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Abstract

This article examines how parameter uncertainty leads to uncer-
tainty in Value at Risk (VaR) estimates. Lacking a closed form so-
lution, we use a first order approximation of VaR to map parameter
changes into changes in the VaR value. When the asymptotic distri-
bution of parameter estimates is normal, this implies a normal ap-
proximation of the confidence interval about VaR. We describe this
approximation in detail and explore some extensions to risk factor
modeling.
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1 Introduction

To comply with Basel II [BIS (2005)] regulatory requirements for managing
operational risks, it is increasingly common for banks to adopt the Loss
Distribution Approach (LDA). In this framework, the number and size of
losses are modeled across businesss lines and event types according to

S =
N∑

i=1

Xi (1)

where S is the aggregate loss, N is the random variable modeling the number
of loss events, and the Xi’s are independent and idententically distributed
random variables modeling the severity of each event. The level α Value
at Risk, VaRα, associated with S is the aggregate loss that is exceded with
probability (1 − α). Since decisions based on reported VaR values often
involve the holding of large amounts of capital in reserve, the quality of VaR
estimates is of great interest.

There are several sources of potential error in VaR estimates. Two of
the more commonly discussed with respect to the LDA are model risk and
parameter risk [Mignola and Ugoccioni (2006)]. Model risk addresses the pos-
sibility that the model selected to fit the data wasn’t appropriate. Parameter
risk addresses the fact that, given the correct model, the estimated parame-
ters will be incorrect due to limited sample size and the inherent randomness
of the data. The issue of parameter risk is particularly worrisome in the
case of operational risk management as the quantity of data is often limited.
Quantifying the way this uncertainty in parameter estimates translates into
uncertainty in VaR estimates can be challenging, as a closed form solution
for VaR as a function of the model parameters is generally unavailable.

Previous contributions to parameter risk have used a Bayesian approach
[Carvalho et al. (2008)] or used extreme value theory (EVT) [Embrechts
et al. (2003)]. The bayesian approach is simulation based and therefore
(as we discuss later) can be very time consuming. The approach taken by
Embrechts et al. (2003) is ideal when losses are modeled with an extreme
value distribution as it allows for the computation of the confidence bounds
about VaR implied by the distribution of parameter estimates, but is not
applicable to non EVT models.

We would like to be able to produce confidence bounds for VaR estimates
for a wide class of models. To avoid resorting to simulation based methods,
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which can be time consuming, we resort to a first order approximation of
VaR that can be computed quickly. This work is a reframing of the work
in Erdman et al. (2010). We focus here on the computational process for
approximating confidence intervals about VaR as opposed to the general
class of distortion risk measures. Also, we emphasize the use of the discrete
Fourier transform over Panjer’s recursive method. We show that VaR is a
linear function of any scale parameter so that the linear relationship perfectly
models the effect of the scale parameter on VaR. We use this fact to suggest
a more generalized model for S which allows for the incorporation of risk
factors into the modeling process.

In the next section we describe how one might compute confidence inter-
vals about VaR with a simulation based approach with the intent of demon-
strating the limitations of this method. In section 3 we outline how a first
order approximation of VaR can be used to approximate the confidence inter-
val and provide the computational details in section 4. We provide details of
the process for a specific example in section 5. We then show how the linear
behavior of VaR with respect to a scale parameter can be used to incorporate
risk factors into the modeling process and how parameter risk estimation is
performed in this framework in section 6.

2 The Monte Carlo approach to parameter

risk

A firm observes loss amounts over a time period and uses the data to esti-
mate a specific form of (1) by selecting models to describe X and N with
parameter vectors θX and θN respectively. For simplicity, we combine θX and
θN into the parameter vector θS ∈ Rm which completely describes the aggre-
gate distribution. We assume that the parameter estimation method yields
estimates that are asymptotically normal and unbiased. For example, the
parameters can be estimated using the maximum likelihood method. Thus,

[θ̂S]
T ∼ N([θS]

T ,ΣθS) (2)

From here the firm computes its VaR one of many ways. One approach
is to discretize X and use the discrete Fourier transform [Press et al. (1992)]
or Panjer’s recursive formula [Panjer (1981)] to obtain a discretized approx-
imation of S. Alternatively, a simulation based approach can be used where

3



each draw of S is arrived at by drawing a value n from the distribution of N
and then drawing n independent observations from X. Regardless of the ap-
proach, the end result is a value VaR(θ̂S) that represents a potentially large
amount of money that will be held in reserve against potential losses.

