ICBC

Average Premium Model Actuarial Research Conference

Brant Wipperman, FCAS FCIA MSc (SFU)
July 27, 2010

Motivation

- Revenue Requirements
- Monitoring our book of business


## Basic On-Level Average Premium



## Personal TPL On-Level Avg. Premium



## Overview

## PCA

## Exposure Forecasts

Average Premium Forecasts

## Exposure Model

- Historical exposure data
- Split into Personal and Commercial
- Further split into vehicle use, location, and bonus-malus groups
- An econometric regression model is fit to each group
- Demographic
- Economy


## Vehicle Use Groups

- Personal
- Pleasure
- Commute
- Business
- Senior
- Motorcycle
- Motor home
- Collector



## Location Groups

- Lower Mainland
- Ridge Meadows
- Fraser Valley
- Squamish/Whistler
- Pemberton/Hope
- Okanagan
- Kootenays
- Cariboo
- Prince George
- Peace River
- North Coast
- South Island
- Mid Island
- North Island



## Bonus-Malus Groups

- Claim Rated Scale
- Roadstar (43\% discount)
- 25\% to 40\% discount
- $5 \%$ to $20 \%$ discount
- Base or surcharge



## Overview



[^0]
## Historical Exposure Data

- Too many groups for the average premium model
- Need a dimension reduction technique
- Want to keep all of the groups
- Linear dependencies exist


## What is PCA?

- It transforms a number of correlated variables into a smaller number of uncorrelated variables
- Uses linear algebra



## PCA Notation

$$
\begin{aligned}
& A=\frac{1}{n}\left(Z^{T} \cdot Z\right) \\
& A \cdot V=\lambda V \\
& B=V \cdot L^{-1 / 2} \\
& P=Z \cdot B \\
& S=V \cdot L^{1 / 2}=B \cdot L \\
& C=T \cdot T^{T}
\end{aligned}
$$

## Eigen Decomposition

- Linear algebra problem
- Done on correlation matrix of explanatory variables
- Eigenvectors are new explanatory variables (i.e. principal components)
- Each associated eigenvalue represents variability of eigenvector (or PC)


## PCA Resolves the Issues

- Number of dimensions reduced
- All groups 'retained'
- Linear dependencies eliminated



## PCA Process

- Step 1: Create new set of explanatory variables
- Step 2: Determine how many new explanatory variables to retain



## How many components?



## How many components?



## Overview



## Historical <br> Exposure

30 correlated variables
Data
Ortho-normal
transformation

## Principal

 ComponentsScree
Proportion of variance
Other

## Overview



## Modeled vs. Actual - Personal TPL



## Modeled vs. Actual - Personal TPL



## Recap - Advantages

- PCs uncorrelated
- PCs organized to reduce dimensionality
- Keeps most of original information
- Determine contribution of each variable


## Recap - Disadvantages

- PCA process not familiar
- PCs can be hard to interpret
- PC weights may change upon updating


## Is PCA Right For You?

- Does multi-collinearity roll off your tongue too easily?
- Are you confident in the set of explanatory variables?
- Do you want to reduce dimensionality without throwing away information?
- Have you been modeling for more than 4 consecutive hours?


## For More Information

- CAS Discussion Paper
- PCA and Partial Least Squares: Two Dimension Reduction Techniques for Regression
- http://www.casact.org/pubs/dpp/dpp08/08dpp76.pdf


[^0]:    Average
    Premium
    Forecasts

