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Abstract 

Guaranteed Annuity Options (GAOs) are options available to holders of certain pension 

policies. Under these contracts, policyholders contribute premiums into a fund managed 

by the insurer. At retirement, the policyholders buy life annuities at a guaranteed rate 

provided by the original insurer, or annuitize with another insurer. If the guaranteed 

annuity rates are better than the prevailing rates in the market, the insurer has to make up 

the difference. GAOs can be viewed as interest rate options, since retiring policyholders 

can choose to use the higher of the guaranteed annuity rate and the prevailing market rate. 

We study GAOs using two models for the interest rate; the Vasicek and the Cox-

Ingersoll-Ross models. An actuarial approach is used to value the GAOs and compared 

with the value of a replicating portfolio. 

 

1. Introduction 

Guaranteed Annuity Options (GAOs) are options available to holders of certain pension 

policies. Under these contracts, policyholders contribute either single or regular 

premiums into a fund managed by the insurer. At retirement, the policyholders have the 

option to convert the maturity policy proceeds into life annuities at a guaranteed rate 

provided by the original insurer, or annuitize with another insurer. If the guaranteed 

annuity rates are more beneficial to the policyholders than the prevailing rates in the 

market, the insurer has to make up the difference. GAOs can be viewed as interest rate 

options, since retiring policyholders can choose to use the higher of the guaranteed 

annuity rate and the prevailing market rate. 

GAOs have been designed to make the pension contract more attractive since the 

policyholder could count on a minimum annuitization rate. There is evidence of GAOs 

being issued in 1839 [Historic Records Working Party, 1972]. Today, GAO has become a 

common feature for many US tax sheltered insurance products. A survey conducted by 

the Government Actuary‟s Department in 1998 on life insurance companies‟ exposure to 

GAOs indicated that: the exposure to GAOs was relatively widespread within the 

industry and had the potential to have a significant financial effect on a number of 

companies [Treasury, 1998]. However, they were GAOs of UK retirement savings 

contracts sold in the 1970s and 1980s that drew most of the attention.  
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In the 1970s and 1980s, the most popular guaranteed rate for a males aged sixty five, was 

£111 annuity per annum per £1000 of maturity proceeds, or an annuity cash value ratio of 

1:9. If the prevailing annuity rate provides an annual payment higher than £111 per 

£1000, a rational policyholder would choose the prevailing market rate. During these two 

decades, the average UK long-term interest rate was around 11% p.a. The break-even 

interest rate implicit in the GAOs based on the mortality basis used in the original 

calculations was in the region of 5%-6% p.a. [Guaranteed Annuity Options, Phelim 

Boyle & Mary Hardy]. Obviously, the GAOs were far out of the money. However, in the 

1990‟s, as long-term interest rates fell, these GAOs began to move into the money. The 

inclusion of GAOs was discontinued in the UK by the end of 1980‟s. Unfortunately, the 

long-term nature of these pension policies still made GAO a significant risk management 

challenge for the life assurance industry and threatened the solvency of some UK 

insurance companies. The emerging liabilities under GAOs (near £2.6 billion) forced the 

closure of Equitable life (UK), the world‟s oldest mutual insurance company, to stop 

issuing new business in 2000. 

Guaranteed annuity options have drawn considerable publicity in recent years. Bolton et 

al (1997) described the origin and nature of these guarantees. Boyle [Embedded Options 

in Insurance Contracts: Guaranteed Annuity Options] analyzed their pricing and risk 

management. O‟Brien [Guaranteed Annuity Options: Five issues for resolution, 2001] 

discussed issues arising from GAOs in pension policies issued by U.K. life assurance 

companies and highlights the impact of improving mortality. Many researchers have 

applied either actuarial methods or no-arbitrage pricing theory to calculate the value of 

GAOs embedded in deferred annuity pension policies. In Pelsser‟s paper (2002), a market 

value for GAO was derived using martingale modelling techniques and a static 

replicating portfolio of vanilla interest rate swaptions that replicates the GAO was 

constructed. The replicating portfolio would have been extremely effective and fairly 

cheap as a hedge against the interest rate risk involved in the GAO based on the UK 

interest rate data from 1980 until 2000. Chu & Kwok [Valuation of guaranteed annuity 

options in affine term structure models] proposed three analytical approximation methods 

for the numerical valuation of GAOs: the stochastic duration approach, Edgeworth 

expansion and analytic approximation in affine diffusions. In Chu & Kwok‟s work, a 

two-factor affine interest rate term structure model was used. Ballotta and Haberman 

(2003) applied the one-factor Heath-Jarrow-Morton model to price GAO in unit-linked 

deferred annuity contracts with a single premium. In Boyle & Hardy‟s paper [Guaranteed 

annuity options, 2003] a simple on-factor interest rate model was used and the market 

price of the GAOs were obtained by option pricing approach. Boyle and Hardy also 

examined a number of conceptual and practical issues involved in dynamic hedging of 

the interest rate risk. Wilkie et al (2003) worked on unit-linked contracts and investigated 

two approaches to reserving and pricing. Their first approach is traditional actuarial 

approach: quantile, conditional tail expectation and reserves. The second approach is to 

use option pricing methodology to dynamically hedge a guaranteed annuity option. The 

1984 and 1995 Wilkie models were used to depict the yield curve. 

The work presented in this paper is based on Boyle & Hardy and Wilkie et al‟s papers. 

However, instead of the Wilkie models, the interest rate dynamics are modelled by 

Vasicek and Cox-Ingersoll-Ross (CIR) models. The rest of the paper is organized as 
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follows. In the next section, the model setup of the GAO is presented. Vasicek and CIR 

models are introduced and estimated in Section 3. Maximum Likelihood estimator is 

applied for Vasicek model while estimated and exact Gaussian estimations are used for 

CIR model. The validity of these estimation methods is also examined in Section 3. In 

Section 4, the actuarial approach to value the GAOs is investigated. Monte Carlo 

simulation is used to derive the distribution of the guaranteed annuity options and the 

percentiles as well as VaRs (value at risk) are thus determined. The option pricing and 

hedging approach is studied in Section 5. A replicating portfolio consisting of equities 

and zero-coupon bonds is constructed to replicate the GAO and simulation results of 

delta hedging are presented. The sensitivity of the value of the guaranteed annuity option 

with respect to different parameters in the pricing model is also investigated. 