Note that (2) implies that, while θ̂S is the most likely value of θS given
the data, there were many other choices that could also have produced the
data with very similar likelihoods. For each one of these probable choices
of θ is a corresponding VaR value. So the confidence in the VaR estimate
depends on the distribution of VaR estimates implied by (2). To obtain this
distribution, we can turn to simulation. We first simulate a draw from θ̂S
and use this value of θS to simulate from S repeatedly to compute VaR.
This process is repeated until a suitable number of VaR values have been
produced. The simulated VaR values are finally sorted to form an empirical
distribution from which confidence intervals may be determined.

If computation time is not a concern, then the approach outlined above
works very well. However, the computation time increases linearly with the
parameter space, which increases exponentially with the number of param-
eters. This is the ‘curse of dimensionality’ [Bellman (Princeton University
Press)] and it can quickly make simulation based approaches impractical. For
example, if N and X have one parameter each, then the parameter space is
in R2 and, depending on the variance in the estimates, a reasonable number
of parameter draws could be as small as 1,000. This means that VaR must be
computed 1,000 times. Adding one more parameter to the models of N and
X means that the parameter space is now in R4, so that to simulate over a
similar grid would require 1, 0002 = 106 VaR calculations. As the number of
parameters increases, the problem quickly becomes unmanageable, especially
if one hopes to compute VaR values across business lines and event types.

3 Approximating parameter risk

The main difficulty in the approach outlined above is the fact that, given a
parameter vector θS, there is no closed form solution for the corresponding
VaR value. Ideally, the VaR would depend on θS in such a way that the dis-
tribution of VaR given the distribution of θS was known, so that a confidence
interval could be written down without a need for simulation. A solution is
to use a linear approximation of VaR

VaR1(θS) = VaR(θ̂S) +DT (θS − θ̂S) (3)
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where D is the gradient vector

D =

[
∂VaR

θS1

, · · · , ∂VaR
θSm

]T
.

Since the first order approximation of VaR is just an affine transformation
of the multivariate normal random vector θ̂S, its distribution is known

VaR1(θS) ∼ N
(
VaR(θ̂S), D

TΣθSD
)
. (4)

Thus the first order approximation of VaR is asymptotically normal with
mean VaR(θ̂) and covariance matrix DTΣθSD and a 95% confidence interval
would be computed as

VaR(θ̂S)± 1.96 ·
√
DTΣθSD. (5)

Once one has a specification for (3), an approximate distribution of VaR
is immediate. The values of θ̂S, ΣθS , and VaR(θ̂S) are immediate biproducts
of the usual VaR computation process. The only missing piece is the gradient
vector D.

3.1 Derivative of VaR with respect to θS

If for R∗ ∈ [0,+∞) and θ∗S ∈ Rm we have that α = FS(R
∗, θ∗S), then by defi-

nition, R∗ is the level α VaR corresponding to the parameter vector θ∗S. If we
then fix α, the implicit function theorem [Marsden and Hoffman (1993)] pro-
vides for the existence of the function VaR(θS) so that FS(VaR(θS), θS) = α
in a neighborhood about θ∗S, provided

∂FS

∂s

∣∣
s=R∗

6= 0. Note that this con-
dition is equivalent to the condition that S has support almost everywhere
in a neighborhood about R∗. Taking the derivative with respect to the ith
element of θS on both sides yields

∂

∂θSi

FS(VaR(θS), θS) =
∂α

∂θSi

= 0 ∀θSi

which implies that

∂VaR(θS)

∂θSi

= − 1

∂FS(s, θS)

∂s

· ∂FS(s, θS)

∂θSi

. (6)
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At first glance we are not in any better shape as we now have the two
unknown quantities

∂FS(s, θS)

∂s

∣∣∣∣∣
s=R∗,θS=θ̂S

(7)

and
∂FS(s, θS)

∂θSi

∣∣∣∣∣
s=R∗,θS=θ̂S

, (8)

which are both dependent on the aggregate loss distribution, which we don’t
have a closed form solution to. A discrete approximation of S provides a
simple approximation for each.

