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Modeling Individual and Small Group Health Insurance  

Abstract 

In this paper, we develop a formal framework to model the behavior of individual and small 

group health insurance policies in a competitive market.  In this framework, anti-selective lapse 

is not assumed, but arises as a result of rational consumers seeking the best value in a 

competitive market where the premium rates are restricted by law.  We obtain a model that 

addresses a number of fundamental questions which have not been fully answered previously, 

including the effect of price-induced anti-selective lapse on the mix of insureds in a block and 

the optimal renewal price to maximize the aggregate profit of a block.  We apply the model to 

examine the diverse aggregate behavior (e.g., aggregate lapse, loss ratio, and profit) of different 

blocks in various scenarios, and obtain an illustration of “assessment spiral” – a large premium 

rate hike can cause the loss ratio of a block to increase.  We also apply the model to demonstrate 

the impact of major market influences (competitor price level, trend as well as underwriting 

cycles) and the impact of an insurer’s internal drivers (risk selection, firm-specific cost, and 

differentiation).  One significant finding, with possible implications for product design and 

regulations, is that for a large class of blocks, the insurer can maximize aggregate profit while 

keeping the rate increase moderate and the lapse rate low, and as a result, these blocks are 

inherently stable and sustainable.     

 

JEL Classification codes: D11, G22, I11 

Keywords: Anti-selection, Lapse, Model, Health, Insurance 
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1. Introduction 

Individual and small group health insurance (ISH), two major forms of health insurance in the 

market, share several distinguishing characteristics.  Both are characterized by annual term 

contracts as well as small policy size
1
.  The ISH contract also contains two key provisions by 

law: 1) A policy must be renewable at the insured’s discretion, and 2) strict limits are placed on 

how much the premium rates can vary within the same class
2
.   These provisions are intended to 

mitigate, due to the small size, the renewal risk or the inability of the insured (or the group) to 

renew the contract for another term (at an affordable rate) when some members are expected to 

incur large claims.  But this regulatory remedy is not, with major implications on ISH behavior, 

a full protection because its renewal guarantees are dependent on the particular experience of an 

insurer
3
.  See overviews of ISH insurance and rating laws in O’Grady(1988) and Bluhm(2003), 

and major issues of the markets in Blumberg (1996).  

 

1.1 Aggregate Behavior 

In managing ISH insurance, we are often interested in the aggregate behavior of policies in a 

block.  In fact, a major actuarial responsibility is to determine the aggregate behavior (e.g., 

lapse, loss ratio, and profit) of an ISH block in different scenarios.  There are several reasons for 

our interest in the aggregate behavior of a block:  First, a block of policies constitute a practical 

base unit in which the insurance risks are pooled across individual policies and evaluated.  In 

addition, major decisions concerning product features, underwriting, and pricing are often made 

                                                           
1
 The small group is usually defined as an employer group with less than 50 employees. 

2
 The premium rates are subject to rating band for small group insurance and cannot be increased for medical 

reasons for individual medical insurance. 
3
 If a block is poorly managed, the renewal and rate limit guarantee may not be adequate. The insurer can choose to 

cancel the entire block. 
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at the block level.  Important macro factors such as medical cost trend and competitive price 

level in the market also tend to affect all policies in a block.  Finally, perhaps most significant, 

the ISH laws and regulations, especially the way in which premium rate restrictions are 

formulated, create an intrinsic interdependence among the insureds
4
 at the block level.  A good 

quantitative framework to understand the aggregate behavior of ISH blocks is essential to 

managing ISH successfully.  Lacking an accurate understanding of those behavior could lead to 

failures of the ISH programs as described by Bolnick (1983). 

  Unfortunately, modeling the aggregate behavior of a block of policies can be difficult, 

and traditional actuarial models are not adequate for such a task.  Part of the difficulty lies in the 

fact that an ISH block consists of insureds of heterogeneous types.  An important phenomenon, 

known as antiselective lapse (ASL), is that the healthy lives tend to lapse at a higher rate than 

the impaired lives.  As a result, the mix of insureds of different health status in a block does not 

remain static overtime.  Furthermore, the change in the mix of insureds from ASL is accelerated 

in response to changes such as premium rate increases.  One key element missing in the 

traditional actuarial models is an adequate mechanism for modeling the change in the mix of 

insureds in a block under the influences of different factors. 

 

1.2 Goals 

Our main goal is to model the aggregate behavior of a block of ISH policies and the impact of 

various factors.  In doing so, we wish to address several specific problems that do not yet have a 

satisfactory solution: 1) describe in quantitative terms how ASL arises in ISH insurance, and 

establish the effect of rate restrictions on ASL; 2) determine the change in the mix of insureds in 

                                                                                                                                                                                         

  
4
 The term “insured” will be used to refer to one of several entities: 1) an individual who is a sole member of a 

policy, 2) a family covered under a single policy, or 3) a small group covered under a single policy.  
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a block in response to influences of factors such as premium rate increase; 3) incorporate the 

impact of competitors’ prices in the market; and 4) find the optimal pricing solution that 

maximizes the aggregate profit of a block in different scenarios.   

 

1.3 Approach 

We take a “micro” approach.  We begin by establishing a model of individual ISH insured 

behavior.  A basic assumption is that the individual insured is a rational seeker of the best value 

in the market.  We define “market price” as a weighted average of competitor prices.  We show 

that “market price” can also be determined as the price at which the individual insured’s lapse 

probability is exactly one-half.  We formalize how an insurer sets premium rate based on the 

expected cost as well as competitive strategy, subject to rate restrictions.  A key notion essential 

to understand ASL behavior is “excess risk”, which represents the portion of the insurance risk 

not reflected in the premium rate due to rate restrictions. We obtain formal relationships for 

individual insured behavior in the competitive market.  We show that ASL arises naturally as a 

result of the insured’s rational choice when the premium rates are restricted. 

  Next we derive the model for the aggregate behavior of ISH policies in a block.  A key 

step is to obtain a realistic yet tractable formal characterization for the mix of insured types in a 

block.  We accomplish this by constructing a one-parameter type distribution based on insureds’ 

“excess risk”.  In fact, for a wide range of applications, we assume a Pareto distribution of 

excess risk.  We derive the model for the aggregate behavior of a block by summing the 

individual behavior established earlier over all insureds in the block.  Under further simplifying 

assumptions, we can actually obtain explicit analytic formulas for the model of the aggregate 

behavior of a block.   
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  We apply the model to the behavior of different ISH blocks and to answer several 

fundamental questions.  First, we examine the change in the mix of insureds from ASL and the 

diverse aggregate behavior (e.g., lapse, loss ratio, and profit) of different ISH blocks. In 

particular, we obtain an illustration of “assessment spiral” – a large rate increase actually results 

in a higher loss ratio in a block   As a key application, we obtain the optimal pricing solutions 

for various ISH blocks.  We find that for a large class of blocks, maximizing profit can be 

achieved with minimal lapses, and these blocks are stable and sustainable when managed 

properly. This could have implications for both product design and rate regulations. We also 

examine the impact of market price level and market cost level.  Finally, we address the impact 

of underwriting cycle, and the impact of several internal drivers related to an insurer’s risk 

selection, firm-specific cost, and differentiation.  We demonstrate the fact that in an 

underwriting down cycle, the insurer has no choice but to accept the lower profit. 