 

2. Model setup of the GAO 

For simplicity, only single premium equity-linked policies are considered in this paper. 

Like in Boyle & Hardy‟s paper (Boyle & Hardy, 2003), standard actuarial notations are 

used in setting up the GAO model. Assume a male purchase a single-premium equity-

linked contact and pays the premium at time 0. The contract will mature at time T, say, at 

which date the policyholder will reach age 65. The premium is invested in an equity 

account with market value S(t) at time t, where S(t) is a random process and dividends 

reinvested. The policy offers a guaranteed annuity rate of 9g , that is, $1 of lump sum 

maturity value purchases $1/g of annuity per annum. With S(T) maturity proceeds, the 

policyholder is able to purchase an annuity of gTS /)( , which has a market value of 

)()( 65 TagTS . A rational policyholder will choose whichever is higher: 

)(),()(max 65 TSTagTS . The insurer will cover the excess of the annuity cost 

over the maturity proceeds: 

)()(),()(max 65 TSTSTagTS  

or 

0,1)(max)( 65 gTaTS . (2.1) 

In the paper, the expenses are ignored and the mortality risk is assumed to be fully 

diversified. The value of )(65 Ta  is given by 

65

1

6565 )()(
n

nTn TDpTa  (2.2) 
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where rn p  is the probability that a life aged r survives n years and )(TD nT  denotes the 

market value at time T of the unit par default-free zero-coupon bond with maturity date 

T+n. Note the limiting age of the policyholder is denoted by . 

The policyholder‟s death may occur between time 0 and time T. It is assumed that on 

death the only benefit is a return of the value of the fund S(t). As a result, the value of the 

GAO per initial life is reduced to 0,1)(max)( 6565 gTaTSp TT .  

Let  

0,1)(max)()( 6565 gTaTSpTV TT . (2.3) 

be the value of the GAO per initial life at maturity time T, the GAO valuation problem 

thus becomes to find V(t), the discounted value of V(T) at time t, Tt0 . 

It must be noted that a few assumptions have been made: 

1) The expenses are ignored when calculating )(65 Ta  

2)  The premiums are invested and the annuities are purchased in US market 

3)  The equity and bonds are uncorrelated. 

4)  The mortality risk has been fully diversified and is independent of the financial risk. 

 

3. Interest rate models and their estimations 

The interest rate models employed are the Vasicek model and the Cox-Ingersoll-Ross 

(CIR) model. Both models are continuous-time one-factor short-rate models. Studies find 

that multifactor models generally outperform one-factor ones over longer forecast 

horizons. However, as suggested by Hull (2002), relatively simple one-factor models 

usually give reasonable prices for instruments if used carefully. Moreover, compared to 

multi-factor models, one-factor models lead to more straightforward closed-form formula 

for the GAO. 

3.1 Maximum likelihood estimation for Vasicek model 

The Vasicek model can be specified by either real-world parameters , , , , or risk-

neutral parameters , , . In this paper, , , and  are estimated using maximum 

likelihood methods with time-series data and  is estimated by least square method using 

cross-sectional data [Nowman, 1997]. 
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Note the maximum likelihood here is not a true maximum likelihood but “discretized 

maximum likelihood”. As the length of sampling interval tends to zero, the sample paths 

of the discretization converge to the continuous path. However, as the data r(t) can only 

be recorded with certain minimum intervals, the “discretized maximum likelihood 

estimator” for , , and   will not be consistent [Miscia, 2004]. A mall Monte Carlo 

study similar to Yu & Philips‟s (Yu & Philips, 2001) is conducted to test the validity of 

the estimation method. The experimental results suggest that the maximum likelihood 

method is able to produce very good estimates of  and long-term mean. When it comes 

to the estimates of  and , however, the results are far from satisfactory. A further study 

finds that the short-rate r(t), when observed at the daily, weekly and even monthly 

frequencies, tends to have large autoregressive coefficients. The autocorrelation 

properties of the sequence {ri} are determined by the parameter . It is well known that 

the ML estimate of the autocorrelation parameter for a sequence that almost has a “unit 

root” is downward biased (Andrew, 1993). Therefore, the ML estimate of  will have a 

downward bias which will result in an upward bias in the estimate of . This is consistent 

with the experimental results.  

3.2 Exact Gaussian estimation for CIR model 

Yu & Philips [Yu & Philips, 2001] developed an exact Gaussian estimation for the CIR 

model by applying Dambis, Dubins-Schwarz theorem (hereafter DDB theorem) [Revuz 

& Yor, 1999]. The approach is based on the idea that any continuous time martingale can 

be written as a Brownian motion after a suitable time change and thus be estimated 

directly by maximum likelihood method. 

Monte Carlo studies are carried out to validate the exact Gaussian estimation method. 

2000 simulated daily interest rate data are generated and the CIR model is fitted. 

Experimental results indicate that the upward and downward biases for  and  are still 

present in the exact Gaussian estimates. However, they are smaller than that of 

Nowman‟s method. Similar improvements can also be found when weekly and monthly 

data are used. This suggests the efficiency of the exact Gaussian estimation method. In 

the following section, the models and approximations described in the above sections are 

employed and their estimates using US treasury rates are presented. 