4 Aggregate distribution approximation

From (1) we can express FS using convolutions as

FS(s) = P (S ≤ s) =
∞∑

i=0

P (N = i)P
( i∑

j=1

Xj ≤ s
)

=
∞∑

i=0

fN(i)F
∗(i)
X (s) (9)

where F
∗(i)
X (s) is the ith convolution of F evaluated at s;

F
∗(i)
X (s) =

∫ s

0

F
∗(i−1)
X (s− u) dFX(u) ; F

∗(0)
X (s) = 1 . (10)

If the distribution of X is discrete, we can evaluate (9) recursively using
the discrete Fourier transform (DFT). Since X is generally modeled with a
continuous distribution, a discrete approximation of X must first be com-
puted. The discretization must be done over a lattice of width h, which will
be the same lattice over which the aggregate distribution is discretized. The
trick is to choose an h that is small enough to capture the behavior of X,
but not so small that the number of discretization points for S becomes un-
manageable. For a discussion of discretization methods, see Embrechts and
Frei (2008).

Let X̃ and S̃ denote the discretized representations of X and S respec-
tively, with f X̃

k = P (X̃ = h·k) and f S̃
k = P (S̃ = h·k). The rounding method,
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which assigns to each point x the mass between x− h/2 and x+ h/2 is ideal
for our purposes as it allows for an easy approximation of (7). The weight
on the point j ∗ h is

f X̃
j = FX

(
jh+

h

2

)
− FX

(
jh− h

2

)
h = 0, 1, 2, ...

Because the DFT is used for the computation of S̃ it is necessary to have the
number of discretization points be a power of 2.

For completeness, we proceed with a description of the DFT in the next
subsection. Readers familiar with the DFT can skip this portion. The details
provided are then used to show how one computes (7) and (8) when FS is
approximated with the DFT.

4.1 Discrete Fourier transform for compound

distributions

We want to compute the probability mass function (PMF) of the compound
random variable

S =
N∑

i=1

Xi.

We assume that X is discretized and drop the ‘∼’ notation for convenience.
Therefore X can take on the values

{
X0, X1, ..., XM−1

}
where M is a power

of 2. Since S, X, and N are all discrete, let their corresponding PMFs be
fS, fX , and fN respectively.

The strategy is to express the PMF of S in such a way that allows us to
make use of some powerful machinery so that computation is done quickly.
This is done by looking at the characteristic function of S and then linking
this to the discrete Fourier transform. In the process of doing this, we will
need the probability generating function. Let PN be the probability gener-
ating function (PGF) of N . The PGF of a random variable Y is the power
series representation of Y evaluated at a complex point z

PY (z) = E[zY ] =
∞∑

y=0

fY (y)·zy.

The characteristic function of a discrete random variable Y at a real value
u is defined to be

f̂Y (u) = E[eiuY ].
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When Y is discrete, this is also

f̂Y (u) =
∞∑

k=0

fY (k)·eiuk.

So the characteristic function of S is

f̂S(u)=ES[e
iuS]

=PN

(
f̂X(u)

)
.

The next step is to show how to interpret this relationship in terms of the
discrete Fourier Transform. Consider the sequence of values

{
fX0, fX1, ..., fXM−1

}
.

The DFT creates a new sequence, f̂X =
{
f̂X0, f̂X1, ..., f̂XM−1

}
, whose jth el-

ement is

f̂Xj =
M−1∑

k=0

fXke
−2πijk/M . (11)

The jth element of the original sequence can be recovered from the trans-

formed sequence,
{
f̂Xj

}M−1

j=0
, as

fXj =
1

M

M−1∑

k=0

f̂Xke
2πijk/M . (12)

The DFT is the same as the characteristic function evaluated at the point
u = −2πj/M . The jth element of the transformed PMF of S is then

f̂Sj = PN

(
f̂Xj

)
.

