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Gimmel: Second Order Effect of Dynamic Policyholder  
Behavior on Insurance Products with Embedded Options 
By	John	J.	Wiesner,	Charles	L.	Gilbert	and	David	L.	Ross

fact that the embedded derivative in a variable annuity 
contract is in effect a put option on a put option. 

Dynamic hedging programs that have been established to 
manage the risks associated with equity-based guarantees 
are receiving greater attention. The financial crisis has 
highlighted that the risks within liabilities with complex 
guarantees is far more volatile and difficult to hedge than 
was previously thought. There is growing recognition of 
the importance of policyholder behavior within the insur-
ance industry. Actuarial bodies are collecting experience 
data on policyholder behavior and quantifying the impact 
on the cost of investment guarantees associated with vari-
able annuities and segregated funds.

The growing awareness of these issues and market turbu-
lence has resulted in greater focus on the hedge effective-
ness and the risk distribution of the hedging cost. The 
level of sophistication of dynamic hedging programs and 
stochastic modeling capabilities of insurers has increased 
significantly in just the last few years. While many insur-
ers still execute first order dynamic hedging strategies 
(mostly hedging Delta and Rho), an increasing number are 
executing or evaluating second and higher order dynamic 
hedging strategies (including Vega and Gamma as well as 
third order and cross Greeks). Gamma, when not hedged 
by actual options, is sometimes hedged by variance 
swaps. Cross greeks such as delta’s sensitivity to volatility 
may be partially hedged by VIX options. Gamma, third 
order and cross greeks may also be hedged by complex 
portfolios of options with multiple strikes and multiple 
expiries that may or may not actually match the underly-
ing liabilities. It is not the focus of this paper to explain 
all the various strategies for hedging these greeks, but to 
highlight the increased sophistication of both the study 
and management of these complex liabilities.

Many of the models used for simulating stock prices 
would assume the large movements that occurred in the 
financial markets to be five standard deviations or higher 

THE GLOBAL FINANCIAL CRISIS THAT 
STARTED IN 2008 highlighted the importance 
of higher order and cross Greeks in dynamic hedging 
programs used by insurance companies to manage risks 
associated with products such as variable annuities that 
provide investment guarantees. These guarantees repre-
sent embedded derivatives in the liabilities that are often 
complex, path dependent options. As such, sophisticated 
models are required to value the option and measure the 
sensitivity of this value to changes in the underlying,1 
yield curve, and volatility surface as well as the effect of 
the passage of time. 

In general, the first order Greeks that measure the sensitivity 
to these financial variables (i.e., delta, partial rho, and partial 
vega) along with the passage of time (i.e., theta), capture 
most of the change in the option value when volatility is low. 
During times of higher volatility, second order Greeks such as 

Gamma, Vomma and Rho 
Convexity become more 
important. Following the 
financial crisis of 2008, 
more attention is also 
being given to third order 
and cross Greeks such as 
Speed, Ultima, and Vanna. 

Another important consideration for insurance companies 
is the effect that policyholder behavior will have on lapse 
rates and the resulting impact this will have on the value 
of the option. This paper defines a new measure, Gimmel, 
which captures the sensitivity of dynamic policyholder 
behavior (DPB) on the option value. As more experience 
data on policyholder behavior becomes available, dynam-
ic policyholder behavior can be better defined as a func-

tion of the underlying. 
This then provides a way 
to measure the impact 
on the second order sen-
sitivity, Gamma, to a 
change in underlying due 
to dynamic policyholder 
lapses. This is important 
because it reflects the 

FOOTNOTES:
1	 		In	this	paper	we	will	assume	for	convenience	that	the	

underlying	is	an	equity	index.
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“Just as Gamma changes the Delta based on in-the-
money-ness or out-of-the-money-ness, so likewise 

would rational policyholder behavior.”

CONTINUED ON	PAGE 26

point. A generic non-dynam-
ic lapse assumption tends to 
decrease the liability to the 
insurance company (i.e., it 
is beneficial to the company 
when a policyholder lapses). 
These kinds of products are 
known to be “lapse support-
ed,” in other words, lapses 
generally help the insurer by eliminating an obligation 
that the insurer had had. This sensitivity of the value of 
the liability with regard to flat-out lapses is quite different 
than the sensitivity to the rational utility of the policy-
holders. If those very same assumed lapses were to happen 
ONLY when the guarantee was not in the policyholders  

events which would not generally be considered in hedg-
ing programs. This level of volatility would significantly 
increase the hedging cost of first order dynamic hedging 
strategies and severely punish any insurer with a naked 
short Gamma position. 