 

1.4 Existing Models 

A major difference between this model and the existing actuarial models lies in how ASL is 

represented within the model.  In traditional actuarial models, ASL is not explicitly modeled, 

but the effect of ASL is a model input represented by fixed durational factors
5
.  See overviews 

of the main actuarial models in O’Grady (1988) and Bluhm (2003).  With explicit assumptions 

for differential lapse by health status, Bluhm (1983) established how ASL can lead to durational 

increases in loss ratio in a block.  In this model, we take a step further by establishing how ASL 

arises in an ISH block, and incorporating the effect of premium rate, market factors, and rate 

restrictions.  ASL is not assumed, but emerges endogeneously in the model.   

                                                           
5
 To be accurate, duration factors represent both the effect of ASL and that of underwriting wear-off. 
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  It is instructive to contrast ASL with adverse selection, which is often cited to explain 

ISH behavior in the competitive market.  The central assumption of the theory is asymmetric 

information, i.e., the insured knows more about the future claims than the insurer, and as a 

result, could select against the insurer.  See Belli (2001) for an overview of adverse selection in 

health insurance markets.  In this model, the assumption of asymmetric information is not 

required, and, as a matter of fact, ASL can arise in a market with perfect information.    

  The aggregate behavior of ISH policies presents, to my best knowledge, a distinct type 

of behavior that has not been considered previously within a formal framework.  In particular, 

the notion of excess risk with its central role in this model has no real counterpart in the current 

models from related micro-economics, financial, and health economics fields.  See Mas-Colell 

(1995), Campbell (1996), Panjer (1998), and Folland (2004) for standard texts in those fields.  

Furthermore, optimal pricing of ISH, due to excess risk, differs from that considered by the 

existing pricing models. See Wilson (1996), Pashigian (1995), Nagle (1995), and Doland (1996) 

for current pricing theory and methodology for various applications.   

  Organization of this paper is as follows:   Section 2 introduces the basic assumptions and 

establishes the model of individual insured behavior in the competitive market.  Section 3 

derives the model of the aggregate behavior of an ISH block.  In Section 4, we apply the model 

to the aggregate behavior of different ISH blocks and the impact of various factors, and obtain 

the optimal pricing solutions.  Section 5 concludes the paper with discussion and considerations 

for future research. 

 

2. The Framework 

In this section, we establish the model of the individual insured behavior in a competitive 

market.  We first consider the individual lapse behavior and insured choice in a competitive 
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market, and define “market price” as an index of competitors’ prices.  We then formalize how 

the insurer sets premium rates based on both cost and competitive strategy, subject to rate 

restrictions.  We introduce the notion of “excess risk” which represents the impact of rate 

restrictions on the premium rate.  We obtain key relationship about the individual insured 

behavior, including a formula for ASL at the individual level. 

 

2.1 Lapse Response to Price 

We distinguish two main types of lapses: base lapse and price-induced lapse.  In the former 

case, the cause for the insured’s lapses is unrelated to price: examples include change in 

employment or enrollment in Medicare.  In the later case, the insured,  in response to a price 

change,  may switch to another insurer, or leave the ISH insurance category all together.  In this 

model, we consider, for simplicity, only lapses that are results of insureds switching insurers in 

response to a price change.      

 Let ( )L p  denote the probability of lapse for the insured x when the log of price 
6
 is p.   

We assume that ( )L p  is an increasing function of p of the form   

 ( ) ( *( ))aL p S p p x= −  (2.1) 

where ( )aS z  is an s-function
7
 satisfying ( ) 1aS z →  as z→∞ ,  ( ) 0aS z →  as z→−∞ , and 

(0) 1 2aS = ,  and * ( )p x  is a parameter we shall refer as half lapse price because it corresponds 

to the price at which the probability of lapse for x is exactly one-half.   

 An important special case of the s-function is a step function given by    

                                                           
6
 The log form is preferred here because it converts multiplicative relationships to additive ones; its range ( -∞, ∞ ) 
is better suited for linear function. 
7
 Examples of S function include: cumulative normal and logistic function. 
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* 7p = .  

Figure 1

Lapse Functions   

0.0

0.2

0.4

0.6

0.8

1.0

5.00 6.00 7.00 8.00 9.00

Log Price p

L
a
p
s
e
 P

ro
b
a
b
il
it
y
  
L
(p

)

S-Function

Step Function

 

2.2 Insured’s Choice in the Market 

Consider a market that consists of insurer 1,2,...,j N= , where N is an integer.  We assume that 

each insurer j sells only a single product, also denoted by j
8
, for price jp .    Due to the 

differences in perceived quality and associated transaction cost with switching, the insured x  is 

willing to pay an extra price or a differentiation premium jα  for product j ( jα  maybe 

negative).  The adjusted price ' j j jp p α= −  is called the equivalent price for product j .  

                                                           
8
 For notational simplicity, we use i to denote either the insurer or the product that the insurer sells.  
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 An insured x  chooses between a pair of products i  and j  based on considerations of 

the differences in price, as well as quality and transaction cost.  Formally, the probability of the 

insured choosing j  over i , denoted by ,i jZ , is assumed to be a function of the form:  

 , ( ' ' )i j b i jZ S p p= −  (2.3) 

where bS is also an s-function satisfying ( ) 1bS z →  as z→∞ ,  ( ) 0bS z →  as z→−∞ , and 

(0) 1 2bS = .  There is a natural interpretation for (2.3):  If ''

ji pp < , 1/ 2Z < ,  the insured is less 

likely to choose j  over i . If
''

ji pp > , 1/ 2Z > , the insured is more  likely to choose j  over i . 

If ''

ji pp = , 1/ 2Z = ,   the insured is indifferent between j  and i . Let i  denote the current 

insurer for insured x .  One of  the N differentiation premiums can be arbitrarily chosen.  This 

means that for any weights jw  with 1j

j i

w
≠

=∑ , we choose iα  in such a way that the condition 

0j j

j i

w α
≠

⋅ =∑  is satisfied.  We shall define weights jw  later.  

 

2.3 Lapse Response and Choice 

Now we can express ( )iL p , the lapse probability for insured x from insurer i , as the weighted 

sum of the probabilities of insured x  choosing insurer j  over current insurer i : 

 ( ) ( ' ' )i j b i j

j i

L p w S p p
≠

= ⋅ −∑  (2.4) 

where  

jw  = the probability of the insured x  would consider insurer j i≠ as an  

alternative to the current insurer i
9
.   (2.5) 

 

By definition, we have 1j

j i

w
≠

=∑ .       
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 Remark: The above Equation (2.4) relates the lapse behavior of an insured to the choice 

behavior of the insured in the market.  

