Regime-Switching Portfolio Replication

Matthew C. Till (joint with Dr. Mary Hardy and Dr. Keith Freeland)

Dept. of Statistics and Actuarial Science University of Waterloo Waterloo, ON, Canada

July 30, 2009

<ロ> (四) (四) (三) (三) (三)

1/28

Acknowledgements

- Standard Life Assurance Company
- Institute for Quantitative Finance and Insurance
- NSERC
- University of Waterloo

Investment Guarantees

- Portfolio Replication
- The S&P 500

2 Regime Switching Portfolio Replication

- Hidden Markov Models
- Regime Switching Replication

3 Regime Switching Bayesian Portfolio Replication

- Bayesian Estimation of Regime Switching Models
- Example Results
- Conclusion and Future Work

ヘロン 人間 とくほと くほとう

Portfolio Replication The S&P 500

Long-Term Guarantees

Contract: Long-term Equity Guarantees/Options Eg.

- Guaranteed Minimum Maturity Benefit
- Long-Term Stock Options

Example: Selling a 10-year European Put option on the S&P 500.

Due to the catastrophe nature of this risk, choose to hedge the contract.

<ロ> (四) (四) (三) (三) (三) (三)

Portfolio Replication The S&P 500

Black-Scholes Hedging

Black-Scholes Put Option Price:

$$BSP_t = K \cdot e^{-r(T-t)} \cdot \Phi(-d_2) - S_t \cdot \Phi(-d_1)$$

$$d_1 = \frac{\log(S_t/K) + (T-t)(r+\sigma^2/2)}{\sqrt{T-t}\sigma}$$

$$d_2 = d_1 - \sigma\sqrt{T-t}$$

Hedge: Hold $H_t = -\Phi(-d_1)$ in stock.

One assumption of the framework: continuous re-balancing of the hedge.

Portfolio Replication The S&P 500

Black-Scholes Hedging

Continuous re-balancing is obviously not feasible.

Monthly Re-balancing

- This will introduce Hedging Error
- $HE_{t+1} = BSP_{t+1} (H_t \cdot S_{t+1} + B_t \cdot e^r)$

Another assumption: S_t follows a geometric Brownian Motion with constant variance σ^2 .

Goal: Find a good σ for the S&P 500.

Investment Guarantees

Regime Switching Portfolio Replication Regime Switching Bayesian Portfolio Replication Portfolio Replication The S&P 500

S&P 500

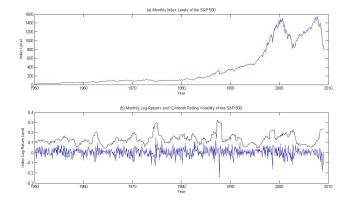


Figure: S&P 500 Monthly Index and Log-Return Levels

Portfolio Replication The S&P 500

S&P 500 Volatility

- One could just estimate the volatility of the entire process
 - Such an approach would not capture the volatility clustering of the process.
- A better approach would be let the volatility parameter change over time, mimicking the volatility of the index.

Approach: Use a model that captures the volatility clustering of the index.

Hidden Markov Models

Hidden Markov Models

- First introduced in the 1960's by Baum.
- First applications were speech recognition in the 1970's

Suppose we have a time series that from $t=1,2,\ldots,t_0$ is governed by

$$y_t = \mu_1 + \sigma_1 \epsilon_t$$

At time t_0 , there was a significant change in the parameters of the series. Over t_0, \ldots, t_1 , the series behaves as

$$y_t = \mu_2 + \sigma_2 \epsilon_t$$

Then, at t_1 , it changes back.

◆□ → ◆圖 → ◆ 圖 → ◆ 圖 → □ 圖 □

Hidden Markov Models in Finance

Hamilton (1989) proposed hidden Markov models for financial applications.

The idea being the market passes through different states:

- A stable normal market
- A high-volatility market
- Periods of uncertainty in transition between the above two states

Hidden Markov models can capture volatility clustering through the underlying state process.