Not unlike Gamma, there is another factor that can signifi-
cantly change the Delta of a liability with embedded guar-
antees—DPB. Just as Gamma changes the Delta based on 
in-the-money-ness or out-of-the-money-ness, so likewise 
would rational policyholder behavior (where we define 
rational2 to be a policyholder who understands the value of 
the embedded guarantees within his or her policy). The fur-
ther in-the-money (ITM) an option is, the closer the Delta 
gets to one. Similarly, the more in-the-money a guarantee 
gets, the less likely a rational policyholder will lapse.

Conversely, the further out-of-the-money an option gets, 
the closer the Delta of that option gets to zero, and the 
further out-of-the-money a guarantee gets the more likely 
the rational policyholder will lapse.3

Generally, an insurance policy with a guarantee is consid-
ered to be an option and modeled as such. In reality, the 
fact that the policyholders can lapse their policy means 
that the policy could also be considered as a consecutive 
series of options on an option. Each year, the policyholder 
can choose to continue owning the main option or choose 
to lapse the policy; the policyholder has the option of 
dropping the policy. Many policies have early termination 
penalties4 to recapture some of the embedded value that 
these secondary options give the policyholders.

If these series of options were utilized by policyholders in 
a completely rational manner, the effect could be devastat-
ing to insurance companies and reinsurers. This stream of 
options on the main option has the effect of magnifying or 
compounding the Gamma effect of the original option in 
the guarantee. It is this effect —this further increase in the 
negative convexity of the guarantee beyond Gamma—that 
we have dubbed “Gimmel.”

It might be important to distinguish a generic lapse 
assumption from the dynamic lapse assumption at this 

FOOTNOTES:
2	 		This	 definition	 of	 “rational”	 does	 not	 include	 the	 pos-

sibility	of	liquidity	and	opportunity	issues	that	may	in	fact	
make	lapsing	a	policy	and	foregoing	the	embedded	value	
of	the	guarantee	a	“rational”	decision.	As	the	secondary	
market	 for	 insurance	products	grows,	 insurers	should	be	
aware	of	the	risk	that	lapses	that	would	have	been	“ratio-
nal”	from	a	liquidity	perspective	may	be	curtailed	as	the	
secondary	 market	 provides	 liquidity	 to	 the	 policyholder	
without	the	policyholder	necessarily	needing	to	lapse	the	
policy.	 Again,	 this	 paper	 is	 not	 intended	 to	 provide	 the	
“right”	 definition	 of	 “rational,”	 but	 rather	 to	 provide	 a	
language	 that	 can	 help	 discussions	 of	 changing	 experi-
ence	over	time.	This	paper	and	its	example	focus	purely	
on	the	economic	value	of	the	guarantee	compared	to	the	
economic	value	of	replacing	the	guarantee	with	separate	
option	trades.

3	 		Some	policies	have	ratchets	built	 in	 to	minimize	how	far	
out-of-the-money	OTM	the	guarantee	will	get	precisely	in	
order	 to	discourage	 lapses.	These	 ratchets	 though	have	
an	optionality	value	themselves	that	must	be	considered.

4	 		Well	 designed	 early	 termination	 penalties	 should	 help	
decrease	“short	Gamma”	on	two	counts;	first	by	extend-
ing	the	expected	duration	of	the	overall	“option”,	Gamma	
will	be	decreased	as	long	dated	options	have	less	Gamma	
than	shorted	dated	options,	ceteris	paribus;	and	second,	
the	“options	on	the	options”	are	less	likely	to	be	optimally	
utilized	 since	 there	 is	 an	 immediately	 recognizable	 cost	
to	lapsing,	thereby	decreasing	“Gimmel”	itself.	As	these	
two	effects	will	be	taking	place	simultaneously,	it	may	be	
difficult	to	separate	the	two	effects.	Ideally,	a	termination	
provision	would	encourage	lapses	when	the	guarantee	is	
in	the	money,	and	discourage	lapses	when	it	is	OTM.
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Let a policy be written for two years (t = 0 initially) guar-
anteeing that a $100 portfolio will grow to $105 (i.e., K 
= 105). The fee of $5.00 is charged outside of the policy; 
$2.50 at t = 0 and another $2.50 at t = 1

In this simple example let 
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For clarity it could also be expressed: 
total = b  
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= .05 + .10 x (0 if guarantee is ITM, 1 otherwise). In reality this latter function will be decomposed into the 
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Further, Let average annual lapse be assumed to be 10% (5% + average (0, .1)), since in this example, half of the 
time ’= 10% (an up market) and half of the time ’= 0 (a down market) 
 
