If all the above comments apply to C,v(0) for 
any N, how can convexity not be good? The rub is this. Just because C(0) 
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is positive when N =  (1,1,1), it does not necessarily follow that CN(0) is 
positive for direction vectors N not equal to (1,1,1). 

Before illustrating this point with examples, we review how DN(0) and 
CN(0) are calculated in practice; see Reitano [6], [7], [9], [10] for more 
detail. 

4. CALCULATING DmECnONAL DU~TIONS AND CONVEXITIES 

There are at least three ways to calculate DN(0). The first is to use the 
derivative-based definition in (11). In practice, this is often not feasible since 
the price function may not be given by an explicit mathematical formula, 
but implicitly given via an option-pricing model. 

The second method is the direct estimation approach, and the formula 
used is analogous to that used to approximate the modified duration. 
Specifically: 

AN(Ai) - AN(- Ai) 
DN(0) = - , (13) 

2Au(0)Ai 

where we choose Ai relatively small (such as 5 to 10 basis points). The 
formula in (13) reflects the symmetric central difference approximation to a 
derivative, which usually provides better estimates than the more common 
asymmetric forward difference approximation formula: 

Du(O) -- - AN(Ai) - An(O) (14) 
AN(O) Ai  

The advantage of the estimation approach is that it applies equally well 
to valuing fixed cash flows or interest-sensitive flows via an option-pricing 
model. The disadvantage of this approach is that calculations appear to be 
necessary for every yield curve direction vector N of potential interest. 

The third approach, and most preferred, involves the use of partial du- 
rations. For the three point yield curve vector above, and N=  (nl, nz, n3), 
we then have: 

DN(O) = nlD~(io) + nzOz(io) + n3D3(io), (15) 

where Da(io), D2(io) and D3(io) are the partial durations corresponding to the 
three yield curve drivers, evaluated on the initial yield curve io. In other 
words, DN(0) equals a sum of products of the components of N = (n~, n2, 
n3), with the components of the "total duration vector," D(io)= (D~(io), 
Dz(io), D3(io)). Of course, this result generalizes to yield curve vectors of 
any number of points. 
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There are two ways to view the concept of partial durations and Equation 
(15). The first is the more mechanical approach. For a three point yield 
curve vector, such as that exemplified above, three special direction vectors 
are created: N1 = (1, 0, 0), N2 = (0, 1, 0), N3 = (0, 0, 1). The three partial 
durations are then equal to directional durations, using these three direction 
vectors, where Dl(io) corresponds to DN(0) with N = N1, and so forth. Con- 
sequently, partial durations are easy to estimate using (13) or (14). For other 
than three yield curve drivers, the above mechanical approach generalizes 
in the obvious way. 

Although this mechanical approach provides a direct basis for generating 
numbers and relating the above concepts, it provides little insight to the 
validity of (15) and cannot be easily generalized to the calculation of CN(0) 
discussed below. 

The second approach to (15) is more theoretical. First, the price function 
can be explicitly modeled as a function of the m yield points: 

A(i) = A(il, i2, ..., ira). (16) 

To distinguish the value of the current yield curve, io, from the change in 
the yield curve, i - io = Ai, the above function is rewritten: 

A(io + Ai) = A(iol + Ai~, io2 + Ai2, ..., ion + Aim), (17) 

where we treat io as fixed and Ai as the vector of variables. 
If N is a given direction vector, the directional derivative of A(io+ Ai) 

evaluated on Ai = 0 is equal to A~,(0) as defined above: 

O,,A(io) = A~(O). (18) 

However, from advanced calculus, 

ONA(io) = ~ n,O,A(io), (19) 
i=1 

where OiA(io) denotes the various partial derivatives of A(io + Ai) evaluated 
on A i = 0  and also equals the directional derivatives of A(io+Ai) in the 
directions of: N~ = (1, 0, ..., 0), N2 = (0, 1, 0 . . . . .  0), etc. 

Consequently, dividing (19) by A(io)-AN(0), and using (11) and (18), 
produces: 

DN(O) = ~ n,D,(io) 
i - 1  

= N-D(io) ,  (20)  
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reflecting the familiar dot or inner product notation. Of course, (20) reduces 
to (15) when m = 3. 

For the 12 percent, 10-year bond above, the partial durations developed 
using (14) and Ai=0.0005 equal: 0.035, 0.219 and 5.904, respectively. 
Consequently, for this bond, Equation (15) becomes: 

DN(0) = 0.035nl + 0.219n2 + 5.904n3. (21) 

When N=(1,1,1),  we obtain DN(0)=D(0)=6.158, since the partial dura- 
tions sum to the traditional duration value. For N = (1,2,3), we see that the 
directional duration is 18.185. 

One advantage of using the partial duration approach to calculating DN(0) 
is that only three partial durations need to be calculated in this example, 
based on formulas as in (13) or (14), and all other directional durations are 
easily valued using (15). In general, m partial duration calculations are re- 
quired, where m equals the number of yield curve drivers utilized. 

The second advantage of this approach is that we know in advance how 
large and small DN(0) can be. Specifically, applying the Cauchy-Schwarz 
inequality to Equation (20), DN(0) can be as large as the product of the 
length of N and the length of D(io), and as small as - 1 times this product: 

- }D(io)t IN[ -< Du(io) < ID(io)l ]NI. (22) 

As above, D(io)= (D~(io), Dz(io), D3(io)) denotes the total duration vector, 
and ID(io)l denotes its length. As usual, the length of a vector is the square 
root of the sum of the squares of its components. Because the size of DN(0) 
reflects the length of N in (22), directional duration comparisons are only 
meaningful when this length is fixed. 