 

2.4 Market Price 

We define market price ( )im x  of a policy for insured x  from insurer i as an index of 

competitive prices given by:   

 ( ) ( )i j j

j i

m x w p x
≠

= ⋅∑  (2.6) 

where jw  is the weight defined in (2.5).   

 A distribution ( )f z is said to be balanced if the mean is equal to the median or *z z= .  

Examples of balanced function include symmetric functions.  From now on we shall assume 

that the first derivatives of the s-functions are balanced and continuously differentiable.   

 Now we relate lapse response to market price in the following proposition: 

 

Proposition 1: 

Assume that first derivatives of the s-functions 'aS  in (2.1) and 'bS  in (2.3) are balanced and 

continuously differentiable, then we can show that the market price is equal to the half lapse 

price minus the differentiation premium 

 *( ) ( )i i im x p x α= − . (2.7) 

It follows that we can express the lapse response function as 

 ( ) ( ( ) )i a i i iL p S p m x α= − −  (2.8) 

                                                                                                                                                                                         
9
  Weight jw  is generally dependent on jp  for j i≠ , but not on ip .    
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In the following the subscript i  is sometimes dropped from the notations.  We will use the 

convention of not spelling out subscripts when there is no confusion. 

 

Proof:  

The proof is given in Appendix A1.    

  

Proposition 1 implies that market price m can be estimated by observing the insured’s 

lapse responses as the price increases.  

 

2.5 Decomposition of Cost   

The cost of the policy for insured x  is the sum of claim cost and expenses associated with the 

insured.    

 Consider a block consisted of multiple rating classes
10
.  Let g denote a rating class and 

g
x0  denote a standard risk or a healthy insured in the rating class g.  One of the rating classes in 

the block may be designated as the base rating class, or a reference rating class, denoted by 0g .   

 The log cost c(x) associated with a policy for insured x in one period can be decomposed 

as the sum of three distinct components  

 ˆ( ) g h

i i i ic x c c c= + +  (2.9) 

where  

0

0
ˆ ( )

g

i ic c x=  is referred to as base cost or cost level, 

0

0 0( ) ( )
gg g

i i ic c x c x= − is referred to as rating class cost factor,   

0( ) ( )h g

i i ic c x c x= −  is referred to as relative risk cost factor.  
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Define market cost level c~ as an index of the base costs of all competing insurers in the 

market given by: 

 ˆ
j j

j i

c w c
≠

= ⋅∑ɶ  (2.10)           

where jw  is the weight defined in (2.5).   

 Then îc  can be further decomposed into two components: 

 î ic c β= +ɶ  (2.11) 

where iβ  represents the firm-specific cost component referred as firm cost factor.   We have 

0j j

j i

w β
≠

⋅ =∑ . 

        

2.6 Components of Premium 

Now we decompose the premium rate.  Using the previous notations, the log premium rate p(x) 

of a policy x in the rating class g over a single period can be decomposed in a similar fashion:        

 
ˆ( )

ˆ

g u

i i i i

g h d

i i i i

p x p p p

p p p p

= + +

= + + −
 (2.12) 

 where  

0
0ˆ
g

x

i ip p= is referred to as base price, base rate, or price level, 

0
0 0

ggx xg

i i ip p p= − is referred to as rating class premium factor,  

0( )
g

xu

i i ip p x p= −  is referred to as relative risk load,    

0d

ip ≥  is referred to as rate reduction,  

h u d

i i ip p p= +  is referred to as relative risk premium factor.  

                                                                                                                                                                                         
10
 A rate class consists of policies that have the same demographic rating variables such as age, gender, and benefit 

variables but may differ in health status.    
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Remarks 

Rate reduction d

ip  in general should represent both the effect of rate restrictions and the effect 

of current insurer i ’s underwriting precision relative to those of the competitors in the market
11
.   

In an ISH block, the effect of rate restrictions is generally far greater than that of underwriting 

precision.  For simplicity, in the following we shall ignore the latter effect and assume that d

ip  

represents only the former effect.  But keep in mind that it is not difficult to generalize the 

model so that d

ip  can represent both effects of rate restrictions and underwriting precision. 

  

 

Examples of Rate Restrictions 

For small group, the rating corridor with 25% upper and lower limits can be written as 

log(75%) log(125%)up< < .  For individual medical, the fact that the initial rating class can not 

be changed for health status reasons can be expressed as 0 0uup p= ≥ , where 0up is the initial 

risk load at time of issue. 

 

2.7 Setting Premium Rate 

We want to formalize the setting of the premium rate by the insurer.  The components of 

premium rate of a policy x with insurer i  are determined based on the equations below:   

 ( ) ( )g g

i ip x c x=  (2.13) 

 ( ) ( )h h

i ip x c x=  (2.14) 

 ( ) ( ) ( )u h d

i i ip x p x p x= −  (2.15) 

                                                           
11
 It is possible to show that inferior underwriting relative to the market raises the value of 

d

ip and superior 

underwriting relative to the market lowers the value of 
d

ip .     
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 ˆ ˆ
i i ip c φ= +  (2.16)   

where iφ  represents deviation of the base price from the base cost.    

 

Remarks 

Intuitively, the first three equations state that the rating class premium factor and the relative 

risk load are set to match the corresponding cost components, with further adjustment for the 

effect of rate restrictions or the underwriting accuracy.   

 The last equation states that the base price can deviate from the base cost.  This 

deviation is by definition unrelated to rate restriction.  The sources of this deviation iφ  are two-

fold: 1) the insurer needs to set the premium rate in advance, based on forecasted base cost for 

the future which can not be determined precisely, and 2) the insurer may wish to adopt a pricing 

strategy that deviates from the cost-plus pricing method.   

 

Substituting equations(2.13), (2.14), (2.15) and (2.16) into (2.12), we obtain a single equation 

that relates premium rate to cost:  

( ) ( ) ( )d

i i i ip x c x p x φ= − + .    (2.17) 

Substituting ˆ ˆ
i i ip cφ = −  from (2.16) into (2.17)  and rearranging the equation, we have 

another expression for the rate reduction 

      ˆ ˆ( ) ( ( ) ) ( ( ) ) ( ) ( )d

i i i i i i ip x c x c p x p c x p x= − − − = ∆ −∆   (2.18) 

where ˆ( ) ( )i i ic x c x c∆ = −  and ˆ( ) ( )i i ip x p x p∆ = − . 