 

3.3 Model estimations using historical interest rate data 

Three-month US treasury constant maturity yields obtained from Federal Reserve 

Statistical Release (http://www.federalreserve.gov/Release/h15/data.htm#fn10) is used in 

this paper. It contains 6231 daily observations as graphed in Figure 1. It can be observed 

from the figure that the interest rate goes down from about 15% in 1982 to 6% in 1987 

and oscillates around 4% in 1990s. A long-term mean can be observed from the figure 

and the interest rate oscillates towards its long-term mean. This suggests the Vasicek and 

CIR model might be appropriate. The estimation results for the Vasicek and CIR models 

are presented in Table 1. 

http://www.federalreserve.gov/Release/h15/data.htm#fn10
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Figure 1: Three-month US treasury constant maturity yields 
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The estimates for κ and μ are obtained by: κ = - , μ =  / . The exact Gaussian 

estimation method produces estimate of  which is similar to that of Nowman‟s, but 

leads to larger estimates of  and . The long-term mean and the speed of reversion of 

the Vasicek model estimated by the maximum likelihood method are 4.29% and 

0.239628 respectively. The Nowman method provides an estimate of the unconditional 

mean of 3.42%, while the exact Gaussian method gives a 2.97% estimate. The value of a 

used in the exact Gaussian estimation method is 0.0013. By choosing different values for 

a, different sample sequences are obtained. However, the resultant estimates are quite 

similar, as shown in Table 2. The observation confirms that the selection of parameter a 

in an acceptable range (not too big, not too small) will not have a considerable effect on 

the estimation results. The last column of Table 2 gives the number of sample data 

selected out of the 6231 observations. By setting a to 0.0013, the sample size is reduced 

to one tenth of its original size.  

Table 1: Estimation results using three-month US treasury constant maturity rates 

    κ μ 

ML estimation for the 

Vasicek model 

0.010475132 -0.239268 0.01257835 0.239268 0.04287734 

Exact Gaussian 

estimation for the CIR 

model 

0.005257795 -0.1768168 0.04673768 0.1768168 0.02973582 

Table 2: The exact Gaussian estimation results with different values of a 

a   κ μ # samples selected  

0.0015 0.00597741 -0.19542 0.19542 0.030587 456 

0.0014 0.00513331 -0.17503 0.17503 0.029328 488 

0.0013 0.00525780 -0.17682 0.17682 0.029736 530 

0.0011 0.00515702 -0.17294 0.17294 0.029820 633 

0.00087 0.00558760 -0.18343 0.18343 0.030462 777 

0.000655 0.00530892 -0.17846 0.17846 0.029748 1015 

0.00044 0.00515327 -0.17187 0.17187 0.029984 1464 

0.00022 0.00529800 -0.17295 0.17295 0.030631 2621 
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Figure 2: Time transformations for the 3-month US rates (01/01/1990 to 31/12/1995) with a = 0.0013 
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Figure 2 shows the sample selection resulting from the time transformation of the exact 

Gaussian method. The grey areas at the bottom of the graphs represent the interest rate, 

while the black vertical lines indicate the sample selected. From the graph, it can be 

easily observed that the sample selection frequency is higher in high interest rate region.  

Once the estimates of ,  and  are obtained, the parameter λ is calculated using the 

least square error method on cross-sectional data. The results are summarized in Table 3. 

Note the estimates in Table 3 will be used in the actuarial and financial valuations of the 

GAOs, which are presented in the following sections. 

Table 3: Estimation results for the Vasicek and CIR models 

 κ μ  λ 

Vasicek model 0.239268 0.04287734 0.01257835 -0.58025 

CIR model (Exact 

Gaussian) 

0.1768168 0.02973582 0.04673768 -0.12269 

 

4. Actuarial valuation of guaranteed annuity options 

The 3-month US treasury rate is used as a proxy of the short-rate r(t) in this paper. It can 

be observed from historical data that the term structure of the interest rate is quite 

complicated. Most of the time, the long-term rate is above the short-term rate. However, 

at some points of time, e.g. January 1982, March 1989 and October 2000, the long-term 

interest rate is smaller than the short-term interest rate. Therefore, it‟s quite natural for 

one to question whether the one-factor Vasicek and CIR models are capable of modelling 

such a complicated term structure. To test the validities of the estimated Vasicek and CIR 

models, comparisons are made between the historical long-term interest rates and the 
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long-tem rates which are calculated by using the estimated models. Based on comparison 

results, downward adjustments are made to parameter κ as the estimates of κ are usually 

upward biased for both the Vasicek and CIR models. It must be noted that the ML 

estimated values for the parameters μ and σ are kept unchanged since they proved to be 

quite accurate in previous simulation results.  

Four different mortality tables are considered when studying the cost of the guarantee: 

(1) 1971 Group Annuity Mortality sex-distinct table (GAM71). It was developed 

specifically for use in the valuation of pension plans before the GAM83 tables were 

introduced in August 1983. Life expectancy under GAM71 for a male aged 65 is 14.6 

years. 

(2) 1983 Group Annuity Mortality Table (GAM 83). GAM83 is based on group annuitant 

experience from 1964 to 1968. GAM93 is probably the most common mortality table 

used by pension actuaries; 75% of the plans in a 2003 Watson Wyatt survey of 

actuarial assumptions and funding used GAM83 for funding calculations. Under 

GAM83, the life expectancy for a male aged 65 is 16.2 years. 

(3) The 1994 Uninsured Pensioner Mortality Table (UP94). The UP94 table is based on 

uninsured pensioner experience projected to 1994. It was developed based on a study 

of 1985 to 1989 mortality experience of 29 retirement systems. UP94 is one of the 

first mortality table to factor in generational mortality, which recognizes the trend of 

mortality improvement and dynamically projects and incorporates those 

improvements. Under UP94, the life expectancy for a male aged 65 is 16.76 years. 

(4) The Retired Pensioners Mortality Tale (RP2000). The RP2000 table was based on 

mortality experience from 1990 to 1994, which is then projected to 2000. It is the 

only table whose underlying rates are based solely on retirement plan mortality 

experience. It was developed by the SOA specifically for current liability 

calculations. Under RP2000, the life expectancy for a male aged 65 is 17.1 years 

Figure 3: Mortality improvements 
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Figure 3 gives the relative improvement (in percentage) of GAM83, UP94, and RP2000 

over the GAM71 table. From the graph, it can be easily observe that there have been 

substantial improvements in male mortality since the publication of the GAM71 table. 