For the above bond, a calculation produces: ]D(io)l =5.908. Restricting 
our attention to direction vectors N of length "k/3, the length of the traditional 
direction vector N = (1,1,1), Inequality (22) becomes: 

-10 .23  _< ON(0) -< 10.23, IN I = V'3. (23) 

Of course, the duration of this bond, 6.158, fits within this range since, as 
noted above, its underlying direction vector, N = (1,1,1), has the indicated 
length. 

For this bond, while its duration is 6.158, its directional duration can be 
as large as 10.23. Which direction vector produces this maximum sensitiv- 
ity? Again, the Cauchy-Schwarz inequality and (20) give the answer as: the 
direction vector proportional to D(io). For example, the direction vector 
N = (0.010, 0.064, 1.731) has length V'3 (approximately), is 29 percent of 
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D(i0), and produces a directional duration of 10.23 by (20). Using - N  
produces a directional duration value of - 10.23. 

For the calculation of directional convexities, one again has three choices. 
The derivative-based definition in (12) is again more suitable for theoretical 
investigations than for numerical valuations. The second method of direct 
estimation uses a formula analogous to that in (13) and is reminiscent of the 
traditional convexity estimation formula: 

Au(Ai) - 2Ajv(0) + A u ( - A i )  
Cu(0) ~- (24) 

Au(0)(Ai) 2 

where Ai is chosen to be small, say 5 basis points or so. 
For example, letting N = (1,1,1) and Ai = 0.0005, Formula (24) produces 

the convexity estimate of 56.414 for this bond, as noted above. Unfortu- 
nately, as with (13) or (14), the above formula has the apparent disadvantage 
that every direction vector N requires a separate calculation. Fortunately, a 
formula such as that displayed in (15) or (21) holds for Cu(0); only here this 
formula reflects partial convexities. 

For three yield points, there are six partial convexities; for m yield points, 
there are m(m - 1). For the above bond, we have: 

Cu(O) = 0.14n~ z + 0.85nz z + 24.36n] 

+ 2(0.18nlnz + 1.84n~n3 + 11.51nzn3). (25) 

In contrast with the situation for partial durations, partial convexities are 
not in general equal to directional convexities with special direction vectors. 
Consequently, the mechanical approach above does not readily generalize. 
The exceptions to this statement are the partial convexities that are the coef- 
ficients of the "squared" terms (n], n~, etc.) in (25). As it turns out, these 
three partial convexities, denoted Cn(io), C2z(io), and C33(io), equal direc- 
tional convexities in the directions of the special vectors, N~, Nz and N3, 
respectively, given above. The partial convexity coefficients of the "mixed"  
terms (nlnz, n2n3, etc.) require the more theoretical model in (17) for their 
development and understanding. 

First, let N=(nx, n2, .... n,,,) again equal the given direction vector. 
Generalizing (18), the second-order directional derivative ofA(io + Ai) eval- 
uated on A i = 0  is equal to A,~(0) defined above: 

O~A(io) = A~(0). (26) 



488 TRANSACTIONS, VOLUME XLIV 

Also, from advanced calculus, 

0~A(io) = ~ ~] n,n~O~-A(io), (27) 
j -1  i=l 

where 0,~A(io) denotes the second-order partial derivatives ofA(i o + Ai) eval- 
uated on Ai =0.  

Dividing (27) by A(io), and using (12) and (26), produces: 

CN(O ) ~ ~ ~ ni~jCij(~) 
jffil iffil 

= N r C(io) N, (28) 

where Co(io)= a,~ A(io)/A(io) denotes the partial convexities and C(io) is the 
total convexity matrix. Note that (28) is also expressed as a quadratic form 
in N. 

Clearly, (25) is just a special case of (28) with m = 3, and noting that 
since Cei(io)= Cii(io) by the assumed continuity of ~A(io), mixed terms are 
grouped by twos. 

Setting N =  (1,1,1) in (25), the traditional convexity value of 52.41 is 
produced. That is, analogous to the case for partial durations, partial con- 
vexities sum to convexity, where the "mixed" partial convexities are counted 
twice. For N =  (1,2,3), we obtain 372.66 as the directional convexity value. 

Besides calculation ease, the advantage of the formulation in (25) or in 
general in (28) is that it lends itself to estimation as in (22) and (23). The 
general formula again reflects the length of N, so we restrict our attention 
to N with INI = v"3 .  For the above bond expressed in (25), we obtain: 

-11.75 _< CN(0) -< 87.49, [NI = X/3. (29) 

The traditional convexity estimate of 52.41 lies within this range as expected, 
since the length of N=(1,1,1) is V"3. 

The outer bounds in (29) are calculated by using techniques from linear 
algebra, which are motivated by the quadratic form representation in (28). 
In general, one obtains: 

x, INI 2 _< CN(0) -< x,. INI 2, (30) 

where X~ and k,,, are the smallest and largest eigenvalues of COo), respec- 
tively. Also, the outer bounds in (27) are achieved for N1 and N,, equal to 
the respective eigenvectors; see Reitano [10] for a derivation. 
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Interestingly, even for the simple bond in (29), the convexity value need 
not be positive. Using the direction vector N1 = ( - 0.23, - 1.58, 0.66), we 
obtain CN(0) = - 11.69 by (25), which equals the lower limit in (29) except 
for rounding in NI. The direction vector that reproduces the upper limit in 
(29) is N3=(0.11, 0.65, 1.60). 