 

2.8 Market Rate Reduction 
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Consider a market with guaranteed issue laws.  In such a market, the insurer cannot fully rate 

many high risk insureds to whom the insurer must issue a policy. This essentially imposes a rate 

restriction on the new business rate.  Let ( )d

jp x denote the insurer j ’s rate reduction for insured 

x who is switching to insurer j  from the current insurer i .   Then the market rate reduction 

( )dp xɶ  is defined as an index of the rate reductions of all competitors given by   

       ( ) ( )d d

j j

j i

p x w p x
≠

= ⋅∑ɶ       (2.19)   

where jw  is the weight defined in (2.5). 

 

2.9 Market Price and Cost 

 We define φ
~
 as an index of firm-specific deviations with  

 j j

j i

wφ φ
≠

= ⋅∑ɶ  (2.20) 

where jw  is weight defined in (2.5), and jφ  is the deviation factor for insurer j .   

 

Simplifying Assumptions 

For the remainder of this paper, we make further assumptions:  1) weight jw  is constant for all 

insured x  from the current insurer i  and for each insurer j i≠ ; 2) jα  is constant for each 

insurer j  with normalization condition 0j j

j i

w α
≠

=∑ ;  and 3) jβ  is constant for each 

insurer jwith normalization condition 0j j

j i

w β
≠

=∑ , where jw  is weight defined in (2.5). 

 

Now we can relate market price to cost by the equation 
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    ( ) ( ) ( )d

i i im x c x p xφ β= + − −ɶ ɶ     (2.21) 

The proof of equation (2.21) is given in Appendix A2.  

 

2.10 Market Price Level, Market Cost Level, and Underwriting Cycle Index 

Define market price level m~ as an index of base prices adjusted for differentiation  

 ˆ( )j j j

j i

m w p α
≠

= ⋅ −∑ɶ  (2.22) 

where ,i jw is the weight defined in (2.5) with 0j j

j i

w α
≠

=∑ .   

 For standard risk x  in the base rating class, we have ( ) 0dp x =ɶ .  It follows from (2.21) 

that the market price level is related to the market cost level as follows:    

 m c φ= + ɶɶ ɶ  (2.23) 

 We see that cm ~~~
−=φ  can provide a measure for the relativity of the market price level 

to the market cost level which changes with an underwriting cycle. We shall refer φ
~
 as the 

underwriting cycle index 

 

2.11 Excess Risk 

Let im̂  denote base market price given by ˆ ˆ
i j j

j i

m w p
≠

= ⋅∑  where jw  is the weight defined in 

(2.5) and ˆ ip  is the base price.  

 Define the excess risk ( )iv x  of a policy x as the portion of the relative market price not 

reflected in the relative price   

 ˆ ˆ( ) ( ( ) ) ( ( ) ) ( ) ( )i i i i i i iv x m x m p x p m x p x= − − − = ∆ −∆  (2.24) 
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where ˆ( ) ( )i i im x m x m∆ = −  is referred to as relative market price and ˆ( ) ( )i i ip x p x p∆ = −  is 

referred to as relative price. 

 Substituting d

i i ip c p∆ = ∆ − from (2.18) and d

i im c p∆ = ∆ − ɶ  from (2.21) into (2.24), we 

obtain another expression for excess risk  

 ( ) ( ) ( ) ( ) ( )d d

i i i iv x m x p x p x p x= ∆ −∆ = − ɶ  (2.25) 

Equation (2.25) states that excess risk is the difference between the rate reduction from 

the current insurer and the market rate reduction for new business
12
.  When there are no 

guaranteed issue laws, we have ( ) 0dp x =ɶ , and the excess risk is equal to the rate reduction 

from the current insurer.  

 

2.12 Anti-selective Lapse Formula 

Re-arranging the first equality of (2.24) yields the relationship:   

 ˆ ˆ( ) ( ) ( ( ))i i i i ip x m x p m v x− = − +  (2.26) 

Now we express the lapse response function L  in terms of the base price, base market 

price, and excess risk: 

 ˆ ˆ( ) ( ( ( ) )) ( ( ( )))i a i i i a i i i iL p S p m x S p m v xα α= − + = − + +  (2.27) 

Equation (2.27) is the ASL formula for the individual insured. Note that L  is decreasing 

with respect to excess risk ( )v x .  Insureds with lower excess risk (presumably the healthier 

ones) would have higher lapse probabilities than those with higher excess risk (presumably the 

sicker ones).           

 

                                                           
12
  Similar to rate reduction, the excess risk can be generalized to include both the effect of rate restrictions and the 

effect of underwriting precision relative to the competitors in the market.  
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3. Aggregate Behavior 

In this section, we derive the aggregate behavior of a block of ISH policies. We first define the    

excess risk distribution for an ISH block, and use it as a mathematical characterization for the 

mix of insured types of the block.  Then we derive the model of the aggregate behavior of a 

block by summing the behavior of individual insureds over the entire block.  The resulting 

model consists of explicit analytic formulas for the aggregate behavior (e.g., lapse, loss ratio, 

and profit) of a block.      

 A note on notation:  In describing the aggregate behavior of a block, we prefer to use 

variables in the standard form as opposed to the log form, and shall use the upper case letters for 

the standard form and the lower case letters for the log form.  For example, we shall prefer to 

use price, denoted by P, as opposed to the log price p.  

 

3.1 Excess Risk Distributions 

Consider all insureds in a rating class g.  Let hH P= denote the relative risk, uU P=  the risk 

load, and vV P=  the excess risk.  The mix of insured in rating class g is given by the density 

distribution:   

( , )gk H U =  policy density function with relative risk H & risk load U  (3.1) 

From (2.25) and (2.15),  we have H = U V dP
~

, where dP
~

 is market rate reduction.  Substitute H 

= U V dP
~

 into ( , )g H Uκ  and calculate the distribution 

    ( ) ( ( ), )df V k H UVP U U dU= ∫ ɶ     (3.2) 

The normalized ( )f V  is called the excess risk distribution of rating class g.  Note that ( )f V  is 

a risk load U weighted distribution.  
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3.2 Pareto Distribution 

We shall make extensive use of the generalized Pareto distribution which has the form    

 ( ), ( ) 1 1 ( 1) / , for 1,
e

d eF V V d V
−

= − + − ≥  (3.3) 

where 1e >  and 0d >  are parameters.   The corresponding Pareto density function is   

 ( ) ( 1)

, ( ) 1 ( 1) /
e

d e

e
f V V d

d

− +
= + −  (3.4) 

 

The Pareto distribution has been widely used in modeling insurance claims (see 

Klugman (2005)).  It is used in a similar capacity for modeling excess risk distributions.   

 

3.3 The Aggregate Model 

We begin by providing notation and definitions.  Let R denote the rate increase.  Define market 

rate increase 0R as  

0 0
ˆ ˆ/( / ) 1R M P A= −      (3.5) 

where M̂ is the market price level, A  is the differentiation premium factor, 0P̂  is the initial base 

rate, and we assume 0
ˆ ˆ/P A M< . 