So, if we can quickly compute the DFT of X and the PGF of N then we
have a way to quickly compute the transformed PMF of S. The fast Fourier
transform will compute the DFT and its inverse efficiently. Computation
time increases withMlog(M), whereM is the number of discretization points
[Press et al. (1992)]. The PMF of S is then recovered by applying the inverse
transform given by equation (12).

To summarize, use the following notation:

T (f) =
{
f̂0, f̂1, · · · , f̂M−1

}

T−1(f̂) = {f0, f1, · · · , fM−1}
P(f) = {P(f0),P(f1), · · · ,P(fM−1)} .
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The PMF of S is then

fS = T−1
(
PN

(
T (fX)

))
. (13)

4.2 Aggregate CDF derivatives

Approximations for (7) and (8) can both be derived from (13). For (7), we
use the second order approximation

∂FS(s; θS)

∂s

∣∣∣∣∣
s=R∗,θS=θ̂S

≈ FS(r
∗h+ h

2
; θ̂S)− FS(r

∗h− h
2
; θ̂S)

h
=

fS̃r∗

h
(14)

where r∗ is an integer chosen so that r∗h ≈ VaR(θ̂S). Note that this approx-
imation depends on the use of the rounding method for discretization.

From the discrete approximation of S, computation of (8) reduces to
computing the derivative of the PMF at each point with respect to the model
parameters since

FS(VaR) ≈
r∗∑

j=0

fSj
,

which implies that

∂FS(s, θS)

∂θSi

∣∣∣∣∣
s=R∗,θS=θ̂S

≈
r∗∑

j=0

∂fSj

∂θS

∣∣∣∣∣
θS=θ̂S

.

Here we break into 2 cases θ is a severity parameter and θ is a frequency
parameter. When θ is a severity parameter, P does not depend on θ and the
differentiation is evaluated via the chain rule

∂fSi

∂θ
= T−1

( ∂

∂θ

[
PN(T (fX))

])
i
,

= T−1

({
P ′

N

(
T (fX)

)
j
·T
(∂fX

∂θ

)
j

}M−1

j=0

)

i

(15)

where P ′

N is the complex derivative of PN .
When θ is a frequency parameter, the differentiation is applied to the

operator PN itself

∂fSi

∂θ
= T−1

(
∂PN

∂θ

(
T (fX)

))

i

. (16)
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4.3 Linearized VaR computation with discretized

severity

Combining (14), (15), and (16), we write (6) as

∂VaR(θS)

∂θSi

≈ (17)

− h

f S̃
r∗

[
r∗∑

j=o

T−1

({
P ′

N

(
T (fX)

)
j
·T
(∂fX

∂θ

)
j

}M−1

j=0

)

i

]
θSi ∈ θX

− h

f S̃
r∗

[
r∗∑

j=o

T−1

(
∂PN

∂θ

(
T (fX)

))

i

]
θSi ∈ θN

Computation is straightforward and requires very little time. From a
programming standpoint, the requirements are:

• a function to compute the derivative of the severity CDF,

• an implementation of the discrete Fourier transform,

• a simple discretization routine,

• a function to compute the PGF of the frequency distribution,

• a function to compute the complex derivatives of the PGF.

5 Example

Here we present some details for the case when X ∼ Lognormal(µ, σ) and
N ∼ Poisson(λ). We compare the approximate confidence interval about
VaR with one obtained from simulation. The estimated parameters are

θ̂ =
[
λ̂, µ̂, σ̂

]T
= [10, 6.56, 0.69]T

from 10 frequency observations and 100 severity observations. The parameter
covariance matrix is

∑
=




1 0 0
0 0.0048 0
0 0 0.0045
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and the 99% VaR is estimated to be 19,055.
The logmormal cdf and it’s derivatives with respect to its parameters are:

FX=
1

2
+

1√
π

∫ y

0

e−tdt

∂FX

∂µ
(x, µ, σ)=− 1√

2πσ
e−y2 where y =

ln (x)− µ

σ
√
2

∂FX

∂σ
(x, µ, σ)=− 1√

πσ
e−y2y .

