TRANSACTIONS OF SOCIETY OF ACTUARIES 1967 REPORTS

II. CANADIAN ASSURED LIVES TABLES, 1958-64

The Committee on Mortality of the Canadian Institute of Actuaries has constructed new mortality tables for males and females separately based on the experience under Canadian Standard Ordinary issues. The main reason for the preparation of new mortality tables was to have available up-to-date sex-distinct mortality tables as a basis for comparison in connection with the mortality studies being conducted annually by the Institute. In graduating the tables, closeness of fit to the basic data has, therefore, been a prime consideration, and the graduation was designed to reflect closely actual experience for the period of the study with no built-in mortality margins. Graduated select and ultimate rates of mortality were constructed for male lives and graduated ultimate rates only for female lives. These rates of mortality are shown in Table 1.

The basic data were obtained from twenty-five companies, representing about 84 per cent by amount of the life insurance in force in Canada. The names of the companies which contributed data are shown in Table 2. The material includes the experience of both medically examined and nonmedical issues. The period covered is that between the 1958 and 1964 policy anniversaries, during which the mortality on Canadian Standard Ordinary issues has been reasonably level.

The data were contributed by the individual companies on an age at issue and policy year duration basis for the first five policy year durations and on an attained age basis for subsequent policy year durations. This form has been retained in the graduated rates of mortality.

Data used in the study were recorded on nearest age basis. The male data were adequate for the construction of select and ultimate tables, but the female data were inadequate for the preparation of select rates. For males the deaths in the study totaled 63,345 by policies and about \$229 million by amounts. For the female experience the deaths totaled 5,632 by policies and about \$8.8 million by amounts. The total exposed to risk for male lives exceeded 13 million by policies and \$65 billion by amounts; the corresponding figures for females exceeded 3.7 million by policies and were about \$6.5 billion by amounts.

Graduation of the Ultimate Rates of Mortality

For the main range of ages of the ultimate male data (policy year durations 6 and subsequent), a Whittaker-Henderson B formula was used to

RUSHMORE MUTUAL LIFE LIBRARY

TABLE 1

CANADIAN ASSURED MALE LIVES TABLE, 1958-64 GRADUATED RATES OF MORTALITY PER 1,000

Issue Age [x]	q [x]	q [x]+1	q[x]+1	q [x]+\$	<i>q</i> [x]+4	qz + 6	At- tained Age x+5
0	3.365	0.910	0.752	0.639	0.561	0.507	5
1	0.910	0.752	0.639	0.561	0.507	0.467	6
2	0.752	0.639	0.561	0.507	0.467	0.426	7
3	0.639	0.561	0.507	0.467	0.426	0.380	8
4	0.561	0.507	0.467	0.426	0.380	0.338	9
5	0.507	0.467	0.426	0.380	0.338	0.323	10
6	0.467	0.426	0.380	0.338	0.323	0.320	11
7	0.426	0.380	0.338	0.323	0.320	0.340	12
8	0.380	0.338	0.323	0.320	0.340	0.388	13
9	0.338	0.323	0.320	0.340	0.388	0.468	14
10	0.323	0.320	0.340	0.388	0.468	0.584	15
11	0.320	0.340	0.388	0.468	0.584	0.715	16
12	0.340	0.388	0.468	0.584	0.715	0.855	17
13	0.388	0.468	0.584	0.715	0.855	0.972	18
14	0.468	0.584	0.715	0.855	0.972	1.052	19
15	0.584	0.715	0.855	0.972	1.052	1.097	20
16	0.715	0.855	0.972	1.052	1.097	1.127	21
17	0.855	0.972	1.052	1.097	1.127	1.129	22
18	0.972	1.052	1.097	1.127	1.129	1.105	23
19	1.052	1.097	1.127	1.129	1.105	1.063	24
20	1.060	1.101	1.117	1.105	1.063	1.012	25
21	1.051	1.077	1.081	1.063	1.012	0.960	26
22	1.015	1.029	1.029	1.012	0.960	0.917	27
23	0.957	0.965	0.969	0.960	0.917	0.889	28
24	0.885	0.895	0.908	0.917	0.889	0.880	29
25	0.807	0.826	0.857	0.889	0.880	0.891	30
26	0.753	0.776	0.817	0.874	0.891	0.922	31
27	0.708	0.740	0.795	0.870	0.922	0.973	32
28	0.675	0.721	0.792	0.885	0.973	1.042	33
29	0.657	0.718	0.806	0.919	1.042	1.128	34
30	0.654	0.731	0.837	0.968	1.122	1.229	35
31	0.666	0.758	0.881	1.031	1.203	1.339	36
32	0.691	0.799	0.938	1.105	1.289	1.458	37
33	0.728	0.850	1.006	1.184	1.380	1.588	38
34	0.775	0.911	1.078	1.267	1.479	1.736	39
35	0.831	0.976	1.154	1.358	1.590	1.913	40
36	0.890	1.046	1.236	1.460	1.723	2.122	41
37	0.953	1.120	1.329	1.582	1.880	2.370	42
38	1.021	1.204	1.441	1.726	2.065	2.662	43
39	1.098	1.305	1.572	1.896	2.281	3.002	44
40	1.190	1.424	1.726	2.095	2.530	3.393	45
41	1.298	1.564	1.907	2.324	2.813	3.832	46
42	1.426	1.728	2.116	2.583	3.125	4.312	47
43	1.576	1.917	2.352	2.870	3.459	4.820	48
44	1.748	2.132	2.614	3.177	3.803	5.349	49
45	1.944	2.369	2.893	3.494	4.152	5.895	50
46	2.160	2.622	3.182	3.815	4.502	6.465	51
47	2.392	2.884	3.475	4.136	4.859	7.077	52
48	2.631	3.150	3.768	4.464	5.233	7.751	53
49	2.873	3.416	4.067	4.809	5.641	8.503	54