Define premium rate function ( )P R as 

 
0 0

0 0 0 0

(1 )
( )

(1 )(1 )

P R if R R
P R

P R R R if R R

⋅ + <
= 

⋅ + + − ≥
  

where 0P  is the initial premium rate.   

Denote adjusted premium rate '( ) ( ) /P R P R A=  . 

Let    
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)(RyPersistenc  = Persistency at rate increase R   

)(RInforce = Number of policies inforce at rate increase R  

)(RLapse = Proportion of premium lapsed at rate increase R  

( )Premium R  =Aggregate premium at rate increase R  

)(RCost  = Aggregate cost at rate increase R  

( )Lr R  =Loss ratio at rate increase R   

( )Profit R =Aggregate profit at rate increase R  

V (R) = Average excess risk at rate increase R . 

For simplicity, we shall derive the aggregate model for an ISH block that consists of a 

single rating class. We obtain the explicit analytic formulas for the aggregate model by making 

further assumptions about lapse response function and excess risk distribution.   

 

Proposition 2: 

Consider an ISH block that consists of a single rating class.  Let us assume that the excess risk 

distribution is a Pareto density function and the lapse response function )(pL  is a step function 

as defined in (2.2).  Then we have the following analytic formulas for the aggregate behavior of 

the block: 

F1) ( ), 0( ) 1 1d ePersistency R F R R= − + −   

F2) ( ), 0( ) 1d eLapse R F R R= + −  

F3) 0 , 0( ) (1 (1 ))d eInforce R I F R R= ⋅ − + −  

F4) 0 , 0
ˆ( ) (1 (1 )) ( )d ePremium R I F R R P R= ⋅ − + − ⋅  

F5) 0 , 0 0( ) (1 (1 )) ( )d eCost R I F R R C V R= ⋅ − + − ⋅ ⋅   
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F6) 0
ˆ( ) ( ( ) / ( ))Lr R C V R P R= ⋅     

F7) 0 , 0 0
ˆ( ) (1 (1 )) ( ( ) ( ))d eProfit R I F R R P R C V R= ⋅ − + − ⋅ − ⋅    

where    

0 0

0 0 0 0

ˆ (1 )
ˆ( )

ˆ (1 )(1 )

P R if R R
P R

P R R R if R R

 ⋅ + <
= 

⋅ + + − ≥
    (3.6) 

is the base premium rate,  

( )
0

, 0

0 0

             0                        
(1 )

1 1 ( ) /      R
ed e

if  R R
F R R

R R d if R
−

<
+ − = 

− + − ≥
  (3.7) 

is the Pareto distribution with 01V R R= + − , 

         

0

0
0

( 1)
if

1
( )

( 1)
 if R R

1

ed e d
R R

e ed
V R

R Red e d

e ed d

 − +   × <    −   
= 

−− +   × + ≥    −   

                     (3.8) 

 

is the average excess risk at rate increase R, and  

0C = Initial cost for the standard risk in the rating class. 

)0(0 InforceI =  = Initial number of policies in in-force  

)0(0 VV = = Initial average excess risk.  

 

Remarks  

We shall relax the step lapse response assumption and demonstrate that F1-F7 still hold in the 

general sense in Appendix A3. The general forms of F1-F7 without the step lapse and Pareto 

assumptions can be found in the proof below.      

 

Proof of Proposition 2: 



23 

We only need to prove F1 and F5. The rest of the formulas follow from the definitions.  We 

prove in steps. We first obtain the general forms of the formulas F1 & F5, then apply the step 

lapse response assumption, and the Pareto excess risk distribution assumption to obtain F1 and 

F5.    

 By (2.24) and (3.5) we have 0 0( ) ( ( ) / ) ( )(1 )M x P x A V x R= ⋅ + .  Substituting the last 

equation and the expression of P(R) in (3.6),  the lapse response function (2.1) can be written as    

0 0

0 0

( ) (log ( ) (log log ))

(log((1 ) /(1 )) log )   if 

(log(1 ) log )             if 

a

a

a

L R S P R M A

S R R V R R

S R R V R R

= − +

+ + − <
= 

+ − − ≥

   (3.9) 

In particular, when S is the step lapse function (2.2) , we have  

0

0 0 0

0    if 
( )

(log(1 ) log )             if 

R R
L R

S R R V R R

<
= 

+ − − ≥
  (3.10) 

where  

0

0 0 0 0

0

1 1

(log(1 ) log ) 1 2     V=1 R-R

0   V>1 R-R

if  V R R

S R R V if if R R

if

 < + −


+ − − = + ≥
 +

  (3.11)  

We first obtain the general form of the persistency formula: 

 

1

0 0

1

0 0

1

( ) ( )[1 (log ( ) log )]

( )[1 (log((1 ) /(1 )) log )]   if R<R

( )[1 (log(1 ) log )]              if R R

a

a

a

Persistency R f V S P R V dV

f V S R R V dV

f V S R R V dV

∞

∞

∞

= − −


− + + −

= 
 − + − − ≥


∫

∫

∫

 (3.12) 

Then we apply the step lapse assumption (3.11)  to reduce the above formula to 
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0

0

0

1

0

0 0

1

( )
1 ( )

1

1 1

R R

    if  R R

Persistency R
f V dV if  R R

   if  R R

- F( R - R ) if  R R

∞

+ −

 <


=  − ≥


 <
= 

+ ≥

∫
    (3.13) 

Finally, we substitute the Pareto distribution ( )0 0(1 ) 1 1 ( ) /
e

F R R R R d
−

+ − = − + −  into (3.13) to 

arrive at formula F1. 

 Similarly, we first derive the general forms of the aggregate cost function: 

 

0 0

1

0 0 0 0

1

0 0 0 0

1

( ) ( ) [1 (log ( ) log )]

( ) [1 (log((1 ) /(1 )) log )]    if

( ) [1 (log(1 ) log )]          if

a

a

a

Cost R I f V C V S P R V dV

I f V C V S R R V dV  R R

I f V C V S R R V dV  R R

∞

∞

∞

= ⋅ − −


⋅ − + + − <

= 
 ⋅ − + − − ≥


∫

∫

∫

 (3.14) 

Then we apply the step lapse assumption (3.11)  to reduce the last term into 

0

0 0 0

1

0 0 0

1

( )

( )

( )
R R

I C f V VdV  if  R R

Cost R

I C f V VdV if  R R

∞

∞

+ −


⋅ <


= 
 ⋅ ≥



∫

∫
    (3.15) 

We may write the above as  

    )()()( 0 RVCRInforceRCost ⋅⋅= ,     (3.16) 

where    

0 0

0

1 1

0

1 1

( ) ( )

( )

( ) ( )
R R R R

f V VdV f V dV  if  R R

V R

f V VdV f V dV if  R R

∞ ∞

∞ ∞

+ − + −


<


= 
 ≥



∫ ∫

∫ ∫
   (3.17) 
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Finally, we substitute the Pareto distribution ( ) ( 1)

, ( ) / 1 ( 1) /
e

d ef V e d V d
− +

= + −  into (3.17) and 

perform basic calculus to obtain the formula F5.  This completes the proof.  