We refer to these functions as ‘FX’, ‘dFX1’, and ‘dFX2’, respectively.
The PGF for a Poisson random variable is

PN(z, λ) = eλ(z−1),

where z is a complex argument. The derivative with respect to z is

P ′

N(z, λ) = λeλ(z−1) = λPN(z)

and the derivative with respect to λ is

∂PN

∂λ
(z, λ) = (z − 1)eλ(z−1).

We refer to these functions as ‘PN’,‘dPNz’ and ‘dPN1’ respectively.
The only remaining function we need is an implementation of the discrete

Fourier transform and it’s inverse, which we will refer to as ‘T’ and ‘T−1’.
An excellent resource for implementing the fast Fourier transform is Press
et al. (1992).

We start by discretizing the severity distribution. If we use 213 dscretiza-
tion points and discretize up until we reach the VaR value, then the dis-
cretization interval width is roughly 2.3, which allows for a high degree of
precision considering the severity mean is close to 900. However, we need to
consider the aliasing error associated with the DFT. Essentially, any mass
not captured by the discretization is distributed to the body of the distribu-
tion by the algorithm. One method of handling this is to employ exponential
tilting. Since VaR is defined as a point beyond which the probability dis-
tribution of S has very little mass, we find it sufficient to discretize over a
larger interval, possibly with more discretization points. In this example, we
can use the 213 points to discretize up to the point 2·VaR and maintain an

11



interval width of h ≈ 4.6, which is still reasonable. With this scheme, the
amount of mass which is aliased is very small and given by 1− FS(2·VaR).

The mass at each point of the discretized distribution of X is

f X̃
j = FX(jh+

h

2
, 6.6, 0.69)− FX(jh+

h

2
, 6.6, 0.69).

The discretized severity, X̃, is an array of 213 elements. From this array
we now need 2 more, the arrays of derivatives with respect to µ and σ,
dF1(X̃) and dF2(X̃). They are computed as

dF1(X̃)j = dF1(f X̃
j , 6.6, 0.69)

dF2(X̃)j = dF2(f X̃
j , 6.6, 0.69).

We then apply the DFT to the 3 arrays to obtain T (X̃), T
(
dF1(X̃)

)
, and

T
(
dF2(X̃)

)
.

From T (X̃), we next apply each of the PGF derivatives to each point of
T (X̃) and obtain the arrays dPN1

(
T (X̃)

)
and dPNz

(
T (X̃)

)
.

Each of the arrays T
(
dF1(X̃)

)
and T

(
dF2(X̃)

)
is now multiplied element

by element with the array dPNz
(
T (X̃)

)
to produce dPNz

(
T (X̃)

)
·T
(
dF1(X̃)

)

and dPNz
(
T (X̃)

)
·T
(
dF2(X̃)

)
.

At this point, we are nearly finished. The derivatives of the discretized
aggregate PMF are computed as

∂f S̃

∂λ
= T−1

(
dPN1

(
T (X̃)

))
,

∂f S̃

∂µ
= T−1

(
dPNz

(
T (X̃)

)
·T
(
dF1(X̃)

))
,

∂f S̃

∂σ
= T−1

(
dPNz

(
T (X̃)

)
·T
(
dF2(X̃)

))
,

from which we compute the derivatives of the aggregate CDF with respect

12



to the parameters at VaR as

∂FS

∂λ
=

r∗∑

j=1

(∂f S̃

∂λ

)
j
,

∂FS

∂µ
=

r∗∑

j=1

(∂f S̃

∂µ

)
j
,

∂FS

∂σ
=

r∗∑

j=1

(∂f S̃

∂σ

)
j
,

where r∗ is the index associated with the VaR value. In this example, r∗ is
213.