As a numerical example, assume that the yield curve moves 100 basis 
points in the direction of N~ = ( -0 .23 ,  -1 .58 ,  0.66). That is, the yield 
curve shifts by 0.01 x N1 = ( -  0.0023, - 0.0158, 0.0066). The actual price 
of the bond is then decreased $2.035 from its original value of $56.399, to 
$54.364. 

To approximate this new price, we calculate D~,(0) by (21) and obtain 
D~v(0) =3.543. The duration approximation using (10) and ignoring C~0) 
calls for a price decrease of $1.998 to $54.401. This approximation under- 
states the actual decrease because convexity in this direction is negative, 
equaling - 11.75. Making the convexity adjustment in (10) produces a price 
of $54.368, for an error of $0.004. 

Admittedly, while the above bond example illustrates the theory that C~(0) 
need not be positive just because C(0) is, the numerical values are hardly 
compelling even in this worst case. That is, for this example, it may be 
argued that it hardly appears material that CN(0) is negative in this direction. 

The next example involves a surplus position. The convexity implications 
of the above analysis can be significant in this case. That is, nonparallel 
yield curve shifts can have significant implications for the convexity of 
surplus, as has been previously demonstrated for the duration of surplus. 

5. AN EXAMPLE WITH SURPLUS 

As in Reitano [7], [9], [12], the asset portfolio consists of the above $50- 
million bond and a $17.48-million 6-month discount position, such as com- 
mercial paper. The single liability is a $100-million payment in year 5. The 
initial surplus position is then equal to $9.280 million, with a duration of 
4.85 and convexity of 140.52. 

The partial durations of surplus equal: 4.20, -35.23 and 35.88, respec- 
tively. Consequently, as in (21), the directional duration of surplus in the 
direction of N = (na, n2, n3) equals: 

DA0) = 4.20nl - 35.23n2 + 35.88n3. (31) 

Because the coefficients in (31) are quite large compared with those in (21), 
potentially greater values for DN(0) are expected. 
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To investigate this, we again use (22) for the potential range of Du(0) 
values given a restriction on ]N I. A calculation shows that for the total 
duration vector of surplus, ID(io)] =50.460. Consequently, restricting our 
attention to N with INI = v ' 3 ,  for example, N = (1,1,1), we obtain: 

-87 .40  -< DN(O) <- 87.40, INI = V'3. (32) 

As expected, the larger coefficients in (31) create the potential for sig- 
nificant duration values. The actual surplus duration, D(0)=4.85,  greatly 
understates this potential since its calculation reflects N = (1,1,1), which in 
this case represents a relatively harmless shift direction. As was the case for 
the bond, the direction vectors that produce extreme values of Du(0) in (32) 
are proportional to D(io). For example, N=(0.144,  -1 .209 ,  1.232) has 
length X/3, is about 3.4 percent of D(io), and produces DN(0)= 87.40 by 
(31). 

As an application of this durational sensitivity, assume that the yield curve 
shift is 50 basis points in the direction of this N. That is, the yield curve 
shifts by 0.005 x N=  (0.0007, -0 .0060,  0.0062). The duration approxi- 
mation in (10), setting DN(0)= 87.40 and ignoring Cu(0), provides an ap- 
proximation of $5.225 million, for a decrease of $4.055 or 43.7 percent 
from its original value of $9.280. An exact calculation provides a value of 
$5.205 million, for a decrease of 43.9 percent. Comparing this exact value 
to the duration approximation, we infer that convexity is likely negative in 
this direction and will verify this below. 

Turning next to convexity, the counterpart of (25) is: 

CN(O) = 6.90n~ - 125.44n~ + 147.84n z 

+ 2(-25.76n,n2 + ll.32n,n3 + 70.05n2n3). (33) 

As was the case for the bond, if N = (1,1,1) we obtain CN(O) = 140.52, the 
traditional convexity value. That is, the partial convexities sum to convexity. 

Applying (33) to N=(0.144, -1.209,  1.232) exemplified above and equal 
to the extreme positive shift for Dt¢(0), we obtain C,v(0)= -154.51.  Using 
this value in (10) improves the estimate obtained above, producing $5.207 
million, for a decrease of 43.9 percent. Comparing this value to the exact 
value, an error of $0.002 is observed. 

While this value of N shows that C,v(0) can indeed be large and negative, 
it in fact understates how negative C~0) can be. Analogous to (29), we can 
develop the range of potential CN(0) values using (30). Restricting N so that 
INI = V'3, we obtain: 
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-441.98 <_ CN(O) <-- 494.72, INI = ~,"3. (34) 

Of course, the traditional convexity value, C(0)= 140.52, lies within this 
range, as does the value CN(0)= --154.51 calculated above, since in both 
cases }N} = X/3. What are the shifts of extreme convexity? 

As before, these extreme shift vectors are two of the eigenvectors of C(io), 
corresponding to the smallest and largest eigenvalues. Extreme positive con- 
vexity is produced by N1 = (0.06, 0.40, 1.68), a yield curve steepening shift, 
while N3=( -0 .31 ,  -1 .66,  0.41), a V-shaped shift, creates extreme neg- 
ative convexity. As an example, we consider a 50 basis point shift in each 
of these directions. 