 

4. Application  

In this section, we apply the aggregate model to the behavior of different ISH blocks and the 

impact of various factors.  We first examine the mix of insured and the aggregate behavior of 

lapse, loss ratio, and profit of these ISH blocks.  We obtain the optimal pricing solutions for 

these ISH blocks.  We also examine the impact of the market price level and market cost level.  

Finally, we determine the impacts of underwriting cycle and the effect of risk selection, firm 

cost, and differentiations.   

 

4.1 ISH Blocks and Mix of Insureds 

We shall consider several ISH blocks in Table 1.  The Pareto parameter e, d, the base cost 0C , 

and the average excess risk 0V  are provided for each block.  In addition, the base market price 

level M̂  and base premium rate 0P̂  are provided.  For simplicity, M̂ , A , and 0P̂ , are assumed 

to be the same for all blocks, and as a result, so are the market rate increase 0 0
ˆ ˆ/( / ) 1R M P A= − . 

Figure 2 graphs the excess risk distributions in these blocks.  A higher excess risk is 

generally associated with an impaired life
13
.   In all blocks, the insured density decreases with 

excess risk V, with the highest insured density at 1V = .  But the slopes of the decrease in these 

blocks are different. The slope is the steepest in Block 3, and the flattest in Block1.  Intuitively, 

                                                           
13
   To be precise, low excess risk only means that the relative risk load H is close to the relative cost

hC .  A 

healthy live has an excess risk that is close to zero.  However, an impaired live can have a low excess risk when the 

premium rate can be set to the cost without restrictions as in the case of a newly underwritten policy.         
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Block 3 has the least proportion of impaired lives, and Block 1 has the greatest proportion of 

impaired lives.   

  Figure 3 plots these blocks along the two dimensions: average excess risk 0V  vs. base 

cost 0C .  Block 1 has the highest average excess risk and the lowest base cost.  Block 2 has a 

low average excess risk and a low base cost.  Block 3 has the lowest average excess risk and the 

highest base cost.  Blocks 4 and 5 are intermediate in both average excess risk and base cost, 

with the base cost in Block 4 slightly higher than that in Block 5.   

 

Table 1 
 Parameters of Block 1 - Block 5 

 

Parameter Block 1 Block 2 Block 3 Block 4 Block 5 

e 2 1.5 2 1.5 2 

d 2.5 0.4 0.5 0.8 1.6 

0V  3.5 1.8 1.5 2.6 2.6 

0C  350 400 600 480 400 

0M  1200 1200 1200 1200 1200 

A 1.0 1.0 1.0 1.0 1.0 

0P  1000 1000 1000 1000 1000 

0R  20% 20% 20% 20% 20% 
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Figure 2

Excess Risk Distribution by Block
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Figure 3

Average Excess Risk and Base Cost by Block
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4.2 ASL and Rate Increase 

We begin by considering how ASL occurs in a block as R  increases.  When 0RR < , by 

0 0
ˆ ˆ/( / ) 1R M P A= − , we have 0

ˆ ˆ ˆ( ) / ( ) /P R A P R A M< = .  This implies that for all insured x in the 

block, ( ) / ( )P x A M x< , and ( ) 0L x = ( under the step lapse assumption).  Thus ASL does not 

occur.   When 0RR ≥ , we have ˆ ˆ( ) /P R A M≥ .  For all insured x with ˆ( ) ( ( ) / ) /V x P R A M< , we 
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have ˆ( ) / ( ) ( )P R A V x M M x> ⋅ = , and ( ) 1L x = .  Similarly, for all insured x  with 

ˆ( ) ( ( ) / ) /V x P R A M> , we have ( ) / ( )P R A M x< , and ( ) 0L x = .  Thus, as R increases, more and 

more insureds with increasingly higher excess risk would start to lapse.   

 

4.3 Aggregate Lapse vs. Rate Increase 

Figure 4 shows how the aggregate lapse rate changes with R in these blocks.   For 0RR < , the 

aggregate lapse rate is zero in all blocks. This is expected because 0RR <  implies 

( ) / ( )P x A M x<  for all x .   For 0RR ≥ , the aggregate lapse rates increase with R in all blocks.  

But the slopes of the lapse rate increases are different.  The slope of lapse rate increase is 

closely linked to the excess risk distribution of the block. 

 In Block 1, the lapse rate increase is the slowest, because the excess risk distribution has 

the least steep slope.  In Block 3, the lapse rate increase is fastest because the excess risk 

distribution has the steepest slope.  The lapse rate increase is faster in Block 3 than in Block 4, 

which in turn is faster than in Block5, which corresponds to the slopes in their excess risk 

distributions.    
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Figure 4

Aggregate Lapse by Block 
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4.4 Loss Ratio vs. Rate Increase 

Figure 5 shows how the loss ratio changes with R by block.  When 0RR < , the loss ratio 

decreases with R in all blocks.  This is because when the lapse rate is zero, the aggregate cost of 

the block remains constant but the aggregate premium keeps increasing withR .  

 When 0RR ≥ , the loss ratio exhibits different behavior in these blocks.  To understand 

this, recall that 0
ˆ( ) ( ( ) / ( ))Lr R C V R P R= ⋅ , and note that  the change in )(RV  reflects the impact 

of ASL on the mix of insured.   

 In Block 1, ( )Lr R  continues to decrease with R  for 0RR ≥ , but at a slower rate than 

before because of a moderate increase in )(RV  due to a moderate impact of ASL.   In Block 2 

and Block 3, the loss ratio reaches a minimum at 0RR =  and reverses direction to rise with R 

for 0RR ≥ .  This is because the increase in )(RV  exceeds the increase in P(R) due to a strong 

impact of ASL.   
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Figure 5

Loss Ratio by Block
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Assessment Spiral 

Significantly, Block 2 provides an illustration of the “assessment spiral” phenomenon:  The loss 

ratio ( )Lr R  after the rate increase of R=85% is actually higher than the loss ratio at R=0 prior 

to the rate increase.    

 

In Block 4, the loss ratio rises slowly with R. The increase in )(RV  is slightly higher than the 

increase in P(R).  In Block 5, the loss ratio decreases slowly as R increases, where the increase 

in )(RV  is slightly lower than the increase in P(R).    