100,000 scenarios were generated. All of the cases use the same underlying paths. At time t = 1, the Black 
Scholes formula was used to value the 105 Put with only one year remaining. If the remaining value of the Put 
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  Lapses Survivor for Period 
  Flat   Dynamic Flat Dynamic 
  b ' OTM ITM Sx OTM Sx ITM Sx 
Primary Example 5% 0% to 10% 15% 5% 0.9 0.85 0.95 
Example Shocked 5% -1% to 11% 16% 4% 0.9 0.84 0.96 
"Super Rational" 5% -5% to 15% 20% 0% 0.9 0.8 1 
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 0 
(a down market)

100,000 scenarios were generated. All of the cases use the 
same underlying paths. At time t = 1, the Black Scholes 
formula was used to value the 105 Put with only one year 
remaining. If the remaining value of the Put was less than 
the $2.50 fee for that period, the “rational” policyhold-
ers in the GMAB-dynamic behavior case lapse. In other 
words, 15% (5% + 10%) lapse. Otherwise, only 5% (5% 
+ 0%) lapse.

The cases are: 
2 year 105 Put
flat 10% lapse
dynamic lapse of 5% + (10% or 0%)
dynamic lapse shocked 1%;  5% + (11% or -1%)

Additional cases with 20% lapse or 0% lapse (which still 
“averages” to 10% as do the others)

advantage, the result of the lapses would be quite detri-
mental to the insurer, rather than helpful.

However a modeler arrives at the cost of the rational util-
ity, and whatever name is given for that cost, that is still 
not the sensitivity that is “Gimmel.” Gimmel rather, is the 
change in the sensitivity of the value of the liability to 
changes in the underlying funds.

As an unparameterized definition of this sensitivity of the 
liability we offer:

Gimmel 

 3 

 
If these series of options were utilized by policyholders in a completely rational manner, the effect could 
be devastating to insurance companies and reinsurers. This stream of options on the main option has the 
effect of magnifying or compounding the Gamma effect of the original option in the guarantee. It is this 
effect--this further increase in the negative convexity of the guarantee beyond Gamma--that we have 
dubbed “Gimmel”. 
 
It might be important to distinguish a generic lapse assumption from the dynamic lapse assumption at 
this point. A generic non-dynamic lapse assumption tends to decrease the liability to the insurance 
company (i.e., it is beneficial to the company when a policyholder lapses). These kinds of products are 
known to be “lapse supported”, in other words, lapses generally help the insurer by eliminating an 
obligation that the insurer had had. This sensitivity of the value of the liability with regard to flat-out 
lapses is quite different than the sensitivity to the rational utility of the policy-holders. If those very 
same assumed lapses were to happen ONLY when the guarantee was not in the policyholders advantage, 
the result of the lapses would be quite detrimental to the insurer, rather than helpful. 
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As an unparameterized definition of this sensitivity of the liability we offer: 
 
Gimmel( ) the change in the Delta of a investment with a guarantee with regard to a change in the 
underlying due to Dynamic Policyholder Behavior; or, more simply, the incremental change in Gamma 
due to Dynamic Policyholder Behavior.5 
 
 
Let, 
 = total lapses 
 = b’ 
 
Where, 
b = base lapses that do not vary with underlying  
’= dynamic lapses in excess of base lapses that are a function of the underlying, in-the-moneyness, and degree 
of rationality (0% - 100%). Dynamic lapses could also be a function of the price of the option—i.e., vol, T-t, risk-
free rate, etc.—and would make Gimmel a function of multiple financial variables, which it could very well be. 
 
Then, 
 

 = ’  
or 

                                                 
5 Gimmel “ ” comes from the Phoenician alphabet as opposed to Gimel “ ” from the Hebrew alphabet. The idea being that 
“ ” appears to be more “bent” or more convex than the Greek letter “” to symbolize increased convexity.  
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known to be “lapse supported”, in other words, lapses generally help the insurer by eliminating an 
obligation that the insurer had had. This sensitivity of the value of the liability with regard to flat-out 
lapses is quite different than the sensitivity to the rational utility of the policy-holders. If those very 
same assumed lapses were to happen ONLY when the guarantee was not in the policyholders advantage, 
the result of the lapses would be quite detrimental to the insurer, rather than helpful. 
 
However a modeler arrives at the cost of the rational utility, and whatever name is given for that cost, 
that is still not the sensitivity that is “Gimmel.” Gimmel rather, is the change in the sensitivity of the 
value of the liability to changes in the underlying funds. 
 