From (31), we calculate D~(0)=46.53 for N ,  the direction of extreme 
positive convexity. Using (10) and ignoring CN(O), we obtain an approxi- 
mation of $7.121 for this 50 basis point shift, for a decrease of 23.3 percent. 
Making the positive convexity adjustment produces an improved surplus 
value of $7.178, for a decrease of 22.6 percent. An exact calculation pro- 
vides a surplus value of $7.179. 

For N3, the direction of extreme negative convexity, (31) produces 
DN(O) = 71.59. The duration approximation for a 50 basis point shift in this 
direction is $5.958, for a decrease of 35.8 percent, while the negative con- 
vexity adjustment decreases the estimate to $5.907, for a decrease of 36.3 
percent. An exact calculation produces a surplus value of $5.903. 

6. EXTREME SHIFT DIRECTIONS AND DURATIONAL LEVERAGE 

In the analysis of duration estimates, there are two equivalent formulations 
for the effect of nonparallel shifts. The first, using equivalent parallel shifts, 
was developed in Reitano [6], [10] and exemplified in Reitano [7], [9]. 
There, nonparallel shifts were converted into equivalent parallel shifts, Ai e, 
and a study was conducted relating the "size" of the original shift to the 
size of Ai e. Durational leverage provided a numerical measure of the max- 
imum relationship possible. As part of this analysis, it was observed that 
extreme shifts, producing maximal values of Ai E given their 'size,' were 
proportional to D(io), the total duration vector. 

Alternatively, duration measures can be developed directly that reflect the 
underlying yield curve shift direction vectors. Here, the sensitivity of the 
portfolio in different directions is immediately observed in the resulting 
D~v(0) values, where we fix {N I for consistency of comparisons. In this 
context, the yield curve directions that produce extreme DN(O) values are 
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again proportional to D(io). Naturally, these shifts are the same as those 
which produced extreme dxi e values. 

For the convexity analysis, the latter approach, which focuses on C~(0) 
values, is preferred. Theoretically, one can envision a modified definition 
of dxi E, so that this parallel shift is not just durationally equivalent to the 
given nonparallel shift, but equivalent in terms of the resultant duration and 
convexity estimates. That is, using Ai E in the traditional approximation in 
(7) with D(0) and C(0) produces the same value as that produced using the 
original shift, partial durations and partial convexities. 

Unfortunately, this is not always possible; that is, it can happen that no 
"real" value of Ai E will have this property. In short, the requisite value of 
Aie may have to be a complex number (recall X/z-i) ,  a conclusion with no 
compelling real-world application; see Reitano [6], [10] for details. 

7. ARE CONVEXITY CONCERNS REAL OR JUST THEORETICAL? 

The short answer is: These concerns must be real or else the Kahn and 
Lochoff [5] conclusions would have been different. Because there is nothing 
wrong with the theory of convexity, having the weight of differential calculus 
behind it, the problem must reside in its application. 

As demonstrated above, duration and convexity can be defined to reflect 
any given yield curve shift assumption. In addition, given any such as- 
sumption, the theory of duration and convexity works equally well with 
these properly redefined values. However, inequalities such as in (22), (23) 
and (32) show that the resulting duration values can vary radically as the 
direction vector N changes, while (29), (30) and (34) demonstrate the same 
point for convexity. 

Because these inequalities provide theoretical ranges, reflecting all pos- 
sible yield curve shifts, it is natural to wonder whether this is a case of 
overkill. Namely, is it really necessary to be concerned with all possible 
shifts? Alternatively, is it really necessary to be concerned with all possible 
resulting values of D,v(0) and C,v(0) as these inequalities imply? Possibly the 
real world is much kinder than the theory suggests. 

Unfortunately, while it may be, it need not be. For example, we inves- 
tigated the actual values of Du(0) and CN(O) produced for the above bond 
and surplus position over the period from August 1984 to June 1990. The 
yield curve changes utilized represented actual changes in the Treasury yield 
curve at maturities of 6 months and 5 and 10 years. 
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To make the results comparable to the theoretical ranges produced above, 
we normalized the resulting yield curve direction vectors to have length equal 
to V"3. Both one-month change vectors and 6-month change vectors were 
analyzed and produced comparable results. We present the monthly change 
results here. 

For the bond, the 70 resulting change vectors produced the following 
ranges: 

- 9 . 03  -< DN(0) -< 9.50 (35) 

- 0 . 59  -< C,v(0) < 84.32 (36) 

Comparing (35) and (36) with the theoretical ranges in (23) and (29), we 
see that while the theoretical extremes were not actually achieved during 
this 6-year period, a large portion of the theoretical interval was observed. 

For the surplus position, the following ranges were produced: 

-24 .57  _< ON(0) -< 43.96 (37) 

-219.55 < C,v(0) -< 427.02 (38) 

Comparing these ranges to those theoretically possible in (32) and (34), it 
is clear that, while somewhat less so than for the bond example, much of 
what could occur in theory actually did occur in practice. 

In addition to these range observations, note that the extreme observations 
were not true "outliers" of the full distribution of results. In particular, 
values throughout these ranges were observed, as the percentile data in Table 
1 demonstrate. While the distribution of the DN(0) values gives insight to 
the proportion of "favorable" and "unfavorable" yield curve shifts, it is 
the distribution of ]D,v(0)], or absolute values, that gives information about 
the unit sensitivity created by the given shifts. 