 

4.5 Aggregate Profit vs. Rate Increase  

Figure 6 shows how the aggregate profit changes with R.  For 0RR < , the aggregate profit 

increases with R in all blocks.  This is consistent with the earlier observations that the loss ratio 

decreases with R  in all blocks. 
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 For 0RR ≥ , the behavior of aggregate profit varies significantly by block.   In Block 1, 

the aggregate profit continues to increase with R at a rapid rate, going from a net loss to a net 

profit.  In Block 2 and Block 3, the aggregate profit reaches the maximum at 0RR =  and starts 

to decrease for 0RR ≥ . In Block 4 and Block 5, the aggregate profit attains a local maximum 

at 0RR = , and then remains relatively constant as R increases.  The aggregate profit of block 4 

remains in negative territory for 0RR > , while the aggregate profit of block 5 stays in positive 

territory.  The difference in behavior can be similarly attributed to the impact of ASL on the mix 

of insureds and ultimately, the excess risk distributions. 

Figure 6

Aggregate Profit by Block
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4.6 Optimal Pricing 

We now determine the optimal price increase that maximizes the aggregate profit for each 

block.  In Block 1, we see that for R  inside the range of the chart, the aggregate profit continues 

to increase withR
14
.  Thus the optimal price increase is to maximize the premium rate 

increase R  to the extent possible.  In practice, insurer’s ability to increase the premium rate 

would be severely limited by rating laws.    
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In Block 2 and Block 3, the optimal rate increase is 0RR = , where 0 0
ˆ ˆ/( / ) 1R M P A= − .  

At the optimal price level, we have 0
ˆ ˆ/P A M= , or the adjusted price level matches the market 

price level.  As a result, the lapse rate at the optimal price increase is minimal.  This motivates 

the definition below.  

 

Sustainable Blocks 

Definition: An ISH block is called sustainable if the block attains the maximum profit 

at 0RR = .   

Comments:  Blocks 2 and 3 are examples of sustainable ISH blocks.  Sustainable blocks 

have a decent proportion of low excess risk which tends to be associated with healthy lives.  

Sustainable blocks are inherently stable because the insurer should have a strong profit 

incentive to keep the rate increase at a moderate level and the lapse rate low
15
.   

 

In Block 4, the profit remains in negative territory at all premium rate levels.  Rate increase 

0RR =  is a local optimum.  Note that as ∞→R , ( ) 0Profit R →  so that ∞→R  is the optimal 

rate increase for Block 4.   But in the real world, due to regulatory limits on rate increase,  

0RR =  is likely to be the practical optimal choice.  

 In Block 5, the optimal rate increase is to maximize the rate increase.  But given the 

small gain in profit as R becomes large, we may prefer, in the real world, rate increase 0RR = , 

which would allow us retain all insureds at the cost of a slightly lower profit, a trade-off that 

would be considered as “optimal”  in an uncertain market. 

                                                                                                                                                                                         
14
 The exception is the extreme case of , ( ) 0R Profit R→ ∞ → . 

15
 A potential implication is that some forms of rate increase limits indexed to the medical cost trend can promote 

stability in the ISH market at no cost to ISH insurers.   
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 Note that for all blocks except Block 2, the least optimal rate increase is 0=R  or no rate 

increase at all.  

 

4.7 Estimating Market Price Level 

 For optimal pricing, we need to know the market price level.  But estimating ˆ ˆ
i j j

j i

m w p
≠

= ⋅∑  

directly can be difficult in practice as  ˆ jp  is not readily available.   

 Fortunately, we can estimate ˆ im  using the relationship ˆ ˆ ˆ( ) ( ( ))aL p S p m α= − +  in (2.7), 

where aS  is a monotonic function.  This equation suggests that we can determine ˆ ˆ( )p m α− +  

by measuring )ˆ(pL  as a function of p̂ . As ˆ( ) 1/ 2L p → , we have ˆ ˆp m α→ + , which means 

that when the lapse rate of standard risks approaches ½, we have ˆ ˆp m α= + .  

 To keep ˆ ( )m t  up-to-date on a more frequent basis, we can use an index of select 

competitors’ prices, denoted by ( )idx t , to track the movement of ˆ ( )m t between time 1t and time 

2t :
16
  

 2 1 2 1
ˆ ˆ( ) ( ) [ ( ) ( )]m t m t idx t idx tλ≅ + ⋅ −  (4.1) 

    

whereλ  is a coefficient that can be determined from historical data. 

 

4.8 Effect of Market Price Level and Market Cost Level       

Now we shift our focus to the impact of market price level (MPL) and market cost level (MCL), 

which can change due to competitors’ price actions, general cost inflation, and medical 

inflation.     

                                                           
16
 The index has a smaller number of competitors compared with a full market index. 
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 Figure 7 shows the aggregate profit of a sustainable block at different market price 

levels. The parameters of the block are given in Table 2.  We see that a higher (or lower) market 

price level translates into a higher (or lower) aggregate profit of the block for all R.  Moreover, 

the optimal price increase is to match the new market price level, with correspondingly higher 

(or lower) maximum profit.    

 

Table 2 
 Block Parameters and Market Price Level (MPL) 

 

Parameter MPL=1200 MPL=1250 MPL=1150 

e 1.5 1.5 1.5 

d 0.4 0.4 0.4 

0V  1.8 1.8 1.8 

0C  400 400 400 

0M  1200 1250 1150 

A 1.0 1.0 1.0 

0P  1000 1000 1000 

0R  20% 25% 15% 

 

Figure 7

 Effect of Market Price Level on Aggregate Profit 

0

100

200

300

400

500

600

0% 20% 40% 60% 80% 100%

Rate Increase R

P
ro

fi
t MPL=1200

MPL=1250

MPL=1150

 



35 

 Figure 8 shows the aggregate profit of the same block at different market cost levels.  

The parameters of the block are given in Table 3.   We see that higher (or lower) cost level 

means a lower (or higher) aggregate profit of the block for all R.  However, the optimal price 

increase remains the same regardless of the market cost level, but the corresponding maximum 

profit is lower (or higher).    

Table 3 
 Block Parameters and Market Cost Level (MCL) 

 

Parameter MCL=400 MCL=450 MCL=350 

E 1.5 1.5 1.5 

D 0.4 0.4 0.4 

0V  1.8 1.8 1.8 

0C  400 450 350 

0M  1200 1200 1200 

A 1.0 1.0 1.0 

0P  1000 1000 1000 

0R  20% 20% 20% 



36 

Figure 8

 Effect of Market Cost level on Aggregate Profit
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4.9 Effect of Underwriting Cycle and Internal Drivers   

Finally, we apply the model to understanding the impact of underwriting cycle and some 

internal drivers.  

 Define profit capacity of a block as the maximum aggregate profit attained when the 

price increase is optimal.  In other words, profit capacity is the potential profit to be realized by 

optimal pricing.    