 
 
As an unparameterized definition of this sensitivity of the liability we offer: 
 
Gimmel( ) the change in the Delta of a investment with a guarantee with regard to a change in the 
underlying due to Dynamic Policyholder Behavior; or, more simply, the incremental change in Gamma 
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 = b’ 
 
Where, 
b = base lapses that do not vary with underlying  
’= dynamic lapses in excess of base lapses that are a function of the underlying, in-the-moneyness, and degree 
of rationality (0% - 100%). Dynamic lapses could also be a function of the price of the option—i.e., vol, T-t, risk-
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If these series of options were utilized by policyholders in a completely rational manner, the effect could 
be devastating to insurance companies and reinsurers. This stream of options on the main option has the 
effect of magnifying or compounding the Gamma effect of the original option in the guarantee. It is this 
effect--this further increase in the negative convexity of the guarantee beyond Gamma--that we have 
dubbed “Gimmel”. 
 
It might be important to distinguish a generic lapse assumption from the dynamic lapse assumption at 
this point. A generic non-dynamic lapse assumption tends to decrease the liability to the insurance 
company (i.e., it is beneficial to the company when a policyholder lapses). These kinds of products are 
known to be “lapse supported”, in other words, lapses generally help the insurer by eliminating an 
obligation that the insurer had had. This sensitivity of the value of the liability with regard to flat-out 
lapses is quite different than the sensitivity to the rational utility of the policy-holders. If those very 
same assumed lapses were to happen ONLY when the guarantee was not in the policyholders advantage, 
the result of the lapses would be quite detrimental to the insurer, rather than helpful. 
 
However a modeler arrives at the cost of the rational utility, and whatever name is given for that cost, 
that is still not the sensitivity that is “Gimmel.” Gimmel rather, is the change in the sensitivity of the 
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If these series of options were utilized by policyholders in a completely rational manner, the effect could 
be devastating to insurance companies and reinsurers. This stream of options on the main option has the 
effect of magnifying or compounding the Gamma effect of the original option in the guarantee. It is this 
effect--this further increase in the negative convexity of the guarantee beyond Gamma--that we have 
dubbed “Gimmel”. 
 
It might be important to distinguish a generic lapse assumption from the dynamic lapse assumption at 
this point. A generic non-dynamic lapse assumption tends to decrease the liability to the insurance 
company (i.e., it is beneficial to the company when a policyholder lapses). These kinds of products are 
known to be “lapse supported”, in other words, lapses generally help the insurer by eliminating an 
obligation that the insurer had had. This sensitivity of the value of the liability with regard to flat-out 
lapses is quite different than the sensitivity to the rational utility of the policy-holders. If those very 
same assumed lapses were to happen ONLY when the guarantee was not in the policyholders advantage, 
the result of the lapses would be quite detrimental to the insurer, rather than helpful. 
 
However a modeler arrives at the cost of the rational utility, and whatever name is given for that cost, 
that is still not the sensitivity that is “Gimmel.” Gimmel rather, is the change in the sensitivity of the 
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If these series of options were utilized by policyholders in a completely rational manner, the effect could 
be devastating to insurance companies and reinsurers. This stream of options on the main option has the 
effect of magnifying or compounding the Gamma effect of the original option in the guarantee. It is this 
effect--this further increase in the negative convexity of the guarantee beyond Gamma--that we have 
dubbed “Gimmel”. 
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However a modeler arrives at the cost of the rational utility, and whatever name is given for that cost, 
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Gimmel( ) the change in the Delta of a investment with a guarantee with regard to a change in the 
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Let, 
 = total lapses 
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Where, 
b = base lapses that do not vary with underlying  
’= dynamic lapses in excess of base lapses that are a function of the underlying, in-the-moneyness, and degree 
of rationality (0% - 100%). Dynamic lapses could also be a function of the price of the option—i.e., vol, T-t, risk-
free rate, etc.—and would make Gimmel a function of multiple financial variables, which it could very well be. 
 
Then, 
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If these series of options were utilized by policyholders in a completely rational manner, the effect could 
be devastating to insurance companies and reinsurers. This stream of options on the main option has the 
effect of magnifying or compounding the Gamma effect of the original option in the guarantee. It is this 
effect--this further increase in the negative convexity of the guarantee beyond Gamma--that we have 
dubbed “Gimmel”. 
 
It might be important to distinguish a generic lapse assumption from the dynamic lapse assumption at 
this point. A generic non-dynamic lapse assumption tends to decrease the liability to the insurance 
company (i.e., it is beneficial to the company when a policyholder lapses). These kinds of products are 
known to be “lapse supported”, in other words, lapses generally help the insurer by eliminating an 
obligation that the insurer had had. This sensitivity of the value of the liability with regard to flat-out 
lapses is quite different than the sensitivity to the rational utility of the policy-holders. If those very 
same assumed lapses were to happen ONLY when the guarantee was not in the policyholders advantage, 
the result of the lapses would be quite detrimental to the insurer, rather than helpful. 
 
