

Average Premium Model Actuarial Research Conference

Brant Wipperman, FCAS FCIA MSc (SFU)

July 27, 2010

- Revenue Requirements
- Monitoring our book of business

Basic On-Level Average Premium

Personal TPL On-Level Avg. Premium

Overview

Exposure Forecasts

Exposure Model

- Historical exposure data
 - Split into Personal and Commercial
 - Further split into vehicle use, location, and bonus-malus groups
- An econometric regression model is fit to each group
 - Demographic
 - Economy

Vehicle Use Groups

- Personal
 - Pleasure
 - Commute
 - Business
 - Senior
 - Motorcycle
 - Motor home
 - Collector

Location Groups

- Lower Mainland
- Ridge Meadows
- Fraser Valley
- Squamish/Whistler
- Pemberton/Hope
- Okanagan
- Kootenays
- Cariboo
- Prince George
- Peace River
- North Coast
- South Island
- Mid Island
- North Island

Bonus-Malus Groups

- Claim Rated Scale
 - Roadstar (43% discount)
 - 25% to 40% discount
 - 5% to 20% discount
 - Base or surcharge

Overview

Historical Exposure Data

- Too many groups for the average premium model
- Need a dimension reduction technique
- Want to keep all of the groups
- Linear dependencies exist

What is PCA?

- It transforms a number of correlated variables into a smaller number of uncorrelated variables
- Uses linear algebra

PCA Notation

$$A = \frac{1}{n} (Z^{T} \cdot Z)$$

$$A \cdot V = \lambda V$$

$$B = V \cdot L^{-\frac{1}{2}}$$

$$P = Z \cdot B$$

$$S = V \cdot L^{\frac{1}{2}} = B \cdot L$$

$$C = T \cdot T^{T}$$

Eigen Decomposition

- Linear algebra problem
- Done on correlation matrix of explanatory variables
- Eigenvectors are new explanatory variables (i.e. principal components)
- Each associated eigenvalue represents variability of eigenvector (or PC)

PCA Resolves the Issues

- Number of dimensions reduced
- All groups 'retained'
- Linear dependencies eliminated

PCA Process

- Step 1: Create new set of explanatory variables
- Step 2: Determine how many new explanatory variables to retain

How many components?

How many components?

Principal Component

Overview

Overview

Modeled vs. Actual – Personal TPL

Modeled vs. Actual – Personal TPL

Recap - Advantages

- PCs uncorrelated
- PCs organized to reduce dimensionality
- Keeps most of original information
- Determine contribution of each variable

Recap - Disadvantages

- PCA process not familiar
- PCs can be hard to interpret
- PC weights may change upon updating

Is PCA Right For You?

- Does multi-collinearity roll off your tongue too easily?
- Are you confident in the set of explanatory variables?
- Do you want to reduce dimensionality without throwing away information?
- Have you been modeling for more than 4 consecutive hours?

For More Information

- CAS Discussion Paper
 - PCA and Partial Least Squares: Two Dimension Reduction Techniques for Regression
 - http://www.casact.org/pubs/dpp/dpp08/08dpp76.pdf