 For simplicity, we consider the case of a sustainable ISH block for which the maximum 

profit is attained when ˆ ˆ/P A M= .  It follows easily from formula F5 that the profit capacity of a 

sustainable block can be expressed as     

 0 0Pr [ ]ofit Capacity I C V= ⋅ ⋅ Α ⋅Φ −Β⋅ɶ ɶ  (4.2) 

where 0I = initial in-force, C
~
 = market cost level, Α = differentiation premium factor, Β = firm 

cost factor, Φ
~
= underwriting cycle index,  and 0V = initial average excess risk.    

  The last expression in (4.2) formalizes the impact of underwriting cycle and internal 

drivers on the profit capacity of a block.  
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Effect of Underwriting Cycle  

Equation (4.2) states that the profit capacity of a block is dependent on the underwriting cycle 

Φ
~
 which the insurer has no control over.  In a down cycle, the lower value of Φ

~
 means a lower 

profit capacity of the block, and the insurer has no choice but to accept the lower profits.  In an 

up cycle with a higher value of Φ
~
,  the insurer can achieve higher potential profit.  

  

Effect of Internal Drivers 

Equation (4.2) also states how the profit capacity of a block is related to several key internal 

drivers.  To increase the profit capacity of the block, the insurer has three basic strategies: 1) 

raise the differentiation premiumΑ  by raising perceived quality; 2) reduce the firm-specific 

costΒ , which usually means lowering expense and obtaining better provider discounts; 3) lower 

the average excess risk 0V , which means gaining an advantage in health risk assessment 

accuracy
17
.   

 The quantity 0VΑ⋅Φ −Β⋅ɶ  behaves like a profit margin.  When 0 0VΑ⋅Φ −Β⋅ >ɶ , the insurer 

has a positive profit capacity, and when 0 0VΑ⋅Φ −Β⋅ <ɶ , a negative profit capacity.  An 

implication is that for a given value of Φ
~
, insurers with different values ofΑ , Β , and 0V  ,  

would fare differently in terms of ability to stay profitable. 

 

5. Conclusion 

We have developed a model for the behavior of ISH policies in a competitive market based on a 

formal framework.  In this model, ASL arises as a result of consumers’ rational choices in a 

                                                           
17
 As mentioned earlier, excess risk may be generalized to include both effect of rate restrictions and underwriting 

precision relative to the competitors in the market. 
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competitive market with rate restrictions. We applied the model to address several fundamental 

problems and major applications. We examined a wide range of aggregate behavior of ISH 

blocks in various scenarios. We obtained the optimal pricing solutions for different types of ISH 

blocks.  We also examined the impact of changes in the market, underwriting cycle, and several 

internal drivers.  Along the way we obtained some significant findings and new insights.  Key 

model parameters, such as market price, can be estimated from empirical data.    

 A significant finding was that for a large class of so-called “sustainable” ISH blocks, the 

insurer can achieve maximum profit with a minimal lapse rate, and the optimal rate increase is 

consistent with the general medical cost trend.  These blocks can be managed to produce long 

term stability and profitability. A potential implication is that some forms of renewal rate cap 

indexed to a suitable medical cost index, could help the stability of the ISH market, benefiting 

both the insureds and the insurers.  This can be accomplished via either product design or rate 

regulations.     

 We can generalize the model in several directions.  First, we can, as mentioned earlier, 

relax the main assumptions by considering non-step lapse response, non-Pareto excess risk 

distribution, and a block with multiple rating classes.  We can also generalize the model by 

considering multiple local markets with local price and cost.  Finally, we can incorporate benefit 

dampening, non-price-induced lapses, and non-switching price-induced lapses which were 

omitted in the model but can provide added realism for practical application.   

  In this paper, we did not consider future new business explicitly.  Part of the reason, 

other than paper length, is that for the short timeframe we are concerned with, future business 

does not substantially alter the aggregate behavior of a block in the model.  Incorporating future 

business can be done in close parallel to the existing policies in the current model.  The sales 

behavior can be modeled analogously to the lapse behavior.  Note that all future business has an 
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excess risk value of zero, because the renewal rate restrictions do not apply and the guaranteed 

issue laws would have the same effect on all insurers (Strictly speaking we also need to assume 

no difference in underwriting effectiveness among insurers. See Section 2).   

 We may want to consider extending the model to the multi-period case.  We did not 

consider the multi-period case in this paper because to do so would add a great deal of 

complexity without providing genuine new insights.  For aggregate behavior of ISH blocks, the 

single-period model we developed is sufficient in practice with exceptions of relatively rare 

situations.  Fortunately, many key ideas and techniques described in this paper, including excess 

risk and market price, can be readily generalized to the multi-period case.      

  

Appendices  

A1.  Proof of Proposition 1 

Note that ' ( )a iS p  is balanced means *i ip p= .  Note that under the differentiability assumption, 

we have /i j b i

j i

dL dp w dS dp
≠

= ×∑ , where jw is independent of ip .  Thus the half lapse price for 

insured x can be expressed as   
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Note that bS  is balanced implies 
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( ' ' )

( ' ' ) 0
b i j

i j i

i

dS p p
p p dp

dp

−
× − =∫  

 

 and that bS  is a s-function implies 

 
( ' ' )

1
b i j

i

i

dS p p
dp

dp

−
=∫  

where 'ip  and ip  are linearly related by a constant term.  Substituting these two integral values 

into the last expression for the half-lapse price, we have 

 

* [0 ( ' ) 1]

( )

i j j i
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j j j i
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j j i i i
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Note the normalization condition 0j j

j i

w α
≠

⋅ =∑  in the last step.  This completes the proof. 

A2.  Proof of Market Price –Cost Relationship 

By (2.17)  we have 
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By (2.9),  (2.10), and (2.11), we have     
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This completes the proof.    

Remark: Note that if new business is fully underwritten, we have 0dp =ɶ .  Then the 

relationship is reduced to i i im c φ β= + −ɶ .   

 

A3.  Non-step Lapse Assumption 

We want to demonstrate that F1 – F7 still hold in the general sense if we relax the step lapse 

assumption.  We shall do so by using numerical examples.   Let us consider Block 2 from Table 

1 and a non-step lapse function given by a cumulative normal distribution with a scaling factor 

of 0.02 

2( ) 1/ 2 exp( 1/ 2 ( / 0.02) )

z

S z z dsπ
−∞

= − ⋅∫ . 

Using the general form of the formulas from the proof of Proposition 2 in Section 4, we 

compute numerically the aggregate profit and the aggregate lapse of the block using both the 

above non-step lapse function and the step lapse function. 

 The results are shown in Figure 9 and Figure 10.  The aggregate profit and lapse of the 

block remain the essentially same but are somewhat smoother after we switch from the step 

lapse to non step lapse function.  The key points of interest such as the optimal rate increase 

have shifted only slightly.  The similar observations can be made for the other formulas.  Thus 

the general relationships represented by F1-F7 still hold with the non-step lapse assumption.   
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Figure 9

Aggregate Profit With  Non-step Lapse Response
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Figure10

 Aggregate Lapse Rate With  Non-step Lapse Response
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