However a modeler arrives at the cost of the rational utility, and whatever name is given for that cost, 
that is still not the sensitivity that is “Gimmel.” Gimmel rather, is the change in the sensitivity of the 
value of the liability to changes in the underlying funds. 
 
 
 
As an unparameterized definition of this sensitivity of the liability we offer: 
 
Gimmel( ) the change in the Delta of a investment with a guarantee with regard to a change in the 
underlying due to Dynamic Policyholder Behavior; or, more simply, the incremental change in Gamma 
due to Dynamic Policyholder Behavior.5 
 
 
Let, 
 = total lapses 
 = b’ 
 
Where, 
b = base lapses that do not vary with underlying  
’= dynamic lapses in excess of base lapses that are a function of the underlying, in-the-moneyness, and degree 
of rationality (0% - 100%). Dynamic lapses could also be a function of the price of the option—i.e., vol, T-t, risk-
free rate, etc.—and would make Gimmel a function of multiple financial variables, which it could very well be. 
 
Then, 
 

 = ’  
or 

                                                 
5 Gimmel “ ” comes from the Phoenician alphabet as opposed to Gimel “ ” from the Hebrew alphabet. The idea being that 
“ ” appears to be more “bent” or more convex than the Greek letter “” to symbolize increased convexity.  

= dynamic lapses in excess of base lapses that are a 
function of the underlying, in-the-moneyness, and degree 
of rationality (0% - 100%). Dynamic lapses could also be 
a function of the price of the option—i.e., vol, T-t, risk-
free rate, etc.—and would make Gimmel a function of 
multiple financial variables, which it could very well be.

Then,

 3 

 
If these series of options were utilized by policyholders in a completely rational manner, the effect could 
be devastating to insurance companies and reinsurers. This stream of options on the main option has the 
effect of magnifying or compounding the Gamma effect of the original option in the guarantee. It is this 
effect--this further increase in the negative convexity of the guarantee beyond Gamma--that we have 
dubbed “Gimmel”. 
 
It might be important to distinguish a generic lapse assumption from the dynamic lapse assumption at 
this point. A generic non-dynamic lapse assumption tends to decrease the liability to the insurance 
company (i.e., it is beneficial to the company when a policyholder lapses). These kinds of products are 
known to be “lapse supported”, in other words, lapses generally help the insurer by eliminating an 
obligation that the insurer had had. This sensitivity of the value of the liability with regard to flat-out 
lapses is quite different than the sensitivity to the rational utility of the policy-holders. If those very 
same assumed lapses were to happen ONLY when the guarantee was not in the policyholders advantage, 
the result of the lapses would be quite detrimental to the insurer, rather than helpful. 
 
However a modeler arrives at the cost of the rational utility, and whatever name is given for that cost, 
that is still not the sensitivity that is “Gimmel.” Gimmel rather, is the change in the sensitivity of the 
value of the liability to changes in the underlying funds. 
 
 
 
As an unparameterized definition of this sensitivity of the liability we offer: 
 
Gimmel( ) the change in the Delta of a investment with a guarantee with regard to a change in the 
underlying due to Dynamic Policyholder Behavior; or, more simply, the incremental change in Gamma 
due to Dynamic Policyholder Behavior.5 
 
 
Let, 
 = total lapses 
 = b’ 
 
Where, 
b = base lapses that do not vary with underlying  
’= dynamic lapses in excess of base lapses that are a function of the underlying, in-the-moneyness, and degree 
of rationality (0% - 100%). Dynamic lapses could also be a function of the price of the option—i.e., vol, T-t, risk-
free rate, etc.—and would make Gimmel a function of multiple financial variables, which it could very well be. 
 
Then, 
 

 = ’  
or 

                                                 
5 Gimmel “ ” comes from the Phoenician alphabet as opposed to Gimel “ ” from the Hebrew alphabet. The idea being that 
“ ” appears to be more “bent” or more convex than the Greek letter “” to symbolize increased convexity.  

or

 4 

 = b  
 
 
For clarity it could also be expressed: 
total = b  
 
To illustrate this idea, but without the intention of claiming that this method given below is the “right” 
answer to building a utility function, we constructed a simple example: 
 
Let a policy be written for two years (t = 0 initially) guaranteeing that a $100 portfolio will grow to $105 
(i.e., K = 105). The fee of $5.00 is charged outside of the policy; $2.50 at t = 0 and another $2.50 at t = 1 
 
In this simple example let  

 = 10% 
r = 2%  
dividend yield = 0%. 
 
