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Abstract

Poisson regression models are commonly used in actuarial science to model count
data (e.g., the number of claims) and covariates. The standard parametric formulation
assumes that the response to covariates is constant across the population under study.
Additionally, the shape of the posterior distribution is rather inflexible. In practice,
however, the response to covariates may depend on a latent class and the posterior dis-
tribution may be highly nonparametric. We propose a Bayesian nonparametric model
in which a Dirichlet process prior on the regression coefficients leads to a clustering
of observations into groups having the same response to covariates. We illustrate the
utility of our approach with an example dataset of diabetes deaths.

∗Corresponding Author, Email: bhartman@stat.tamu.edu, Web: http://stat.tamu.edu/∼bhartman,
Texas A&M University, MS 3143, College Station, TX 77843-3143

1



1 Introduction

As actuaries, we are constantly using information we know to estimate information we would
like to know. For example, we could estimate the future claim experience of a policy by look-
ing at the past claims, or various covariates. We have many tools to make those predictions,
e.g. linear models, GLM’s, time series analysis, splines, etc. But what if our data has some
underlying structure? What if a simple linear model is the best fit, but the regression pa-
rameters are different for each of two subsets of the data? The method described in this
paper is able to discover that underlying structure and improve both the understanding of
the data and the future predictions.

1.1 Data Description

While the focus of this paper is an introduction to Dirichlet process priors (Ferguson, 1973),
we use a simple dataset to illustrate the benefits of the method. The data in Table 1 contains
the number of deaths due to diabetes in New South Wales, Australia in 2002, stratified by
age and gender (De Jong and Heller, 2008).

Table 1: 2002 Diabetes Deaths in New South Wales

Gender Age Deaths Population Rate per 100K
Male <25 3 1141100 0.26
Male 25-34 0 485571 0.00
Male 35-44 12 504312 2.38
Male 45-54 25 447315 5.59
Male 55-64 61 330902 18.43
Male 65-74 130 226403 57.42
Male 75-84 192 130527 147.10
Male 85+ 102 29785 342.45
Female <25 2 1086408 0.18
Female 25-34 1 489948 0.20
Female 35-44 3 504030 0.60
Female 45-54 11 445763 2.47
Female 55-64 30 323669 9.27
Female 65-74 63 241488 26.09
Female 75-84 174 179686 96.84
Female 85+ 159 67203 236.60

2



2 Model

2.1 Sampling Model

We model the number of deaths (yi) using a Poisson regression on the covariates xi with
exposure ti:

yi|λi ∼ Poi(yi|λi)

log (λi/ti) = xT
i β

λi = ti · exp(xT
i β).

The link function allows us to rewrite the likelihood as:

yi|β ∼ Poi(yi|ti · exp(xT
i β))

p(yi|β) =
exp

{
−ti · exp(xT

i β)
}

(ti · exp(xT
i β))yi

yi!
.

Through independence, the joint probability is:

p(y|β) =
n∏

i=1

p(yi|β).

2.2 Parametric Prior

When estimating this model in a Bayesian framework, we need to specify a prior distribution
for β. A common choice is a multivariate normal distribution:

β ∼ Nk(β0, Σ0).

With the prior and the likelihood specified, the posterior distribution follows from Bayes’
rule:

p(β|y) =
p(y|β)p(β)

p(y)

log [p(β|y)] ∝
n∑

i=1

[
−t · exp(XT

i β) + yi

(
log(t) + XT

i β
)]
− 1

2
(β − β0)

T Σ0(β − β0).

The model can be fit using the Metropolis-Hastings algorithm (Hastings, 1970) or, better
yet, the adaptive rejection sampler of Gilks et al. (1995) because the posterior is log-concave.
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2.3 Nonparametric Prior

By using the above model, we are implicitly assuming that each observation has the same
β vector. That may be näıve. As a simple example, let’s assume that we only have the age
covariate in our diabetes dataset. Age will likely have a different effect on males and females,
but the standard parametric model does not allow that. We can enable our model to detect
that substructure by simply adding an extra line to the prior specification

Original Parametric Model

yi|β ∼ Poi(tiexp(xT
i β))

β ∼ G0

G0 = Nk(β0, Σ0)

Proposed Nonparametric Model

yi|βi ∼ Poi(tiexp(xT
i βi))

βi|G ∼ G

G ∼ DP (α0G0)

G0 = Nk(β0, Σ0)

where DP (α0G0) is a Dirichlet process (Ferguson, 1973) with mass parameter α0 and cen-
tering distribution G0. This specification results in a Bayesian mixture model (Antoniak,
1974). For a review of these types of models, see Müller and Quintana (2004).