The discretized aggregate pmf is next computed as

f S̃ = T−1
(
PN

(
T (X̃)

))

and the derivative of VaR with respect to the parameters is

DT = [
−h

f S̃
r∗

∂FS

∂λ
,
−h

f S̃
r∗

∂FS

∂µ
,
−h

f S̃
r∗

∂FS

∂σ
] = [1323.1, 19, 029.4, 23, 502.4]

The variance in VaR is DTΣD ≈ 6, 040, 485.2, which implies a 95% confi-
dence interval width of 9,634.3.

As a point of comparison, the confidence interval can be determined by
simulation. We used 104 parameter draws, computing VaR with 105 draws
from N for each set of parameters. The 95% confidence interval width com-
puted this way is 9,798.8. The simulations took nearly 1 hour to perform,
while the approximate confidence interval was computed in under 5 seconds.
Using the model parameters in the example, we allowed the number of fre-
quency observations to vary and compared the approximated and simulated
confidence intervals. The results are shown in figure 1.

Looking at figure 1, it is apparent that even for a seemingly reasonable
number of observations, estimations of VaR have relatively wide confidence
bounds. For example, a firm with 10 years of data would need to hold more
than 150% of it’s estimated VaR in reserve in order to reasonably believe
that there is sufficient coverage against outlier events. With 4 years of data,
the 95% interval about VaR is nearly as large as the VaR value itself. In this
case, the validity of risk assesments using the LDA are questionable.
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Figure 1: Actual confidence interval obtained by simulation vs. first order
approximation.
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6 Incorporating risk factors into the model

through a scale parameter

Besides loss data, firms have access to a wide variety of statistics like employee
turnover rates, customer complaints per quarter, etc. It is likely that at least
some of this information may affect the operational loss process. We refer
to such variables as risk factors and are interested in how they can be used
to incorporate knowledge about the state of affairs in various parts of an
organization into the modeling process.

Risk factor modeling is common practice when managing financial risks
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[Duffie and Pan (1997)]. In this context, they are underlying market states
that effect the value of instruments in a firm’s portfolio. In an operational risk
context, determining how VaR is affected by risk factors can aid in forecasting
future losses and can also help determine where resources should be spent to
most effectively reduce losses from operational events. Confidence intervals
about VaR that incorporate the uncertainty in estimates of the effects of
risk factors on losses can easilly be approximated using the methods in this
paper.

In this section we show that when the severity distribution contains a scale
parameter, θ, VaR is a linear function of θ. We then suggest a simple model
that allows the risk factors to affect losses by acting on the scale parameter.

6.1 Scale parameters and VaR

Suppose θ is a scale parameter for X, i.e. FX(x; θ) = FX(x/θ; 1). The ith

convolution of X is given by (10). We show that θ is a scale parameter for

F
(i)∗
X , i ∈ N by mathematical induction. By definition, θ is a scale parameter

for F
(1)∗
X . Now suppose that θ is a scale parameter for F

(i−1)∗
X

F
∗(i)
X (s; θ) =

s∫

0

F
∗(i−1)
X (s− u; θ)dF (u)

=

s∫

0

F
∗(i−1)
X (s/θ − u/θ; 1)dF (u/θ)

=

s/θ∫

0

F
∗(i−1)
X (s/θ − u; 1)dF (u)

= F
∗(i)
X (s/θ; 1).
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Then θ is a scale parameter for F
(i)∗
X . From (9) it is clear that θ is also a

scale parameter for S since

FS(s; θ) =
∞∑

i=0

fN(i)F
∗(i)
X (s; θ)

=
∞∑

i=0

fN(i)F
∗(i)
X (s/θ; 1)

= FS(s/θ; 1).

This means ∂VaRα

∂θ
is easy to compute. The edfinition of VaR implies

that FS(VaR; θ) = α, which can be written as FS(
F−1

S
(α;θ)

θ
; 1) = α. If we fix

α and apply the implicit function theorem, we can take the total derivative
with respect to the first argument of FS and write

∂FS

∂s
(VaR; θ)

[ ∂F−1

S

∂θ

(
α; θ
)

θ
− F−1

S (α; θ)

θ2
]
= 0,

which implies
∂F−1

S

∂θ
(α; θ) =

F−1

S
(α;θ)

θ
Therefore VaR is linear in θ, with slope

given by
∂VaR

∂θ
=

VaR

θ
(18)

6.2 Modeling risk factors as regressors on a scale pa-

rameter

Suppose that the severity, X, is modeled so that it has scale parameter θ.
The set of risk factors is {k1, k2, ..., kn}. We assume that risk factors adjust
the scale of losses, but not the shape of the loss distribution. Since the scale
must be positive, a simple model has the log of the scale as a linear function
of the risk factors θ = eβ0+

∑
βiki .