Also let b = 5% and ’= 10% x (0 if guarantee is ITM at time t = 1, 1 if guarantee is OTM at time t = 1) so  
= .05 + .10 x (0 if guarantee is ITM, 1 otherwise). In reality this latter function will be decomposed into the 
rationality factor and ITM, but this example is purposefully simplified.  
 
 
Further, Let average annual lapse be assumed to be 10% (5% + average (0, .1)), since in this example, half of the 
time ’= 10% (an up market) and half of the time ’= 0 (a down market) 
 
100,000 scenarios were generated. All of the cases use the same underlying paths. At time t = 1, the Black 
Scholes formula was used to value the 105 Put with only one year remaining. If the remaining value of the Put 
was less than the $2.50 fee for that period, the “rational” policyholders in the GMAB-dynamic behavior case 
lapse. In other words, 15% (5% + 10%) lapse. Otherwise, only 5% (5% + 0%) lapse. 
 
The cases are:  
2 year 105 Put 
flat 10% lapse 
dynamic lapse of 5% + (10% or 0%) 
dynamic lapse shocked 1%;  5% + (11% or -1%) 
 
Additional cases with 20% lapse or 0% lapse (which still “averages” to 10% as do the others) 
 
 
 
  Lapses Survivor for Period 
  Flat   Dynamic Flat Dynamic 
  b ' OTM ITM Sx OTM Sx ITM Sx 
Primary Example 5% 0% to 10% 15% 5% 0.9 0.85 0.95 
Example Shocked 5% -1% to 11% 16% 4% 0.9 0.84 0.96 
"Super Rational" 5% -5% to 15% 20% 0% 0.9 0.8 1 
 

For clarity it could also be expressed:
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Let a policy be written for two years (t = 0 initially) guaranteeing that a $100 portfolio will grow to $105 
(i.e., K = 105). The fee of $5.00 is charged outside of the policy; $2.50 at t = 0 and another $2.50 at t = 1 
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Also let b = 5% and ’= 10% x (0 if guarantee is ITM at time t = 1, 1 if guarantee is OTM at time t = 1) so  
= .05 + .10 x (0 if guarantee is ITM, 1 otherwise). In reality this latter function will be decomposed into the 
rationality factor and ITM, but this example is purposefully simplified.  
 
 
Further, Let average annual lapse be assumed to be 10% (5% + average (0, .1)), since in this example, half of the 
time ’= 10% (an up market) and half of the time ’= 0 (a down market) 
 
100,000 scenarios were generated. All of the cases use the same underlying paths. At time t = 1, the Black 
Scholes formula was used to value the 105 Put with only one year remaining. If the remaining value of the Put 
was less than the $2.50 fee for that period, the “rational” policyholders in the GMAB-dynamic behavior case 
lapse. In other words, 15% (5% + 10%) lapse. Otherwise, only 5% (5% + 0%) lapse. 
 
The cases are:  
2 year 105 Put 
flat 10% lapse 
dynamic lapse of 5% + (10% or 0%) 
dynamic lapse shocked 1%;  5% + (11% or -1%) 
 
Additional cases with 20% lapse or 0% lapse (which still “averages” to 10% as do the others) 
 
 
 
  Lapses Survivor for Period 
  Flat   Dynamic Flat Dynamic 
  b ' OTM ITM Sx OTM Sx ITM Sx 
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ing that the method given below is the “right” answer 
to building a utility function, we constructed a simple 
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If these series of options were utilized by policyholders in a completely rational manner, the effect could 
be devastating to insurance companies and reinsurers. This stream of options on the main option has the 
effect of magnifying or compounding the Gamma effect of the original option in the guarantee. It is this 
effect--this further increase in the negative convexity of the guarantee beyond Gamma--that we have 
dubbed “Gimmel”. 
 
It might be important to distinguish a generic lapse assumption from the dynamic lapse assumption at 
this point. A generic non-dynamic lapse assumption tends to decrease the liability to the insurance 
company (i.e., it is beneficial to the company when a policyholder lapses). These kinds of products are 
known to be “lapse supported”, in other words, lapses generally help the insurer by eliminating an 
obligation that the insurer had had. This sensitivity of the value of the liability with regard to flat-out 
lapses is quite different than the sensitivity to the rational utility of the policy-holders. If those very 
same assumed lapses were to happen ONLY when the guarantee was not in the policyholders advantage, 
the result of the lapses would be quite detrimental to the insurer, rather than helpful. 
 
However a modeler arrives at the cost of the rational utility, and whatever name is given for that cost, 
that is still not the sensitivity that is “Gimmel.” Gimmel rather, is the change in the sensitivity of the 
value of the liability to changes in the underlying funds. 
 