The increase in longevity is quite dramatic over the period covered by these four tables. 

The expectations of life for a male aged 65 are 14.6, 16.2, 16.76, and 17.1 years using 

GAM71, GAM83, UP94, and RP2000 respectively. Thus the expected future lifetime of a 

male aged 65 increased by 2.5 years from the GAM71 table to the RP2000 table. 

 

Figure 4: Cost of GAO per $100 maturity proceedings calculated by using the Vasicek model with 

adjusted parameters and the historical short-term rates 
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Figure 5: The cost of GAO per $100 maturity proceedings using the CIR model with adjusted 

parameters and the historical short-rates 
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As a result of the mortality improvement and the impact of falling long-term interest rate, 

the cost of the GAO at maturity increases significantly over the last decade. The 
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evolution of the emerging liability under the GAO are graphed in Figure 4 and 5 using 

the estimated Vasciek and CIR models together with the historical short-term interest 

rates and the four different mortality tables. Note that at this stage no option pricing 

formula or stochastic analysis is involved when calculating the cost of the GAO at 

maturity. The policy proceeds at maturity are assumed to be held constant at $100 and the 

cost reported is thus the cost % of the policy maturity cash value. Comparing Figure 4 

and Figure 5, one can notice that the costs calculated by the Vasicek model and the CIR 

model have similar shapes but slightly different scales. 

 

As previously discussed, the valuation problem of GAOs is actually to find the 

discounted value of V(T) at time 0, V(0). If the premium is invested in a share portfolio 

which has market value S(t) at time t, the value of the GAO when the contract is issued at 

time 0 is 

0,1)(max)0()0( 6565 gTaSpV TT . 

With the assumptions of fully diversified mortality and no mortality improvement over 

the lifetimes of the pensioners, the survival probability tpx can be considered as fixed. The 

value of )(65 Ta  is determined by the market values of the unit par default-free zero-

coupon bonds at time T. However, the time T value of a zero-coupon bond is unknown at 

time 0. It has a distribution that depends on the movement of interest rates between time 

0 and T. Therefore, at time 0, )(65 Ta  is a random variable with a complicated distribution 

which is determined by the interest rate dynamics. 

Like in Wilkie‟s paper, simulation technique is employed to find the distribution of V(0). 

Given r(0), the short-rate at time 0, 10,000 values of r(T) are simulated by using the 

Vasicek or CIR model estimated in the previous sections. The market prices of the unit 

par zero-coupon bonds are calculated and the value of )(65 Ta  is then derived for each 

simulation. Consequently, 10,000 values of V(0) are obtained. The distribution of V(0) 

can be approximated by the histogram of these V(0) values.  

Table 4: Present value of cost of GAO per $100 single premium: Vasicek model, mortality RP2000, 

r(0) = 5% 

Term to 

Maturity Mean Q90 Q95 Q97.5 Q99 Q99.5 Q99.9 

10 11.616 30.085 38.198 45.659 55.109 62.097 74.878 

15 13.572 36.071 45.522 55.247 65.518 75.979 99.085 

20 14.364 38.170 49.497 60.098 72.619 83.247 106.340 

25 15.786 43.098 55.591 66.484 80.431 93.184 119.151 

30 16.746 45.510 58.007 69.709 85.907 99.983 134.263 

35 17.511 48.506 62.252 73.979 91.535 103.912 136.769 

40 18.149 49.143 63.477 78.014 98.675 111.661 145.011 
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Simulation results are shown in Tables 4 to 9. Table 4 is based on the Vasicek model 

estimated in the previous sections. That is, the present value of cost of GAO is calculated 

with initial conditions as at the end of December 2006. The initial short-rate r(0) is 5%, 

and μ = 4.2877%, κ = 0.047854, σ = 1.258%, λ = -0.23891 in the Vasicek model. The 

mortality table used is RP2000. Policy terms of 10, 15, 20, 25, 30, 35, and 40 are 

assumed. The quantiles for 90%, 95%, 97.5%, 99%, 99.5%, and 99.9%, are denoted as 

Q90, Q95, Q97.5, Q99, Q99.5, and Q99.9 respectively in the table. 

Table 5: Present value of cost of GAO per $100 single premium: CIR model, mortality RP2000, and 

r(0) = 5% 

Term to 

Maturity Mean Q90 Q95 Q97.5 Q99 Q99.5 Q99.9 

10 22.836 36.291 39.208 41.291 43.328 44.677 46.854 

15 24.786 38.108 40.644 42.561 44.482 45.394 46.688 

20 25.575 38.473 41.048 42.933 44.833 45.949 47.366 

25 26.297 39.255 41.761 43.541 45.125 46.044 47.560 

30 26.547 39.322 41.566 43.205 45.197 46.048 47.955 

35 27.034 39.826 42.430 44.260 45.846 46.735 49.090 

40 27.299 40.376 42.752 44.627 46.250 47.179 48.902 

 

Table 5 is based on the CIR model estimated in the previous sections. The initial short-

rate rate r(0) is 5%, and μ = 2.974%, κ = 0.132613, σ = 4.674%, λ = -0.10054 in the CIR 

model. From Tables 4 and 5, it can be observed that the discounted present values of the 

cost of GAOs are not negligible with an initial interest rate of 5%. In addition, the 

quantiles are quite substantial. There are cases where the quantiles are even higher than 

the $100 single premium. The mean values of the present value of GAO costs are 

generally higher when the CIR model is used. A possible reason is that the CIR model 

has a lower long-term mean than the Vasicek model. The quantiles, however, are another 

story. All the quantiles obtained by the Vasicek model, except Q90, Q95 with T =10 and 

Q90 with T =15 and 20, are larger than those obtained by the CIR model. The higher the 

quantile, the bigger is the difference. This indicates that the Vasicek model is more 

volatile than the CIR model. 