Hidden Markov Models in Finance

Regime Switching Model Characteristics:

- The distribution of Y_t is only known conditional on $\rho_t \in \{1, 2, \dots, K\}$, the regime of the process at time t.
- The unobserved regime process is Markov.
- The one-period transition probabilities are defined as

$$p_{i,j} = P[\rho_t = j | \rho_{t-1} = i]$$
 $\forall i, j \in \{1, 2, \dots, K\}, \forall t \in \{1, 2, \dots, T\}$

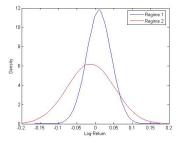
RSLN-2 Model: $Y_t = log(S_t/S_{t-1})$

$$\begin{aligned} Y_t | \rho_t &= \mu_{\rho_t} + \sigma_{\rho_t} \cdot \epsilon_t \\ \rho_t | \rho_{t-1} &= k \quad \text{w.p.} \quad p_{\rho_{t-1},k} \qquad k \in \{1,2\} \end{aligned}$$

Hidden Markov Models Regime Switching Replication

RSLN-2 Model for the S&P 500

Maximum Likelihood Parameters for the S&P 500:



Regime	μ	σ	Transition Parameters	Proportion
One	0.00990	0.03412	$p_{1,2} = 0.0475$	$\pi_1 = 0.809$
Two	-0.01286	0.06353	$p_{2,1} = 0.2017$	$\pi_2 = 0.191$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ⊙

Generating a Volatility from the RSLN-2 Model

Static Unconditional Volatility

$$\sigma = \sqrt{Var[Y_t]} = \sqrt{Var[E[Y_t|\rho_t]] + E[Var[Y_t|\rho_t]]}$$

using the π_k 's as regime weights.

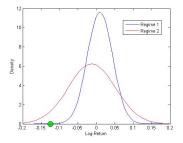
This approach seems counterproductive:

• If one went to all the trouble of modeling volatility clustering, why use a static volatility?

Need to use the information in the data to more accurately select a volatility.

Hidden Markov Models Regime Switching Replication

Data-Dependent Regime Probabilities



 The recent data observations provide insight into the current regime of the process.

Data-dependent Regime Probabilities:

$$p_k(t) = Pr(\rho_t = k | y_t, \dots, y_1)$$

Hidden Markov Models Regime Switching Replication

Data-Dependent Regime Probabilities

Future Data-dependent Regime Probabilities

$$p_k^+(t) = Pr(\rho_{t+1} = k | y_t, \dots, y_1)$$

= $p_1(t) \cdot p_{1,k} + p_2(t) \cdot p_{2,k}$

Question: How best can these probabilities be used in portfolio replication?

Generating a Volatility from the RSLN-2 Model

Dynamic Unconditional Volatility

$$\sigma = \sqrt{Var[Y_t]} = \sqrt{Var[E[Y_t|\rho_t]] + E[Var[Y_t|\rho_t]]}$$

using the $p_k^+(t)$'s as regime weights.

- If the model is 'correct', this is the unconditional volatility of the upcoming observation.
- The regime will be one or the other; the dynamic volatility will generally not be equal to either of the regime volatilities.
- But, you're somewhat covered against the less likely regime.

Hidden Markov Models Regime Switching Replication

Regime Switching Optimization Methods

Indicator Volatility

$$\sigma = \sigma_k$$
, where $p_k^+(t) = \max(p_1^+(t), p_2^+(t))$

- If the model is 'correct', this method will pick the correct volatility often.
- But, when you've picked the wrong regime, your volatility is significantly off.

Regime Switching Optimization Methods

One observation about the two methods:

- The change in hedging volatility significantly affects your monthly hedging error
- The Dynamic Volatility method has the largest number of significant jumps.
- The Indicator method has the biggest jumps. but less of them.

Question: Which of these hedging options is better?

Regime Switching Optimization Methods

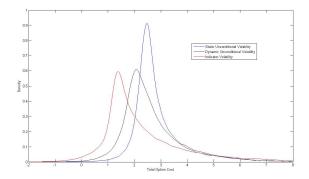
Answer: It's actually option dependent.