 
 
As an unparameterized definition of this sensitivity of the liability we offer: 
 
Gimmel( ) the change in the Delta of a investment with a guarantee with regard to a change in the 
underlying due to Dynamic Policyholder Behavior; or, more simply, the incremental change in Gamma 
due to Dynamic Policyholder Behavior.5 
 
 
Let, 
 = total lapses 
 = b’ 
 
Where, 
b = base lapses that do not vary with underlying  
’= dynamic lapses in excess of base lapses that are a function of the underlying, in-the-moneyness, and degree 
of rationality (0% - 100%). Dynamic lapses could also be a function of the price of the option—i.e., vol, T-t, risk-
free rate, etc.—and would make Gimmel a function of multiple financial variables, which it could very well be. 
 
Then, 
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If these series of options were utilized by policyholders in a completely rational manner, the effect could 
be devastating to insurance companies and reinsurers. This stream of options on the main option has the 
effect of magnifying or compounding the Gamma effect of the original option in the guarantee. It is this 
effect--this further increase in the negative convexity of the guarantee beyond Gamma--that we have 
dubbed “Gimmel”. 
 
It might be important to distinguish a generic lapse assumption from the dynamic lapse assumption at 
this point. A generic non-dynamic lapse assumption tends to decrease the liability to the insurance 
company (i.e., it is beneficial to the company when a policyholder lapses). These kinds of products are 
known to be “lapse supported”, in other words, lapses generally help the insurer by eliminating an 
obligation that the insurer had had. This sensitivity of the value of the liability with regard to flat-out 
lapses is quite different than the sensitivity to the rational utility of the policy-holders. If those very 
same assumed lapses were to happen ONLY when the guarantee was not in the policyholders advantage, 
the result of the lapses would be quite detrimental to the insurer, rather than helpful. 
 
However a modeler arrives at the cost of the rational utility, and whatever name is given for that cost, 
that is still not the sensitivity that is “Gimmel.” Gimmel rather, is the change in the sensitivity of the 
value of the liability to changes in the underlying funds. 
 
 
 
As an unparameterized definition of this sensitivity of the liability we offer: 
 
Gimmel( ) the change in the Delta of a investment with a guarantee with regard to a change in the 
underlying due to Dynamic Policyholder Behavior; or, more simply, the incremental change in Gamma 
due to Dynamic Policyholder Behavior.5 
 
 
Let, 
 = total lapses 
 = b’ 
 
Where, 
b = base lapses that do not vary with underlying  
’= dynamic lapses in excess of base lapses that are a function of the underlying, in-the-moneyness, and degree 
of rationality (0% - 100%). Dynamic lapses could also be a function of the price of the option—i.e., vol, T-t, risk-
free rate, etc.—and would make Gimmel a function of multiple financial variables, which it could very well be. 
 
Then, 
 

 = ’  
or 

                                                 
5 Gimmel “ ” comes from the Phoenician alphabet as opposed to Gimel “ ” from the Hebrew alphabet. The idea being that 
“ ” appears to be more “bent” or more convex than the Greek letter “” to symbolize increased convexity.  

”	 from	 the	 Hebrew	 alphabet.	 The	
idea	being	that	“

 3 

 
If these series of options were utilized by policyholders in a completely rational manner, the effect could 
be devastating to insurance companies and reinsurers. This stream of options on the main option has the 
effect of magnifying or compounding the Gamma effect of the original option in the guarantee. It is this 
effect--this further increase in the negative convexity of the guarantee beyond Gamma--that we have 
dubbed “Gimmel”. 
 
It might be important to distinguish a generic lapse assumption from the dynamic lapse assumption at 
this point. A generic non-dynamic lapse assumption tends to decrease the liability to the insurance 
company (i.e., it is beneficial to the company when a policyholder lapses). These kinds of products are 
known to be “lapse supported”, in other words, lapses generally help the insurer by eliminating an 
obligation that the insurer had had. This sensitivity of the value of the liability with regard to flat-out 
lapses is quite different than the sensitivity to the rational utility of the policy-holders. If those very 
same assumed lapses were to happen ONLY when the guarantee was not in the policyholders advantage, 
the result of the lapses would be quite detrimental to the insurer, rather than helpful. 
 
However a modeler arrives at the cost of the rational utility, and whatever name is given for that cost, 
that is still not the sensitivity that is “Gimmel.” Gimmel rather, is the change in the sensitivity of the 
value of the liability to changes in the underlying funds. 
 