Of interest is that the bond duration of 6.16 is at the 57th percentile of 
the distribution of absolute values of the DN(0). That is, about 57 percent 
of the shifts created less unit sensitivity than the duration implied, while 43 
percent created more. For surplus, the duration of 4.85 is at the 31st per- 
centile of absolute values, implying that this value understated unit sensitiv- 
ity for 69 percent of the shifts during this period. 

For the distribution of CN(0) values, both the bond convexity of 52.41 
and the surplus convexity of 140.52 are seen to be at about the 55th percentile 
value of the respective distributions. 
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TABLE 1 

PERCENTILES OF D N AND C~ VALUES* 
MONTHLY CHANGES: 8/84--6190 

Bond Surplus 

Percentile DN 

1 . 4 %  

I0 
20 
30 
40 
5O 
6O 
70 
80 
90 

100 

D N  C #  

--9.03 -- 0.59 
--7.71 17.17 
-6.92 20.13 
-5.23 30.31 
-4.17 39.70 
-3.01 47.31 

2.60 53.75 
5.02 64.60 
6.00 68.91 
6.86 72.70 
9.50 84.32 

*Direction vectors are normalized so that 

- 24.57 
- 16.75 
- 9.06 
- 6.34 
- 4.25 
- 0.17 

2.42 
5.29 
7.55 

11.79 
43.96 

CN 

-219.55 
- 58.17 
- 34.58 
- 4.91 

36.96 
82.71 

154.29 
181.94 
216.32 
268.80 
427.02 

8. CONCLUSION 

In summary, real-world yield curve shifts can produce directional dura- 
tions and convexities that are significantly different from the traditional val- 
ues. In addition, even over the relatively short time interval studied, the 
resultant values covered much of the range of values theoretically possible. 

Consequently, while it may be convenient to restrict attention to only the 
traditional duration and convexity values, reflecting the shift direction vector 
N = (1,1,1), this convenience is not without its risks. 
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APPENDIX 
CONVEXITY AND STOCHASTIC CALCULUS 

A.1 Introduction 

While the calculus-based derivations of the properties of convexity are 
compelling, they are somewhat heuristic for at least the following reasons: 
(1) The value of positive convexity stems from Equation (4), but the in- 

terval for Ai for which it holds is unspecified and could be too small 
to have practical value; equivalently, the omitted third-order term in 
the Taylor series could be very significant in practice. 

(2) The conclusion that more positive convexity is better than less relies 
on the assumption that it is possible to fix duration, increase convexity, 
and not do so much harm to the omitted third-order term as to offset 
the intended benefit. 

(3) If Ai is just "noise,"  that is, E[Ai] =0  and E[Ai 2] ¢0,  why should 
convexity matter, ~,ince changes in rates will be offset "generally" by 
the opposite changes, simply returning the price to A(0)? 

(4) All arguments ignore the time dynamic: What is the relationship be- 
tween Ai and At? What is the dependence of price on time, indepen- 
dent of the change in rates, Ai? 

The theory of stochastic calculus addresses these issues in a formal and 
concise way; see Hull [4] for an accessible account; Bhattacharya and Way- 
1"hire [2] for more rigor. However, by assuming a simple asset such as a 
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zero-coupon bond, a good appreciation of this topic and its conclusions can 
be obtained by only algebraic manipulations and intermediate statistics. Fol- 
lowing this exercise, the more general model is addressed. 

A.2 A Simple Example 

Assume that we are given a $1 T-period zero-coupon bond. Its price at 
time t>_0 depends on the (T-0-per iod spot rate at that time and is given 
by: 

P(i(t),t) = exp [ - i ( t ) (T  - t)], (A.1) 

where i(t) denotes the appropriate (T-O-period spot rate prevailing at time t. 
Further, assume that the annual change in interest rates is normally dis- 

tributed, with mean Ix and variance tr z, and that this annual change is infi- 
nitely divisible into independent increments. That is, over any interval of 
time, [s,t], we have: 

i(t) = i(s) + z,  (A.2) 

where z - N ( ( t - s ) I x ,  ( t-s)tr2).  In addition, over nonintersecting intervals 
these random normal changes are independent. 

We now seek an explicit expression for the expected value and variance 
of the return on this bond over the interval [0, At]. First, we divide the time 
interval into n equal steps: 

j A t  
tj = , j = 0, 1 . . . . .  n. (A.3) 

n 

The period return of interest, R(At), is then given by: 

1 + R(At)  = P(i(At),  At) 
e(i(o), o) 

f l  P(i(tj), ti) _ 
= j - 1  e ( i ( t j _ l ) ,  

By (A.2), it is clear that: 
J 

i(tj) = i(O) + 2 Zk, 
k=l 

(A.4) 

(A.5) 

where {zk} are independent normal variables, k = 1, ..., j ,  and: 
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zk - N(At~/n, At0.2/n). (A.6) 

Using (A.1) and some algebra, we obtaJ,n: 

1 + R(At) = exp [i(0)A~;- (T - At) ~ zk]. (A.7) 
k=l 

Consequently, letting Mz(s) denote the moment-generating function of the 
normal variable, 

we obtain: 

Z = ~ Zk, 
k=l 

E[1 + R(At)] = exp [i(0)At] Mz(r'  ( T -  At)) 

= exp [ i ( o ) a t  - ( T -  ZXt),xt~ + V2(T-  zXt)2±t0.2]. (A.8) 

Applying the Taylor series of exp(:~) to (A.8) produces: 

E[R(at)] = [i(0) - T~ + 1/2 T20.2]At + O(At2). (A.9) 

Similarly, one obtains: 

Var[R(At)] =: T2or2At + O(At2). (A.10) 

An identical derivation over (t~, t+At )  produces similar formulas, with 
i(0) becoming i(t), and T becoming T - t ,  

While ultimately requiring more effort, (A.9) and (A.10) could have been 
derived from (A.7) by noting that !1 +R(At) is lognormally distributed. Hence, 
the mean and variance of 1 +R(At) can be obtained via standard formulas 
from the mean and variance of ln[1 +R(At)], which is easily calculated using 
(A.6). 

