# A Cautionary Note on Pricing Longevity Index Swaps (Joint work with Johnny S.H. Li)

#### Rui Zhou

Department of Statistics and Actuarial Science University of Waterloo

44th Actuarial Research Conference 2009





### **Objectives**

- Pricing QxX index swap
- Examining the parameter risk and model risk in the pricing
- Determining the effect of the uncertainty on the pricing

#### Outline

- Mortality derivatives
- QxX index Swap
- Parameter risk
- Model risk
- Conclusion





# Mortality Derivatives

#### What are mortality derivatives?

- Financial contracts that have payoffs tied to the level of a certain longevity or mortality index
- Examples: survivor bond, survivor swap, . . .

### How to price mortality derivatives?

- Mortality model
- Wang's Transform, Q measure, . . .



# A two-factor stochastic mortality model (Cairns, Blake and Dowd (2006))

#### Mathematical Specification:

$$\ln \frac{q_{x,t}}{1 - q_{x,t}} = A_1(t) + A_2(t)x. \tag{1}$$

- x → age
- ightharpoonup t o time
- ▶  $q_{x,t}$  → realized single-year death probability
- ▶  $\{A_1(t)\}$  and  $\{A_2(t)\}$  → discrete-time stochastic processes Waterloo

# Mortality model

# A two-factor stochastic mortality model(con't)

Stochastic Mortality: Recall:  $\ln \frac{q_{x,t}}{1-q_{x,t}} = A_1(t) + A_2(t)x$ 

$$D(t+1) = A(t+1) - A(t)$$

$$= \mu + CZ(t+1)$$
(2)

- $ightharpoonup A(t) = (A_1(t), A_2(t))'$
- ▶  $\mu$  →constant 2 × 1 vector
- C →constant 2 × 2 upper triangular matrix
- ▶ Z(t) →2-dim standard normal random variable





# Model fitting

#### Data

$$p q_{x,t}, \quad x = 65, 66, \dots, 109, \quad t = 1971, 1972, \dots, 2005$$

#### Model fitting

$$\ln \frac{q_{x,t}}{1-q_{x,t}} = A_1(t) + A_2(t)x \qquad D(t+1) = \mu + CZ(t+1)$$

- First step: Estimate A(t) by least square method
- Second step: Estimate μ and C through maximum likelihood estimation





# Forecasting

#### Steps

$$\ln \frac{q_{x,t}}{1-q_{x,t}} = A_1(t) + A_2(t)x \qquad D(t+1) = \mu + CZ(t+1)$$

- Simulate a set of Z
- ▶ Obtain corresponding D(2005 + k), k = 1, 2, ..., 10
- ►  $A(2005 + k) = A(2005) + \sum_{n=1}^{k} D(2005 + n), k = 1, 2, ..., 10$
- ▶ Calculate q<sub>x,2005+k</sub>





# Pricing in Risk-adjusted world

Real-world probability measure(P measure)

$$D(t+1) = \mu + GZ(t+1) \tag{3}$$

Risk-adjusted probability measure(Q measure)

$$D(t+1) = \mu + C(\tilde{Z}(t+1) - \lambda)$$

$$= \tilde{\mu} + C\tilde{Z}(t+1),$$
(4)

where  $\lambda$  is the market price of risk and  $\tilde{\mu} = \mu - C\lambda$ .





#### QxX Index

"allows market participants to measure, manage and trade exposure to longevity and mortality risks in a standardized, transparent, and real-time manner"

- Launched by Goldman Sacs in 2007
- Based on a reference pool consisting of a set of lives underwritten by AVS Underwriting LLC
- The index value is the number of lives in the reference pool
- Published monthly, providing "real-time" mortality information



QxX index swap

Payment structure of QxX index swap

# Payment structure of QxX index swap



- $\triangleright$  X  $\rightarrow$ nominal amount
- ▶  $S_k$  →index value in the kth month
- $ightharpoonup \sigma 
  ightharpoonup$  fixed spread
- ▶ Goldman Sacs:  $\sigma = 500$  basis points for 10-year swap