From the figures, it can also be observed that as the term to maturity increases, the cost of 

the GAO becomes higher. However, this is not always true. When the initial interest rate 

is high the cost increases with the term; when the initial interest rate is low, the cost may 

reduce with the term, or reduce first and increase later, as shown in Tables 6 and 7. When 

the initial interest rate r(0) is low, there is a greater chance that the interest rate in the 

short term will also be low, and thus the discounted present value of the cost of GAO will 

be higher. Comparing Table 4 with Table 6 and Table 5 with Table 7, one can notice that 

the GAO cost for shorter terms varies much more than that of longer terms when the 

initial interest rate changes. 
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Table 6: Present value of cost of GAO per $100 single premium: Vasicek model, mortality RP2000, 

r(0) = 2% 

Term to 

Maturity Mean Q90 Q95 Q97.5 Q99 Q99.5 Q99.9 

10 22.640 46.819 56.426 66.049 76.518 84.405 102.468 

15 22.162 49.999 60.590 69.845 82.921 94.151 115.953 

20 21.187 50.505 61.676 74.453 88.911 97.951 118.237 

25 20.608 50.723 63.806 76.002 91.375 102.677 130.136 

30 20.321 51.462 65.456 77.921 94.544 108.357 137.301 

35 20.841 54.097 69.069 83.790 100.261 114.777 144.632 

40 20.405 53.669 68.978 84.621 101.490 116.875 147.089 

Table 7: Present value of cost of GAO per $100 single premium: CIR model, mortality RP2000, and 

r(0) = 2% 

Term to 

Maturity Mean Q90 Q95 Q97.5 Q99 Q99.5 Q99.9 

10 28.126 39.913 42.061 43.654 45.072 46.001 47.165 

15 27.519 39.580 41.905 43.535 44.896 45.799 47.207 

20 27.076 39.267 41.559 43.268 45.060 46.079 47.204 

25 26.942 39.473 41.743 43.696 45.027 46.035 47.540 

30 27.018 39.876 42.168 44.044 45.759 46.617 47.986 

35 27.381 40.174 42.597 44.226 46.010 46.912 48.587 

40 27.287 40.344 42.754 44.444 46.189 47.383 48.966 

 

The quantiles calculated above was an alternative name for the concept also described as 

“Value at Risk‟ or VaR for simplicity. VaR has, however, been criticised for being 

„incoherent‟. It is possible for a quantile to be smaller than the mean value of a risk. This 

is unsatisfactory. Another problem is that, when risks are combined into a portfolio, it is 

possible for the quantile for the portfolio to be greater than the sum of the corresponding 

quantiles for the individual risks [Wilkie et al, 2003]. 

Table 8: Present value of cost of GAO per $100 single premium: Vasicek model, mortality RP2000, 

r(0) = 5% 

Term to 

Maturity Mean T90 T95 T97.5 T99 T99.5 T99.9 

10 11.616 41.155 48.592 55.493 64.166 70.009 82.380 

15 13.572 49.534 58.701 67.667 80.367 91.421 111.304 

20 14.364 53.702 64.089 74.130 86.780 96.358 115.220 

25 15.786 59.869 71.164 82.100 96.652 107.575 129.057 

30 16.746 63.321 75.611 87.668 104.705 117.588 145.949 

35 17.511 67.207 79.744 92.022 108.976 121.893 153.085 

40 18.149 70.077 84.725 99.332 117.942 131.589 169.430 

 

To solve this problem, „conditional tail expectation‟ (CTE) can be used. As the α% 

quantile Qα of a risk X is defined as Pr(X < Qα) = α%, the CTE at level α (denoted by Tα) 
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is defined as Tα = E[X | X ≥ Qα]. It is easily calculated during the simulations. For the 

sorted 10,000 simulation results of V(0), the CTE at level 99% equals to the average of 

the 100 largest values of V(0), from V(0)9901 to V(0)10000 inclusive. The CTEs of the cost 

of a GAO by using the Vasicek and CIR model are presented in Tables 8 and 9 

respectively. 

Table 9: Present value of cost of GAO per $100 single premium: CIR model, mortality RP2000, and 

r(0) = 5% 

Term to 

Maturity Mean T90 T95 T97.5 T99 T99.5 T99.9 

10 22.836 39.722 41.764 43.312 44.905 45.931 47.418 

15 24.786 41.117 42.928 44.299 45.567 46.202 47.380 

20 25.575 41.493 43.303 44.715 46.072 46.752 47.821 

25 26.297 42.134 43.829 45.057 46.273 46.963 48.531 

30 26.547 42.013 43.641 44.984 46.355 47.113 48.401 

35 27.034 42.798 44.544 45.790 47.112 48.005 49.440 

40 27.299 43.216 44.921 46.184 47.425 48.145 49.379 

 

From the tables, it can be observed that the CTE values are always greater than the 

corresponding quantiles, since Tα = E[X | X ≥ Qα] ≥ Qα. Besides, the value of CTE is 

larger than the mean, since Q0 is itself equal to the mean, and Qα > Qβ if α > β. And it was 

shown (Artzner, 1998) that, when risks are combined into a portfolio, the portfolio CTE 

cannot be greater than the sum of the individual CTEs.  

 

5. Financial pricing and hedging of guaranteed annuity options 

The similarities between the guaranteed annuity options and other types of financial 

option have been pointed out by many researchers. Among them are: Wilkie et al. (2003), 

Boyle & Hardy (2003), Bolton et al. (1997), and Pelsser (2002). The work presented here 

is mainly based on Boyle & Hardy (1998), in which modern option pricing and dynamic 

hedging techniques are used. 

5.1 Option pricing 

The value of a GAO at maturity time T is 0,1)(max)( 65 gTaTS  where 

65

1

6565 )()(
n

nTn TDpTa . From the formula, it‟s quite obvious that a GAO is similar 

to a call option on a coupon bond with the annuity payments and survival probabilities 

being incorporated in the notional coupons. 