That simple addition allows each observation to have its own β vector while borrowing
strength from the other observations through clustering.

3 Analysis

To illustrate, we fit the diabetes data with a Poisson regression model with link function

λi = ti · [β0 + β1age]

where age is the midpoint of the age range for the observation. While this model is simple,
it helps to solidify some abstract concepts. We will test if the method can model the gender
effect without the gender information.

The parameters are estimated using a two step MCMC chain. The first step assigns each
observation to a cluster and the second step returns a parameter vector for each cluster. We
use the Auxiliary Gibbs scheme of Neal (2000).

For each iteration of the chain, we obtain a clustering and parameter estimates for each
cluster. Each clustering could be different. For example, observations 12 and 17 may be in
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the same cluster 80% of the time, 17 is with 18 10% of the time and 12 is never with 18.
Presenting this information succinctly is an important task.

3.1 Posterior Clustering

A logical first step is to find a clustering of the observations which is optimal in some way.
Binder (1978) was the first to purpose a loss function to minimize. More recent methods
include least-square clustering from Dahl (2006) and max PEAR clustering from Fritsch and
Ickstadt (2009). Applying the two newer methods to the diabetes data results in the same
clustering presented in Table 2.

Table 2: 2002 Diabetes Deaths in New South Wales

Gender Age Deaths Population Rate per 100K Cluster
Male <25 3 1141100 0.26 1
Male 25-34 0 485571 0.00 2
Male 35-44 12 504312 2.38 1
Male 45-54 25 447315 5.59 1
Male 55-64 61 330902 18.43 1
Male 65-74 130 226403 57.42 1
Male 75-84 192 130527 147.10 1
Male 85+ 102 29785 342.45 1
Female <25 2 1086408 0.18 2
Female 25-34 1 489948 0.20 2
Female 35-44 3 504030 0.60 2
Female 45-54 11 445763 2.47 2
Female 55-64 30 323669 9.27 2
Female 65-74 63 241488 26.09 2
Female 75-84 174 179686 96.84 1
Female 85+ 159 67203 236.60 2

The clustering follows the gender difference in all but two cases, the 25-34 year-old males
are clustered with the females and the 75-84 year-old females are clustered with the males.
The death rate for males is higher at every age group except for the 25-34 year-olds. At that
age, the death rates are very similar. We would expect for the males and the females to be
clustered together. The reason for the 75-84 year-olds to be clustered together is not readily
apparent.
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3.2 Confidence Plots

While the posterior clustering gives a decent snapshot of the structure, there is uncertainty in
the estimate. To examine that uncertainty, we examine the pairwise probability matrix. The
element in the ith row and jth column is the proportion of draws where observations i and j
were clustered together. Obviously, when i = j the proportion equals one. A confidence plot
(Dahl et al., 2009) is a heat map of the pairwise probability matrix. The rows and columns
of the pairwise probability matrix are arranged to follow the posterior clustering. The color
of each element represents the estimate of the pairwise probability. This graphic allows us to
quickly assess which clusters are well defined and how the clusters are related to each other.
Figure 1 is the confidence plot for our example dataset. F-40 stands for the female strata
with an age midpoint of 40 (35-44 year-olds).

Figure 1: Confidence Plot

Notice that the two groups who were not classified with their gender (M-30 and F-80) are
strongly classified in their cluster. The pairwise probabilities of those two observations are all
greater than 0.5 within their cluster and less than 0.5 outside of it. There are two observations
which have about a 0.5 probability of being clustered with any other observation, F-20 and
M-20. The confidence plot gives us information about the strength of the clustering which
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the posterior clustering lacks. Combining those two sources of information gives a strong
picture of the underlying structure of the data.

4 Conclusion

Dirichlet process priors enable a modeler to more precisely fit a broad class of data structures.
In our diabetes example, we were able to discover the gender effect without including the
gender information. While it may be obvious in retrospect that gender would have an effect
on the rate of diabetes deaths, there are other situations where the relationship may not
be apparent a priori. Additionally, there may be a covariate that has an effect, but the
data, or a good surrogate, is unavailable. For example, driving while talking on your cell
phone increases the risk of an accident. Unfortunately, finding that data could prove difficult
or impossible. If the effect is strong enough, using a Dirichlet process prior will allow the
practitioner to find the structure and use it for prediction. Understanding the structure of
the data would greatly improve ratemaking and pricing.
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