While simple, this model has some very nice features. First, since VaR is
linear in the scale parameter, it makes for an unambiguous interpretation of
the model parameters; βi is the relative increase in VaR caused by a marginal
increase in the risk factor ki. A second feature of the model is that the VaR
can be easily recomputed as the risk factors change. This makes forecasting
very simple. For example, suppose that the number of workers at a plant is
modeled as a risk factor and the coefficient is estimated to be 0.001. Then
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an additional 10 workers would cause VaR to increase by a factor of e0.01,
which amounts to an approximate 1% increase.

The first order effect of a change in one of the risk factor coefficients on
VaR follows directly from the chain rule and (18)

∂VaR

∂βi

=
∂VaR

∂θ

∂θ

∂βi

= ki · VaR.

Therefore, to approximate the confidence interval about VaR, we can proceed
exactly as in (5).

We can also consider the impact on VaR of a change in the risk factors
themselves. The derivative with respect to risk factor ki is given by

∂VaR

∂ki
=

∂VaR

∂θ

∂θ

∂ki
= βi · VaR. (19)

A firm interested in reducing its value at risk can use the derivatives in (19)
to determine the best approach. For example, if risk factor ki can be changed
at a per unit cost of pi, then a cost effective approach to reducing VaR would

be to first invest in changing kj∗ , where j∗ = argmini

{
pi
βi

}
.

For a more robust analysis, we could consider the cost of VaR as the lost
interest earnings from holding capital equivalent to VaR in reserve. If it is
possible to alter the values of the risk factors as discussed above, then we
are faced with a cost minimization problem. For example, suppose we find
that the derivative of VaR with respect to the scale parameter θ is m and we
expect to lose a rate of return r on capital held in reserve to cover operational
risks. Then the cost of VaR is

r · VaR = r·m· eβ0+
∑

i βiki

Further suppose that we can reduce the value of ki at a per unit cost of pi and
let ci represent the level to which we choose to do so. The cost minimization
problem is then

min
ci

COST = r·m· eβ0+
∑

i βi(ki−pici) +
∑

i

pici s.t. ci > 0∀i (20)

In this example, provided there are no corner solutions, each risk factor is
adjusted until the marginal benefit of further reduction is exactly offset by
the marginal cost of further reduction.
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7 Conclusion

We derived a first order approximation to VaR as a function of the model
parameters and showed that it is computationally inexpensive and easy to
implement. An immediate application of the first order approximation is
the ability to approximate confidence intervals about VaR resulting from
parameter uncertainty. Because we are using a linear approximation of the
VaR functional, large amounts of variation in the parameter estimates can
make the approximated confidence intervals about VaR very inaccurate. It
should be noted, however, that the derivatives of VaR with respect to the
model parameters are still accurate in this case. Also, when the parameter
uncertainty is very large, the LDA methodology may not be appropriate.

The inclusion of risk factors is a common aspect of market risk manage-
ment, but in terms of operational risk, what qualifies as a risk factor and
how one might include them in the modeling process is not obvious. The
linear relationship between VaR and a severity scale parameter provides an
intuitive approach to this problem. Of course the inclusion of additional pa-
rameters means that for a given number of observations, the confidence in
VaR estimates will be smaller.

The way confidence in VaR estimates might be used in practice depends
on the way VaR is used by the firm. With regard to regulatory requirements,
a firm may report drastically different VaR values period to period. In this
case, the sensitivity of VaR calculations with respect to model parameters
might be of interest to a regulator wondering why the capital charge is so
variable. For internal purposes, one may use the assymptotic distribution of
VaR to test for variation in VaR across business lines.
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