The price at maturity time T of a zero-coupon bond with unit maturity value, maturing at 

T+n (n  1) is denoted as DT+n(T) or P(T,T+n). The value of DT+n(T) at time T depends 
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on the term structure which is assumed to be known at time T. At time t < T, however, 

DT+n(T) is a random variable under stochastic interest rate model. By the no-arbitrage 

theorem, the value of a risk at time t (t < T) which has payoff V(T) at time T is 

]|)([),()( t

Q

t FTVETtPtV T   

where QT is the forward-risk adjusted measure. The market value of the share portfolio 

S(T) is also a random variable and is assumed to be independent of interest rates. Note 

this is a very strong assumption but it simplifies the analysis. The value of GAO at time 0 

thus becomes: 

gnTTPpES
g

p
V

n

n

QTT T

65

1

65

65 ),()0()0(    

The expression inside the expectation on the right hand side corresponds to a call option 

on a coupon paying bond where the „coupon‟ payment at time (T+n) is np65 and the 

expiration date is time T. This „coupon bond‟ has value at time T: 

65

1

65 ),(
n

n nTTPp . 

The market value at time t of this coupon bond is 

65

1

65 ),()(
n

n nTtPptP . 

So P(t) is the value of a deferred annuity, but without allowance for mortality before 

retirement. With notation P(t), we have 

gTPES
g

p
V TQTT )()0()0( 65 .  

Jamshidian (1989) showed that if the interest rate follows a one-factor process, then the 

market price of the option on the coupon bond with strike price g is equal to the price of a 

portfolio of options on the individual zero-coupon bonds with strike prices Kn, where 

{Kn} are equal to the notional zero-coupon bond prices to give an annuity a65(T) with 

market price g at T. That is, let rT
*
 denote the value of the short-rate at time T for which 

gnTTDp
n

n

65

1

65 ),(   

where the asterisk is used to indicate that each zero-coupon bond is evaluated using the 

short-rate rT
*
. Kn is then set as Kn = D

*
(T,T+n). The call option with strike g and 

expiration date T on the coupon bond P(t) can be valued as  
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65

1

65 ,),,(,),(
n

nn tKnTtPCptgtPC   

where tKnTtPC n ,),,(  is the price at time t of a call option on the zero-coupon bond 

with maturity (T+n), strike price Kn and expiration date T. Under the forward-risk 

measure, 

t

Q
FgTPETtPtgtPC T |)(),(],),([ .  

Thus 

),(

,),,(

|)(

65

1

65

TtP

tKnTtPCp

FgTPE n

nn

t

QT  

and we have 

),0(

0,),,0(

)0()0(

65

1

65

65

TP

KnTPCp

S
g

p
V n

nn

TT .  

Two interest rate models have been estimated and studies in the previous chapters. They 

are the Vasicek model and the CIR model. Experimental results show that with proper 

parameter settings, both models can generate reasonable cost of GAOs. However, as the 

closed-form solution of option price is very complicated under the CIR model, only the 

Vasicek model is considered in this chapter. 

Under the Vasicek model, the price at time t of a call option on a zero-coupon bond with 

strike price g, maturity date T+n, and expiration date T is given as follows. 

)),((),()),((),(,),,( 21 tnhNTtPKtnhNnTtPtKnTtPC nn   

Where 
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The parameters of the Vasicek model are set to: r(0) = 5%, μ = 4.2877%, κ = 0.047854, σ 

= 1.258%, and λ = -0.23891. Table 10 shows, for terms 10, 15, 20, 25, 30, 35, and 40, the 

initial value of the GAO per $100 single premium, using mortality table RP2000. 

Compared with Table 4, it can be observed that the option pricing costs are smaller for all 

terms than the mean costs calculated using actuarial method. With actuarial method as 

described in Section 4, all the premiums are invested into an equity account. In option 

pricing, however, the premiums are invested into equities and bonds with different 

maturities according to certain proportions. As a result, the maturity values of GAOs 

should be discounted back with different rates and hence the V(0) values would be 

different in these two methods as shown in Table 4 and Table 10. Note in Table 4, the 

values all increase considerable with term. Now in Table 10, the values of longer terms 

are not much greater than those of shorter terms. Of course with different parameters 

different results might be obtained.  

Table 10: The cost of GAO at time 0 obtained by option pricing with r(0) = 0.05 

 T=10 T=15 T=20 T=25 T=30 T=35 T=40 

V(0) 6.585170 6.729368 6.883999 7.052726 7.228360 7.413138 7.613177 

 

By varying the initial conditions, the following results as given in Table 11 are obtained. 

The first row gives the values of V(0) with doubled κ. Comparing them to Table 10, one 

can observe that V(0) with T = 10 increases while V(0) with all the other terms decrease 

when κ is doubled, and the effect of doubled κ is more obvious for longer terms. The 

results for doubling the volatility σ are tabulated in the second row. As the interest rates 

become more volatile, the probability that the insurer has to pay for the GAO becomes 

higher and the cost of the GAO becomes bigger, as shown in Table 11. The last two rows 

of the table give the effect of changing the initial interest rate r(0). When r(0) is lower, 

the chance that r(t) will remain low becomes higher, and the value of V(0) will thus be 

larger.  