For this simple example, note that the distribution of R(At) is independent 
of n. Also note that both the expected annual change in rates, g,, and as- 
sociated variance, 0 -2, affect the expected period return as seen in (A.9), 
while only the variance of rate ehange,,s affects the period return's variance 
in (A.10). What is not obvious here without more work is the significance 
of the T terms in (A.9) and (A.10), or T - t  in the general case. Three 
quantities come to mind: 
• Maturity of P(i(t),t) : T -  t 
• Duration of P(i(t),t) : T -  t 
• Convexity ofP(i( t ) , t ) : (T-- t )L 
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As will be seen, it is the duration and convexity of P(i(t),t) that are 
reflected in (A.9), while it is the duration squared in (A.10). 

A.3 The General Model 

Generalizing (A.2) to allow tx and 0.2 to both change in time and change 
as a function of prevailing rates, an lto process for i(t) is defined and denoted 
by: 

di = Ix(i,t)dt + 0.(i,t)dz, (A.11) 

where Ix is called the drift and 0 .2 the. diffusion coefficient of the process, 
and dz denotes a standard Weiner process (that is, "white noise"). 

The interpretation of (A.11) is a natural generalization of (A.2) in that 
given to and io=i(to) , we have that ever (to, to+At),  the corresponding 
change in rates, Ai, is approximately normal, with: 

E[Ai] = ~(io, to)At + o(At), 

Var[Ai] = 0.2(6 , to)At + o(At), (A.12) 

where by definition, o(t) implies that c(t)/t--*O as t ~ 0 .  Note that, as in 
(A.2), ~z and 0.2 equal the "annualized" statistics of Ai, though in this case 
they hold only instantaneously at to. 

While intuitively plausible, it is by no means elementary to rigorously 
demonstrate that such a process is well-defined. However, this intuitive 
interpretation is sufficient for most applications. 

An important result, called Ito's Lemma, states that if P(i,t) is a differ- 
entiable function, P(i(t),t) also will follow an Ito process with: 

dP = ( P ~  + P2 + V2 P~0.2)dt + P10.dz, (A.13) 

where V. and o- are as in (A.11), P~(i,t) and PH(i,t) denote the first- and 
second-order partial derivatives with respect to i, and P2(i, t) the first-order 
partial derivative with respect to t. 

Given t o, io =/(to), and Po =P(io,to), we therefore have as in (A.12) that 
over (to, to + At), AP  has the analogous st atistics reflecting the coefficients 
of dt and dz in (A.13). To be more comparable to (A.9) and (A.10), we 
divide AP by Po =P(io,to) to produce R(At) ,  and: 

E[R(At)] = (Pz/P - DIx + 1/zC0.2)At + o(At),  

Var[R(At)] = DE0.?At + o(At) .  (A.14) 
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In (A.14), D and C denote the duration and convexity of the price function 
evaluated at to and on io, while Pz/P equals the "earnings" rate of the price 
function at time to. Returning to (A.9) and (A.10), it is clear how the various 
components of those formulas reflect the features of the general formula in 
(A.14). Also, note that convexity influences the expected return of an asset 
from (A.14), and that this effect is first order in time. 

Returning to the model in the paper, if the price function, P(i), is defined: 

P(i) =- P(io + iN), (A.15) 

so i = i(t) denotes the shift process in the direction of N from the initial yield 
curve io, the application of (A.14) is straightforward. That is, due to (18) 
and (26), the D and C of (A.14) become the directional counterparts, DN 
and CN. 

Consequently, based on this more rigorous development, the heuristic 
approach of the paper is seen to capture the essence of the argument that 
positive convexity is good, and more is better, subject to the assumption 
that the yield curve shift complies with the direction vector assumed. 





DISCUSSION OF PRECEDING PAPER 

ELIAS S. W. SHIU." 

Dr. Reitano is to be thanked for this paper, highlighting a deficiency in 
the classical immunization model. My discussion comprises two parts. The 
first part reinforces the theme of the paper that positive convexity may not 
necessarily be good and that more convexity may not necessarily be better. 
The second part elaborates on the continuous-time stochastic model intro- 
duced in the Appendix of the paper. 

I. THE CLASSICAL MODEL 

L 1. A Simple Example 

Consider the simple situation in which the liability is a single cash flow 
to be paid at a future time T, and the assets backing the liability have a 
combined duration equal to T. Suppose that there is a change in the yield 
curve such that the interest rates before time T go down and the interest 
rates after time T go up. This means that the asset cash flows occurring 
before time T are to be reinvested at lower interest rates, and the asset cash 
flows occurring after time T have depreciated market values. Under such a 
shift in the term structure of interest rates, the surplus value of this block of 
business decreases, unless there are no asset cash flows occurring before or 
after time T. Indeed, under such a yield curve change, the larger the asset 
convexity, the larger the loss. This example of the negative effect of positive 
convexity can be generalized and developed more rigorously by using for- 
mula (D.20) in [9]. 