TABLE 1-Continued

Issue Age [x]	Q [x]	q [x]+1	Q [x]+2	q [x]+2	q [x]+4	<i>q</i> _x +5	At- tained Age x+5
50 51 52 53 54	3.116 3.364 3.625 3.909 4.223	3.687 3.973 4.284 4.627 5.010	4.382 4.724 5.101 5.523 6.000	5.184 5.597 6.059 6.582 7.180	6.090 6.592 7.160 7.809 8.556	9.350 10.316 11.428 12.715 14.198	55 56 57 58 59
55 56 57 58 59	4.573 4.970 5.424 5.946 6.543	5.443 5.940 6.510 7.163 7.898	6.546 7.174 7.892 8.699 9.589	7.867 8.653 9.537 10.510 11.557	9.409 10.368 11.424 12.559 13.755	15.884 17.765 19.822 22.027 24.359	60 61 62 63 64
60 61 62 63 64	7.216 7.957 8.755 9.597 10.471	8.707 9.579 10.497 11.450 12.435	10.546 11.554 12.601 13.681 14.800	12.659 13.803 14.982 16.204 17.479	14.994 16.271 17.594 18.974 20.425	26.812 29.398 32.141 35.068 38.197	65 66 67 68 69
65 66 67 68 69	11.375 12.312 13.292 14.326 15.418	13.456 14.523 15.647 16.835 18.092	15.970 17.201 18.501 19.876 21.331	18.821 20.238 21.735 23.319 25.000	21.956 23.575 25.285 27.098 29.030	41.544 45.123 48.959 53.081 57.532	70 71 72 73 74
70	16.575	19.422	22.876	26.791	31.099	62.370 67.655 73.428 79.705 86.475	75 76 77 78 79
						94.120 102.815 112.528 123.019 133.843	80 81 82 83 84
						145.116 156.763 168.733 180.999 193.546	85 86 87 88 89
						206.364 219.444 232.780 246.368 261.776	90 91 92 93 94
						280.574 304.329 334.609 372.984 421.022	95 96 97 98 99
						480.291 552.359 638.796 741.169 861.048	100 101 102 103 104
						1,000.000	105

TABLE 1-Continued

Age x	<i>q</i> x	Age x	q _x	Age *	<i>qx</i>
0 1 2 3 4	$\begin{array}{c} 2.610\\ 0.774\\ 0.612\\ 0.499\\ 0.423\end{array}$	35 36 37 38 39	0.945 1.012 1.083 1.158 1.239	70	21.702 24.382 27.472 31.015 35.047
5 6 7 8 9	$\begin{array}{c} 0.373 \\ 0.338 \\ 0.307 \\ 0.280 \\ 0.259 \end{array}$	40 41 42 43 44	1.329 1.432 1.554 1.703 1.885	75 76 77 78 79	39.590 44.658 50.261 56.404 63.095
10 11 12 13 14	0.246 0.241 0.246 0.258 0.276	45 46 47 48 49	2.104 2.355 2.632 2.926 3.226	80 81. 82. 83. 84.	$\begin{array}{c} 70.337 \\ 78.134 \\ 86.486 \\ 95.395 \\ 104.872 \end{array}$
15 16 17 18 19	$\begin{array}{c} 0.298 \\ 0.321 \\ 0.345 \\ 0.366 \\ 0.381 \end{array}$	50. 51. 52. 53. 54.	$\begin{array}{r} 3.527 \\ 3.830 \\ 4.138 \\ 4.460 \\ 4.804 \end{array}$	85. 86. 87. 88. 89.	114.935 125.612 136.941 148.964 161.736
20 21 22 23 24	0.390 0.392 0.387 0.380 0.373	55 56 57 58 59	$5.184 \\ 5.610 \\ 6.089 \\ 6.626 \\ 7.223$	90. 91. 92. 93. 94.	175.319 189.783 205.207 221.679 239.295
25 26 27 28 29	$\begin{array}{c} 0.374 \\ 0.386 \\ 0.412 \\ 0.453 \\ 0.509 \end{array}$	60 61 62 63 64	7.886 8.624 9.454 10.394 11.461	95 96 97 98 99	258.159 279.022 303.280 332.972 370.785
30. 31. 32. 33. 34.	$\begin{array}{c} 0.577 \\ 0.652 \\ 0.729 \\ 0.805 \\ 0.877 \end{array}$	65 66 67 68 69	12.670 14.039 15.591 17.357 19.378	100 101 102 103 104	420.049 484.742 569.486 679.547 820.838
				105	1,000.000