Table 21: The cost of GAO at time 0, V(0), calculated with different parameter settings 

 T=10 T=15 T=20 T=25 T=30 T=35 T=40 

r(0) = 5%,  

κ = 0.09571 

σ = 1.258% 

λ = -0.23891 

6.834641 6.624155 6.491909 6.422260 6.398067 6.413455 6.467144 

r(0) = 5%,  

κ = 0.047854 

σ = 2.516% 

λ = -0.23891 

12.21211 15.34684 18.69096 22.15480 25.60556 28.95980 32.18586 

 

r(0) = 2%,  

κ = 0.047854 

σ = 1.258% 

λ = -0.23891 

13.731644 11.760524 10.595791   9.868453   9.401490   9.110786   
8.952066 

r(0) = 8%,  

κ = 0.047854 

σ = 1.258% 

λ = -0.23891 

2.599921 3.487202 4.232036 4.880734 5.451819 5.962125 6.428779 
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5.2 Dynamic hedging 

In order for the above theoretical option price to be taken as the true or „fair‟ value of the 

GAO, a hedging strategy must exist such that the results of the investments according to 

the hedging strategy replicate the desired payoff of the GAO. To hedge the GAO against 

both the equity and interest risks, we would need to invest in the following securities: an 

equity index with market value S(t) at time t, zero-coupon bond maturing at time T, and 

zero-coupon bonds maturing at time T+n (n = 1, …, -65). Note the hedging strategy 

employed here is delta hedging strategy. The hedging ratios are thus the partial 

derivatives of V(t) over the corresponding underlying securities. The number of units 

invested in the index at time t is denoted by HS(t) where 

65
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The second consists of an investment at time t of H0(t) units of the zero-coupon bond 

which matures at time T, where 

65

1

1265

65
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n
TT tnhN
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nTtP
ptS

g

p
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The replicating portfolio also consists of investments of Hn(t) units of the zero-coupon 

bonds which matures at time T+n (n = 1, …, -65), where 

65,...,1
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65

65 n
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p
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TT

n .  

If the limiting age of the policyholder is 110, we have to invest at all times in the 47 

securities according to the above hedging proportions. Note that the value of the initial 

hedge is 

)0()0()0(
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which is equal to the value of the GAO at time 0. At maturity time T, P(T,T) = 1,   

P(n,T) = 0, h1(n,T) = h2(n,T) = + , N(h1(n,T)) = N(h2(n,T)) = 1, and hence the value of 

the hedge portfolio is 
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That is, the result of the investment process matches exactly the required payoff of the 

GAO at maturity time T. Suppose the hedge is to be rebalanced at time t+h, just before 

rebalancing the value of the hedge portfolio is 

65

1

0 ),()(),()()()(
n

ns nThtPtHThtPtHhtStH  

where S(t+h), P(t+h,T), and P(t+h,T+n) denote the market prices at time t+h of the hedge 

assets. The new hedging weights HS(t+h), H0(t+h), and Hn(t+h) are computed based on 

these new asset prices and the value of the revised hedge is 

65

1

0 ),()(),()()()()(
n

ns nThtPhtHThtPhtHhtShtHhtG . 

Note, the value of the hedge portfolio at time t is denoted by G(t).  

If the „real world‟ model is the same as the model used for option pricing, and if hedging 

is carried out continuously, free of transaction costs, then the hedge portfolio is self-

financing since the hedging proportions are actually the partial derivatives of G(t) over 

the corresponding assets. However, the rebalancing is done discretely in practice. In 

addition, there are transactions costs and the market movements can deviate significantly 

from those implied by the model. All these can lead to considerable hedging errors. 

From the above discussion, it can be concluded that the value of the replicating portfolio, 

G(t), will almost certainly not exactly match the value of V(t). The following investment 

strategy is then considered: invest the correct amounts in the portfolio, and invest the 

balance if there‟s any in the zero-coupon bond, or borrow the shortage by shorting the 

zero-coupon bond. The assumption implied in the above investment strategy is that we 

can borrow or lend at the risk-free rate, which is of course not true in the real world.  

The hedging results of 10,000 simulations with h=1/250 (daily rebalancing) are shown in 

Figure 6. The hedging is carried out according to the investment strategy described in the 

previous paragraphs. S(t) is assumed to follow the stochastic equation dS(t) = μsS(t)dt + 
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σsS(t)dWt, where μs = 0.1, σs = 0.2, and dWt is the standard Brownian motion. Note that 

S(t) is independent of r(t) under the assumption. The initial short-rate r(0) varies between 

3% and 20% and S(0) equals to $100 in the 10,000 simulations.  

Figure 6: Hedging results of 10,000 simulations (daily rebalancing) (a) plots in normal scale; (b) 

partial view 
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In Figure 6, the values of G(T), the investment proceeds at maturity time T, are plotted 

against the values of V(T), the amount required to pay off the option at maturity. One can 

see that in general the investment proceeds correspond with the amounts required very 

closely. Surpluses at maturity (although not significant) can be observed when the 

hedging strategy was followed. Figures 7 and 8 shows the simulation results with the 

same variables but hedging weekly and monthly respectively. From the figures, it can be 

observed that although the investment results cluster around the 45-degree line, the 

correspondence between the V(t) and G(T) is by no means perfect. Proportionately large 

profits and deficits can be observed especially in monthly rebalanced cases. 

Figure 1: Hedging results of 10,000 simulations (weekly rebalancing) (a) plots in normal scale; (b) 

partial view 
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As the results depend strongly on the value of S(T), the effect of changing S(t) model 

(varying the volatility σs) is investigated and presented in Figure 9 and 10. One can see 

that as the S(t) process becomes more volatile, the correspondence between G(t) and V(t) 

becomes less close. The extreme values are far more extreme when σs = 0.4 than when σs 

= 0.2.   

Figure 2: Hedging results of 10,000 simulations (monthly rebalancing) (a) plots in normal scale; (b) 

partial view 

Dynamic Hedging results (monthly rebalancing)
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Figure 3: Hedging results of 10,000 simulations (weekly rebalancing, σs = 0.3) (a) plots in normal 

scale; (b) partial view 
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The results demonstrate that the investment strategy we have described above, if hedging 

is sufficiently frequent, and if the real-world model is as assumed, does give results that 

correspond with the required payoff quite closely. This validates the option and hedging 

formula is appropriate for the guaranteed annuity options. In this paper, it is assumed that 

the real world interest rates in fact behave in accordance with the Vasicek model that has 

been defined and used for the calculation of option values and hedging quantities. The 
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true behaviour of the real world interest rates may actually be very different. In addition, 

S(t) is assumed to have a log-normal distribution while it is now well established in the 

empirical literature that equity prices do not follow a simple lognormal process [Hardy, 

2003]. All these and many other frictional factors such as transaction costs which are not 

considered in this work will almost certainly widen the hedging errors in real-world 

applications. 