I. 2. The Barbell Strategy 

An implication of Redington's theory is the barbell strategy. A financial 
intermediary issues or sells short a medium-term bond. The funds received 
are invested in long-term bonds and short-term bonds, with a combined 
duration matching that of the medium-term bond. As soon as there is an 
interest-rate movement, the long-term and short-term bonds are sold, and 
with the proceeds of the sale, the position in the medium-term bond is closed 
out. A positive profit is expected because, with the duration constraint, the 
convexity of the portfolio of long-term and short-term bonds is larger than 
that of the medium-term bond. Furthermore, the immunization model implies 
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that the larger the convexity of the asset portfolio, the larger the profit. To 
get a large convexity, the financial intermediary would invest in bonds of 
very short terms and also in bonds of very long terms. In other words, it 
would try to mismatch its assets and liabilities as much as possible while 
maintaining the duration constraint. 

In Redington's model, this "barbell" strategy has an infinite rate of return 
because no fund at all is required from the financial intermediary for exe- 
cuting the strategy. The asset portfolio is funded entirely by the liability. In 
discussing Redington's paper, Rich [8] remarked: " I m m u n i z a t i o n . . .  was 
an outstanding example of the difference between actuarial theory and prac- 
tice. How delightful it would be if the funds of a life office could be so 
invested that, on any change in the rate of interest--whether up or down-- 
a profit would always emerge! But how difficult it would be to carry out 
to the full the investment policy implied by the theory of immunization." 
Forty years ago, Rich had anticipated the empirical findings of Kahn and 
Lochoff [6]. 

II. INTEREST RATES AS IT0 PROCESSES 

II. 1. Continuous Price Processes Have Infinite Variation 

In the Introduction of the Appendix, Dr. Reitano points out that, in the 
classical models, "[a]ll arguments ignore the time dynamic." This is one 
of his reasons for introducing a model in which interest rates are driven by 
an It6 process. I would like to present another motivation for such models 
by quoting the Harrison-Pitbladdo-Schaefer Theorem [3]. 

Consider a continuous-time financial model in which trading is continuous 
and frictionless. Suppose that the equilibrium price processes have contin- 
uous sample paths. It is shown in [3] that all but one of the price processes 
must have infinite or unbounded variation. The proof is by showing that, if 
there are two or more securities with bounded-variation price processes, there 
exist self-financing trading strategies with zero initial cost and positive prof- 
its subsequently; that is, there exist arbitrage opportunities. For price 
processes with continuous and bounded-variation sample paths, trading 
strategies can be defined in terms of Riemann-Stieltjes integrals. The proof 
of the theorem hinges on the chain rule and the change-of-variables formula 
for Riemann-Stieltjes integration. 
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A consequence of this theorem is that, in constructing a continuous-time 
financial model, to avoid internal inconsistencies (arbitrage opportunities), 
we may need to use stochastic processes such as It6 processes to model 
security prices and interest rates. Incorporating It6's stochastic calculus in 
the Fellowship examination syllabus was indeed a wise decision. 

II. 2. Relationship between Convexity and Yield 
I am somewhat uneasy about the last sentence in the Appendix: 

Consequently, based on this more rigorous development, the heuristic approach of 
the paper is seen to capture the essence of the argument that positive convexity is 
good, and more is better, subject to the assumption that the yield curve shift complies 
with the direction vector assumed. 

However, I am not saying that it is incorrect. Let me explain my uneasiness 
with the following two points. Rewrite (A.13) as 

dP ( - D ~ + y + ~ - ) d t - D c r d z  (2.2.1) 
P 

(As Dr. Reitano points out, "P2/P equals the 'earnings' rate of the price 
function." Thus 

Pz/P = y(t), 

the yield rate.) If we use the drift term in the right-hand side of (2.2.1) to 
justify that "positive convexity is good, and more is better," then we should 
also consider the contribution from -Dg. .  With I~ positive, it seems that 
we should also conclude that "short duration is good, and shorter is better." 
My second point is that the clause "more is better" implies the existence 
of dominating strategies in the model, which, in turn, imply arbitrage op- 
portunities in the model. 

This problem disappears if we impose the principle of no arbitrage. Let 

Q = Q(i , t )  

denote the price function of another bond or bond portfolio, with duration 
D e, convexity Co, and yield rate Yo. Suppose that at time t, we have the 
duration-matching condition, 

D(t) = DQ(t) 
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then a standard no-arbitrage argument ([10], pp. 180-181; [4], Section 12.1) 
shows that 

from which, after cancelling the D~ terms, we obtain 

y(t) + C(t)cr(i(t),t)2/2 = yQ(t) + CQ(t)cr(i(t),t)2/2. (2.2.2) 

In the actuarial literature this yield-convexity relationship had been given by 
Levin ([7], p. 271). It implies that, among bonds of the same duration in a 
continuous-time equilibrium model, more convexity can be obtained only 
by accepting less yield. 

11.3. Immunization 

Given a continuous-time interest-rate model, the question of "continuous 
immunization" arises naturally. Consider a portfolio of assets and liabilities 
with matching value and duration initially. As time passes, the interest rates 
change and the asset duration and liability duration drift apart. By continu- 
ously trading the assets to maintain the duration-matching constraint, can 
the liability obligations always be met? 