# 10-year QxX index swap price

lacktriangle QxX index swap is priced by determining the "fair" spread  $\sigma$ 

Market value of future payments from fixed payer

- Market value of future payments from fixed receiver
- We need to know the market price of risk λ. In our analysis,
  - ▶ Not enough data to estimate  $\lambda$  for QxX index swaps
  - Use the estimated market price of risk from BNP/EIB longevity bond



—QxX index swap

Pricing a 10-year QxX index swap

# 10-year QxX index swap price (Con't)

Estimates of  $\sigma$  (in basis points) under different choices of  $\lambda = (\lambda_1, \lambda_2)$ 

| $\lambda_{1}$ | $\lambda_2$ | $\sigma$ |
|---------------|-------------|----------|
| 0.375         | 0           | 627      |
| 0             | 0.316       | 619      |
| 0.175         | 0.175       | 622      |

### Why $\sigma \neq$ 500 bps?

- No access to the actual QxX index reference pool
- Lack of market data for the swap
- Existence of parameter risk and model risk





# Parameter risk under Bayesian Method

- ▶  $D(t) \sim MVN(\mu, V)$ , where V = C'C.
- Treat μ and C as random variables

$$D(t) \mid \mu, V \sim \mathsf{MVN}(\mu, V) \tag{5}$$

Use a non-informative prior distribution

$$\pi(\mu, \mathbf{V}) \propto |\mathbf{V}|^{-3/2} \tag{6}$$

Marginal posterior distribution

$$V^{-1} \mid D \sim \text{Wishart}(n-1, n^{-1} \hat{V}^{-1}),$$
  
 $\mu \mid D \sim \text{MVN}(\hat{\mu}, n^{-1} \hat{V}),$ 

(7)
Waterloo

Parameter risk

Bayesian Method

# Estimated marginal posterior density functions for the model parameters



Figure: Simulated marginal posterior parameter distributions. (We Waterloo denote the *i*th element in  $\mu$  by  $\mu_i$  and the (j,k)th element in V by  $V_{j,k}$ ).

Parameter risk

Impact of parameter risk on pricing

# Simulated predictive distribution of $\sigma$ , $\lambda = (0.375, 0)$





## 95% Confidence Interval for $\sigma$

| $\lambda_{1}$ | $\lambda_2$ | With parameter risk | Without parameter risk |
|---------------|-------------|---------------------|------------------------|
| 0.375         | 0           | (560,693)           | (574,680)              |
| 0             | 0.316       | (553,685)           | (567,673)              |
| 0.175         | 0.175       | (557,686)           | (571,675)              |

Table: 95% confidence intervals for  $\sigma$  (in basis points) under different choices of  $\lambda_1$  and  $\lambda_2$ .



Parameter risk

Impact of parameter risk on pricing

# Model risk in pricing



Figure: Estimated values of  $A_1(t)$  and  $A_2(t)$ , 1971–2005.



Model risk

Reason for the reverse trend

### What causes the reverse trend?

### Crude mortality curves

$$\ln \frac{q_{x,t}}{1 - q_{x,t}} = A_1(t) + A_2(t)x$$







Model risk

Reason for the reverse trend

### What causes the reverse trend?

Life expectancies at age 65

$$\ln \frac{q_{x,t}}{1 - q_{x,t}} = A_1(t) + A_2(t)x$$





Model risk

└ Future trends

# Three possible scenarios







# How does the change affect QxX index swap price?

### Swap spread, $\sigma$

| $\lambda_{1}$ | $\lambda_2$ | Scenario 1 | Scenario 2 | Scenario 3 |
|---------------|-------------|------------|------------|------------|
| 0.375         | 0           | 627        | 674        | 566        |
| 0             | 0.316       | 619        | 683        | 553        |
| 0.175         | 0.175       | 622        | 678        | 558        |

Table: Swap spread (in basis points) under three different scenarios.



<sup>-</sup> Model risk

QxX index swap price under different trends

### Conclusion

- The swap spread computed from our pricing framework is fairly close to the spread currently offered by Goldman Sachs
- The pricing is still very experimental
  - Parameter risk and model risk are significant in the pricing
  - No sufficient market price data to estimate market prices of risk
  - No clear conclusion on how mortality rates may evolve in the future