 
 
As an unparameterized definition of this sensitivity of the liability we offer: 
 
Gimmel( ) the change in the Delta of a investment with a guarantee with regard to a change in the 
underlying due to Dynamic Policyholder Behavior; or, more simply, the incremental change in Gamma 
due to Dynamic Policyholder Behavior.5 
 
 
Let, 
 = total lapses 
 = b’ 
 
Where, 
b = base lapses that do not vary with underlying  
’= dynamic lapses in excess of base lapses that are a function of the underlying, in-the-moneyness, and degree 
of rationality (0% - 100%). Dynamic lapses could also be a function of the price of the option—i.e., vol, T-t, risk-
free rate, etc.—and would make Gimmel a function of multiple financial variables, which it could very well be. 
 
Then, 
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Gimmel does not exist for the Put itself; Gimmel is, by 
definition, 0 for the flat or static lapse assumption case; 
in the three other cases Gimmel is the difference between 
the Gamma of each case minus the Gamma of the flat or 
static lapse assumption.

The following chart shows the plotted values of a delta 
hedged policy shocked by price movements for both the 
flat lapse assumption and a dynamic lapse assumption. 
The blue line shows the flat lapse assumption liability, 
the green line shows the dynamic lapse assumption. An 
instantaneous movement will increase the value of the 
liability (more negative) when there is a dynamic assump-
tion, hence the green line is more negatively convex than 
the blue line.
 

	 105	Put GMAB-	
static	
behavior

GMAB-
dynamic	
behavior

GMAB-
shocked	
1%

GMAB-
super	
rational

Value 5.999 4.859 5.113 5.163 5.366

Delta -50.478 -40.887 -42.897 -43.299 -44.906

Gamma 2.597 2.104 2.182 2.198 2.26

Gimmel na 0 0.078 0.094 0.156

	 Lapses Survivor	for	Period

	 Flat 	 Dynamic Flat Dynamic

	 ωb ω’ OTM		ω ITM		ω Sx OTM	Sx ITM	Sx

Primary	Example 5% 0%	to	10% 15% 5% 0.9 0.85 0.95

Example	Shocked 5% -1%	to	11% 16% 4% 0.9 0.84 0.96

“Super	Rational” 5% -5%	to	15% 20% 0% 0.9 0.8 1

CONTINUED ON PAGE 28
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Results:

1)  Option price plotted against stock price for base lapses 
=> curvature = Base Gamma

2)  Option price plotted against stock price for dynamic 
lapses => curvature =Base Gamma + Gimmel

Then the increase in curvature = Gimmel
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Color	measures	the	sensitivity	of	the	Charm,	or	Delta	Decay	to	the	underlying	asset	price.	It	 is	the	third	derivative	of	the	
option	value,	twice	to	the	underlying	asset	price	and	once	to	time.

Delta	measures	the	sensitivity	of	the	option	to	changes	in	the	price	of	the	underlying	asset.	

Delta Decay,	or	Charm,	measures	the	rate	of	change	in	the	Delta	of	the	option	to	the	passage	of	time.	It	 is	the	second	
derivative	of	the	option	value,	once	to	price	and	once	to	time.	This	can	be	important	when	hedging	a	position	over	night,	
a	weekend	or	a	holiday.	

Gamma	measures	the	rate	of	change	in	the	Delta	of	the	option	to	the	underlying	asset.	

Lambda	is	the	percentage	change	in	option	value	per	change	in	the	underlying	price.

Rho	measures	sensitivity	of	the	option	to	the	applicable	interest	rate.	

Speed	measures	the	third	order	sensitivity	to	price.	The	speed	is	the	third	derivative	of	the	value	function	with	respect	to	
the	underlying	price.

Theta	measures	the	sensitivity	of	the	option	to	the	passage	of	time.	

Vomma or Vega Gamma	or	Volga	measures	second	order	sensitivity	to	implied	volatility.	

Vanna	measures	cross-sensitivity	of	the	option	value	with	respect	to	change	in	the	underlying	price	and	the	volatility,	which	
can	also	be	interpreted	as	the	sensitivity	of	Delta	to	a	unit	change	in	volatility.

Ultima	is	considered	as	a	third	order	derivative	of	the	option	value;	once	to	the	underlying	spot	price	and	twice	to	volatility.

Vega	measures	sensitivity	to	volatility.

We hope that this term “Gimmel” and the concept it is 
intended to represent will help everyone have a common 
language in future discussions about this kind of risk. 
However people incorporate dynamic policyholder behav-
ior into their models, and whatever formulae represent the 
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policyholder utility, we hope that the common parlance 
is understood by practitioners so that meaningful discus-
sions can take place without requiring that anyone disclose 
proprietary information about policyholder experience. F

 

APPENDIX: TAXONOMY OF OPTION SENSITIVITY METRICS