Let us consider a continuous-time financial model in which trading is 
continuous and frictionless; there exist one or more state variables whose 
current values completely specify all relevant information for investors; and 
these state variables are prescribed by It6 differential equations. In the sim- 
pler case of a single-state variable, that "continuous immunization" can be 
achieved by continuously rebalancing the portfolio to maintain the matching 
of the asset duration with the liability duration was proved by Boyle ([2], 
Section 3.7). Here, duration is defined with respect to the state variable. 
The asset and liability cash flows are assumed to be fixed and certain (the 
assets are not callable and the liabilities are not putable). There is no explicit 
condition on second- or higher-order terms such as convexity. 

In the more general case of several state variables, that "continuous im- 
munization" can be achieved by continuously rebalancing the portfolio to 
maintain the matching of each pair of asset and liability partial durations 
was proved by Albrecht ([1], Section 4). The partial durations are defined 
in terms of the state variables. 
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I1.4. Concluding Remarks 

Frictionless market and continuous trading are idealized assumptions. In 
such models, arbitrages are excluded, and this has much intellectual appeal. 
On the other hand, these assumptions also imply that continuous security- 
price processes have infinite variation, which many may find unreasonable. 
By modeling the evolution of the term structure of interest rates using certain 
continuous stochastic processes of unbounded variation, we can derive the 
"continuous immunization" theorem, which is a reassuring result. 

Let me conclude this discussion by quoting the eminent mathematician 
Mark Kac ([5], p. 699): 

Models are, for the most part, caricatures of reality, but if they are good, 
then, like good caricatures, they portray, though perhaps in distorted manner, 
some of the features of the real world. 

The main role of models is not so much to explain and to predict--though 
ultimately these are the main functions of science--as to polarize thinking and 
to pose sharp questions. Above all, they are fun to invent and to play with, 
and they have a peculiar life of their own. The "survival of the fittest" applies 
to models even more than it does to living creatures. They should not, however, 
be allowed to multiply indiscriminately without real necessity or real purpose. 

Unless, of course, we all follow the dictum, attributed to Oswald Avery, 
that "you can blow all the bubbles you want to provided you are the one who 
pricks them." 
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(AUTHOR'S REVIEW OF DISCUSSION) 

ROBERT R. REITANO: 

I thank Dr. Shiu for his insightful and complementary discussion; it adds 
significantly to the issues I address in my paper. 

In Dr. Shiu's discussion of the "classical model,"  the simple example 
provides all the necessary insight--on why positive convexity need not be 
good, nor more better--that a more detailed and formula-driven demonstra- 
tion with partial convexities would provide. Clearly at the heart of this 
example is the potential effect of a nonparallel yield curve shift, specifically, 
a pivot-tilt shift through the maturity of the liability. 

His discussion of the convexity implications for a barbell strategy, on the 
other hand, provides a very different insight, since only parallel shifts are 
assumed. Here it is demonstrated that if the yield curve moves in a parallel 
fashion only, infinite profits are possible with a simple management strategy: 
the positive barbell. The implication of this example and its risk-free arbi- 
trage is that, not only is there the risk that the yield curve can move in a 
nonparallel fashion, but prospectively, there can be no valid argument to 
dismiss this possibility. Any such argument would have as its "logical" 
conclusion the opportunity for risk-free profits. 

Turning next to his comments on It6 processes, I am especially grateful 
for his citing of the Harrison-Pitbladdo-Schaefer paper. While the It6 processes 
are known to have unbounded variation, I did not know whether this property 
was a necessary one for price processes, or if it is only the mathematical 
result of the intuitively appealing local behavior specified in my equation 
(A.12). Not surprisingly, as is the case so often in finance, the resolution 
depends on an arbitrage argument; that is, unbounded variation is necessary, 
except for at most one security. 

Regarding his discussion of the relationship between convexity and yield, 
I have a couple of comments. First, in retrospect I think that the last sentence 
of my Appendix is a bit glib, especially for a "technical" paper, and is 
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incapable of withstanding the scrutiny Dr. Shiu affords it. Given that conces- 
sion, I agree with the second of his points, but not the first. 

Dr. Shiu is quite right that convexity is not free, as the offending sentence 
implies, but rather, one must pay for it in terms of a lower earnings rate, 
denoted PJP in my Equation (A.14), or y in his Equation (2.2.1). He is 
also correct in pointing out that .Equation (2.2.2) is the "trade-off" formu- 
lation typically used. In practice, however, the buyer and seller rarely agree 
on the implications of Equation (2.2.2) for a given deal, since the implied 
trade-off materially reflects one's view of future yield volatility. Conse- 
quently, the buyer is likely to be more "bullish" on future volatility than 
the seller, or at least otherwise predisposed to being longer on convexity 
even given the "fair"  price. It is in this context that my sentence was 
intended to be interpreted, in that if yield curve shifts are indeed parallel, 
more convexity is better than less for such a buyer. 

On the other hand, I do not agree with his conclusion that an analogous 
statement can be made for duration, such as, "short duration is good, and 
shorter is better." The distinction I would make is based on the observation 
that duration returns are "signed,"  while convexity returns are "unsigned." 
That is, no matter how much positive or negative duration one has, losses 
are possible if yields shift the "wrong"  way. For convexity, conversely, it 
is predictable that as long as yield curve shifts are parallel, positive convexity 
produces gains and negative convexity, losses, independent of the shift 
direction(s). 

In closing, let me again thank Dr. Shiu for his informative and thought- 
provoking discussion and his additional references to the literature. 