Figure 4: Hedging results of 10,000 simulations (weekly rebalancing, σs = 0.4) (a) plots in normal 

scale; (b) partial view 
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6. Conclusions 

In this paper, the value of Guaranteed Annuity Options (GAOs) is investigated in an 

environment of stochastic interest rates. The maturity value of GAO at time T is modelled 

by a mathematical model and its discounted value at time t is calculated under the 

following assumptions: 1) fully diversified mortality; 2) no mortality improvement; 3) no 

expense; 4) US market; 5) mortality risk is independent of the financial risk and 6) 

equities and bonds are uncorrelated.  

Two methods are employed to find the discounted value of GAO at time t. They are 

actuarial method and financial pricing method. In actuarial method, all the premiums are 

investigated into an equity account and the discount value of GAO at time 0 can be 

modelled by an option on the deferred annuity )(65 Ta . To find the value of )(65 Ta , two 

one-factor stochastic interest rate models are introduced: Vasicek model and CIR model. 

Their estimation methods are described and tested with the simulated data. The 

experiment results suggest that the risk-neutral long-term mean and the volatility can be 

estimated quite accurately while the estimate of the mean-reversion rate is upward biased. 

The estimated Vasicek model and CIR model are then calibrated using the cross sectional 

data. The maturity costs of the GAOs are calculated using the calibrated models and are 

compared against the costs calculated using the historical long-term interest rates. 
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Experimental results show that these calibrated models can give reasonable results and 

thus can be used to find the discounted value of the GAO at time 0, V(0). Means, 

variances, percentiles, and conditional tail expectations of V(0) with different maturities 

are found by the Monte Carlo simulation. 

The second method is financial pricing method. Under this method, the value of V(0) can 

be calculated using the option pricing formulas. Note only the Vasicek model is 

employed as it is difficult to find a closed-form option price solution for the CIR model. 

The values of V(0) with different maturities are calculated and presented. A replicating 

portfolio is constructed and the delta hedging strategy is employed to make sure that the 

results of the investments replicate the desired payoff of the GAO. The experiment results 

demonstrate that, if the delta hedging is sufficiently frequent, the investment process 

matches with the required payoff quite closely. 

This work shows that both the actuarial and financial methods are able to give reasonable 

valuations of the GAOs under proper assumptions. However, the results obtained by 

these two methods are not the same as V(0)s are invested and discounted differently. 

Therefore, a possible direction for future work might be analyzing the relationships 

between these two sets of results. Delta hedging strategy is employed in this work. When 

the volatility is high, however, other hedging strategies such as gamma hedging might be 

more appropriate. Moreover, no mortality improvement is considered in this work. This 

is obviously not the case in real world. The valuation models can thus be made more 

realistic by including mortality improvements. 

 

References 

Andersen, T.G., and J. Lund, 1997, “Estimating Continuous Time Stochastic 

Volatility Models of the Short-Term Interest Rate,” Journal of Econometrics, 77, 343-377 

Andrews, Donald W. K. 1993, “Exactly-unbiased estimation of first order 

autoregressive/unit root models”, Econometrica, 61, 139-166, 1993 

Artzner, P., 1998, “Coherent measures of risk”, Mathematical Finance, 9(3), 203-

228 

Bergstrom, Albert R., 1984, “Continuous time stochastic models and issues of 

aggregation over time”, in Z. Griliches and M. D. Intriligator, Eds.: Handbook of 

Econometrics, Vol. II (Elsevier Science, Amsterdam). 

Chan, K. C., G. A. Karolyi, F. A. Longstaff, and a. B. Sanders, 1992, “An 

Empirical Comparison of Alternative Models of the Short-Term Interest Rate,” Journal of 

Finance, 47, 1209-1227 

Chapman, D.A., Long, J.B. and Pearson, N.D., 1999, “Using proxies for the short-

rate: when are three months like an instant?”, Review of Financial Studies, vol. 12, No. 4, 

763-806 



 

 23 

Cox, John, Jonathan Ingersoll, and Stephen Ross, 1985, “A Theory of the Term 

Structure of Interest Rates”, Econometrica, vol. 53, No. 2, pp. 385-407 

Hull, J., 2002, “Options Futures and Other Derivatives”, Prentice Hall. 

Jamshidian, F., 1991, “Bond and Option Evaluation in the Gaussian Interest Rate 

Model”, Research in Finance, 9, 131-170 

Maghsoodi, Y., 2000, “estimation and empirical evaluation of the time-dependent 

extended-CIR term structure model”, IMA journal of Mathematics applied in business 

and industry (2000) 11, 161-176 

Miscia, O.D., 2004, “Term structure of interest models: concept and estimation 

problem in a continuous-time setting” 

Nowman, K.B., 1997, “Gaussian Estimation of Single-Factor Continuous Time 

Models of The Term Structure of Interest Rates”, The Journal of Finance, vol. LII, No. 4, 

Sept. 1997 

Revuz, Daniel and Marc Yor. 1999, “Continuous Martingales and Brownian 

Motion”, Springer-Verlag, 1999 

Stanton, R., 1997, “A Nonparametric Model of Term Structure Dynamics and the 

Market Price of Interest Rate Risk,” Journal of Finance, 52, 1973-2002 

Wilkie, A.D., Waters, H. R.and Yang, S., 2003, “Reserving, pricing and hedging 

for policies with Guaranteed Annuity Options” 

Yu, J. & Philips, Peter C.B., 2001, “Gaussian estimation of continuous time 

models of the short term interest rate, July 2001 