CANADIAN ASSURED FEMALE LIVES, 1958–64 GRADUATED ULTIMATE RATES OF MORTALITY PER 1,000

graduate the rates of mortality based on the experience by amounts. For the main range of ages of the ultimate female data (durations 6 and subsequent), a Whittaker-Henderson B formula was also used to graduate rates of mortality based on the experience by number of policies. Because there were fewer data on female lives, it was found that a graduation by policies produced a table which more adequately expressed the mortality of female lives.

TABLE 2

COMPANIES CONTRIBUTING DATA TO THE CANADIAN MORTALITY INVESTIGATION

Canada Life Assurance Company	National Life Assurance Company of
Confederation Life Association	Canada
Crown Life Insurance Company	New York Life Insurance Company
Dominion Life Assurance Company	North American Life Assurance
Empire Life Insurance Company	Company
Equitable Life Insurance Company	Northern Life Assurance Company
of Canada	of Canada
Excelsior Life Insurance Company	Occidental Life Insurance Company
Great-West Life Insurance Company	of California
Imperial Life Assurance Company of	Prudential Assurance Company
Canada	Limited (of England)
Industrial Life Insurance Company	Prudential Insurance Company of
London Life Insurance Company	America
Manufacturers Life Insurance	Sun Life Assurance Company of
Company	Canada
Metropolitan Life Insurance	T. Eaton Life Assurance Company
Company	Travelers Insurance Company
Monarch Life Assurance Company	
Mutual Life Assurance Company of	
Canada	

Graduation of Select Rates of Mortality

In graduating the select rates of mortality for male lives, it was found that selection at the older ages extended beyond the fifth policy year. It was felt, however, that reasonably close adherence to the actual experience was desirable even though this produced a sharp discontinuity between the graduated mortality rates at the older ages for the fifth policy year duration and the ultimate section. For the main range of ages 20-69 in the select section, the degree of selection appeared to increase with age and King's method of constructing select rates was used, as described in Volume LIII of J.I.A.

Comparison with Other Tables

A comparison of the rates of mortality of the Canadian Assured Male Lives Ultimate Table, 1958-64 (C.A. 58-64 Males Ultimate), and the Canadian Assured Female Lives Ultimate Table, 1958-64 (C.A. 58-64 Females Ultimate), with those of other recent mortality tables is shown in the accompanying tabulation.

The C.A. 52-56 Ultimate Table was based on the experience after the exclusion of the first five policy years under Canadian Standard Ordinary

Age	C.A. 58–64, Males	C.A. 52-56, Male and Female Combined	1955–60 Basic Table, Males	Table X18, Male and Female Combined	C.A. 58–64, Females	1955-60 Basic Table, Females
15	0.58	0.59	0.73	0.55	0.30	0.36
25	1.01	1.06	1.25	0.93	0.37	0.66
35	1.23	1.35	1.40	1.41	0.94	1.21
45	3.39	3.51	3.96	4.02	2.10	2.32
55	9.35	10.32	, 11.00	10.91	5.18	5.67
65	26.81	26.56	27.99	27.61	12.67	13.07
75	62.37	64.63	63.36	63.80	39.59	43.59

COMPARISON OF ULTIMATE RATES OF MORTALITY ($q_x \times 1,000$)

issues. The 1955–60 Basic Tables for males and females cover ultimate experience after the exclusion of the first fifteen policy years. Table X18 excludes a five-year select period and is based on experience for the period 1950–54. In comparing the new tables with existing tables, the differences with regard to sex, periods of observation, and select period excluded should be taken into consideration.

More detailed data, including a description of the graduation process and additional comparisons with other mortality data, are included in the Canadian Institute of Actuaries Mortality Committee Report, dated February, 1967.