S&P 500 10-Year Put Example

- Strike Price = $S_0 = 100$
- Monthly re-balancing.
- Bond: 5% per annum.
- Transaction Costs: 0.02% of change in stock position
- Using the described hedging methods, simulate from the model to determine which method generates the smaller total option costs (initial hedge + hedging error)

Hidden Markov Models Regime Switching Replication

S&P 500 10-Year Put Example Results



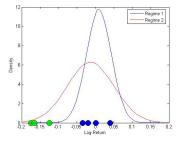
Volatility	Static	Dynamic	Indicator
EPV[Total Option Cost]	2.9129	2.6406	2.3512

The Indictor method performs exceptionally well (19%!). But why?

20/28

Hidden Markov Models Regime Switching Replication

S&P 500 10-Year Put Example Results



- The Dynamic and Indicator methods perform very similarly in most cases.
- When moving from Regime 2 to Regime 1, the Dynamic is too slow to react.

Bayesian Estimation of Regime Switching Models Example Results Conclusion and Future Work

What About Parameter Uncertainty?

Parameter uncertainty is an important consideration

- Quite important for the example since I simulated from the fitted model to obtain results.
- Especially for Regime-switching models

Regime	μ	σ	Transition Parameters	Proportion
One	0.00990	0.03412	$p_{1,2} = 0.0475$	$\pi_1 = 0.809$
Two	-0.01286	0.06353	$p_{2,1} = 0.2017$	$\pi_2 = 0.191$

<ロ> (四) (四) (三) (三) (三)

Bayesian Estimation of Regime Switching Models Example Results Conclusion and Future Work

<ロ> (四) (四) (三) (三) (三)

23/28

Regime Switching Markov Chain Monte Carlo

Bayesian Modeling

- Treat each parameter as itself a random variable.
- Model beliefs about each parameter using prior distributions.
- Update your distributions based on the data to form posteriors.

For the RSLN-2, Metropolis-Hastings Algorithm was used

Very quick simulation

Bayesian Estimation of Regime Switching Models Example Results Conclusion and Future Work

RSLN-2 Parameter Comparison

Maximum Likelihood Parameters for the S&P 500:

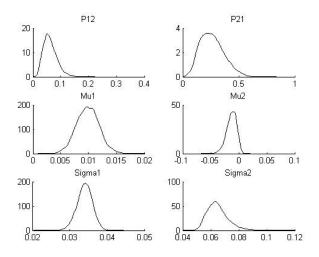
Regime	μ	σ	Transition Parameters
One	0.00990	0.03412	$p_{1,2} = 0.0475$
Two	-0.01286	0.06353	$p_{2,1} = 0.2017$

Bayesian Posterior-Means for the S&P 500:

Regime	μ	σ	Transition Parameters
One	0.0099	0.0340	$p_{1,2} = 0.0620$
Two	-0.0129	0.0652	$p_{2,1} = 0.2631$

Bayesian Estimation of Regime Switching Models Example Results Conclusion and Future Work

RSLN-2 Parameter Posterior Distributions



▲ロ▶ ▲舂▶ ▲登▶ ▲登▶ - 登 - 釣�?

25/28

Bayesian Estimation of Regime Switching Models Example Results Conclusion and Future Work

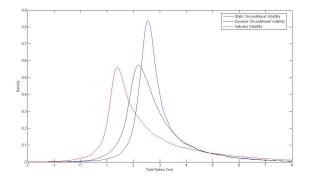
10-Year S&P Put Example

S&P 500 10-Year Put Example Revisited

- Use the posterior parameter distributions to generate the model simulations
- Still use the MLE parameter estimates for hedging decisions.

Bayesian Estimation of Regime Switching Models Example Results Conclusion and Future Work

10-Year S&P Put Example Revisited



Volatility	Static	Dynamic	Indicator
EPV[Total Option Cost]	3.0107	2.8290	2.5306

The Indicator still performs best, but by less of a margin (16%).

27/28

Bayesian Estimation of Regime Switching Models Example Results Conclusion and Future Work

Conclusions & Future Work

Summary of Results:

- Regime-switching portfolio replication can be worth it.
- Best type of method depends on the option you're hedging.
- Often, you want hedging strategies that react quickly.
- Parameter uncertainty can play a role.

Future Work

- More complicated Regime-Switching or Hybrid Models (RSGARCH)
- Relax the fixed interest rate assumption