Suboptimality of Asian Executive Indexed Options

Carole Bernard
Phelim Boyle
Jit Seng Chen

Actuarial Research Conference
August 13, 2011

UNIVERSITY OF WATERLOO

Outline

1. Options Preliminaries
2. Assumptions
3. Asian Executive Indexed Option
4. Cost-Efficiency
5. Constructing a Cheaper Payoff
6. True Cost Efficient Counterpart
7. Numerical Results
8. Stochastic Interest Rates

Options Preliminaries

- $\hat{S}_{4}=\sqrt[4]{S_{1} S_{2} S_{3} S_{4}}=92.12, \hat{H}_{4}=\sqrt[4]{H_{1} H_{2} H_{3} H_{4}}=99.19$
- European Call Option Payoff $=\max \left(S_{4}-K, 0\right)=0$
- Asian Option Payoff $=\max \left(\hat{S}_{4}-K, 0\right)=2.12$
- Asian Indexed Option Payoff $=\max \left(\hat{S}_{4}-\hat{H}_{4}, 0\right)=0$

Assumptions

1. Black-Scholes market:

- Extension to Vasicek short rate

2. Stock S_{t} and benchmark H_{t} driven by Brownian motions
3. Existence of state-price process ξ_{t}
4. Agents preferences depend only on the terminal distribution of wealth

Asian Executive Indexed Option

Asian Executive Indexed Option (AIO) proposed by Tian (2011):

- Averaging: Prevent stock price manipulation
- Indexing: Only reward out-performance
- More cost-effective than traditional stock options
- Provide stronger incentives to increase stock prices

Construct a better payoff:

- Same features as the AIO
- Strictly cheaper
- Use the concept of cost-efficiency

Cost-Efficiency

From Bernard, Boyle and Vanduffel (2011):
Definition (1)
The cost of a strategy with terminal payoff X_{T} is given by

$$
c\left(X_{T}\right)=E_{\mathbb{P}}\left[\xi_{T} X_{T}\right]
$$

where the expectation is taken under the physical measure \mathbb{P}.

Intuition: ξ_{T} represents the price of a particular state
Definition (2)
A payoff is cost-efficient (CE) if any other strategy that generates the same distribution costs at least as much.

Cost-Efficiency

Theorem (1)

Let ξ_{T} be continuous. Define

$$
Y_{T}^{\star}=F_{X_{T}}^{-1}\left(1-F_{\xi_{T}}\left(\xi_{T}\right)\right)
$$

as the cost-efficient counterpart (CEC) of the payoff X_{T}. Then, Y_{T}^{\star} is a CE payoff with the same distribution as X_{T} and is almost surely unique.

Intuition: CEC is achieved by reshuffling the outcome of X_{T} in each state in reverse order with ξ_{T} while preserving the original distribution

Constructing a Cheaper Payoff

1. Apply Theorem 1 to each term of the AIO

$$
\hat{A}_{T}=\max \left(\hat{S}_{T}-\hat{H}_{T}, 0\right)
$$

to get

$$
A_{T}^{\star}=\max \left(d_{S} S_{T}^{1 / \sqrt{3}}-d_{H} H_{T}^{1 / \sqrt{3}}, 0\right)
$$

2. It can be shown that:

- $\hat{A}_{T}{ }^{d} A_{T}^{\star}$
- A_{T}^{\star} costs strictly less than \hat{A}_{T}
A_{T}^{\star} inherits the desired features of \hat{A}_{T}, but comes at a cheaper price

True Cost Efficient Counterpart

True CEC

$$
A_{T}=F_{\hat{A}_{T}}^{-1}\left(1-F_{\xi_{T}}\left(\xi_{T}\right)\right)
$$

is estimated numerically
Examples:

1. Empirical cumulative distribution functions (CDFs) for each payoff in the base case ${ }^{1}$
2. Reshuffling of \hat{A}_{T} to A_{T}^{\star} and A_{T}
3. Order of \hat{A}_{T}, A^{\star} and A_{T} vs ξ_{T}
4. Price of each payoff and the efficiency loss

$$
\begin{aligned}
& \quad 1_{K}=100, S_{0}=100, r=6 \%, \mu_{S}=12 \%, \mu_{I}=10 \%, \sigma_{S}=30 \%, \sigma_{I}=20 \%, \rho=0.75, q_{S}=2 \%, \\
& q_{I}=3 \%, T=1
\end{aligned}
$$

Numerical Results

Figure: Comparison of the CDFs of A_{T}, A_{T}^{\star} and \hat{A}_{T}.

Numerical Results

Figure: Reshuffling of outcomes of \hat{A}_{T} to A_{T}^{\star}

Numerical Results

Figure: Reshuffling of outcomes of \hat{A}_{T} to A_{T}

Numerical Results

Figure: Plot of outcomes of \hat{A}_{T} vs ξ_{T}

Numerical Results

Figure: Plot of outcomes of A_{T}^{\star} vs ξ_{T}

Numerical Results

Figure: Plot of outcomes of A_{T} vs ξ_{T}

Numerical Results

Case	A_{T}	A_{T}^{\star}		\hat{A}_{T}	
	V_{T}	V_{T}^{\star}	Eff Loss	\hat{V}_{T}	Eff Loss
Base Case	3.26	4.34	33%	4.36	34%
$r=4 \%$	2.96	4.37	48%	4.40	49%
$\mu_{S}=8 \%$	3.97	4.35	10%	4.36	10%
$\mu_{I}=13 \%$	3.26	4.34	33%	4.36	34%
$\sigma_{S}=35 \%$	3.97	5.04	27%	5.07	28%
$\sigma_{I}=15 \%$	3.27	4.34	33%	4.36	33%
$\rho=0.9$	2.28	2.86	25%	2.87	26%
$q_{S}=1.5 \%$	3.27	4.35	33%	4.37	34%
$q_{I}=2 \%$	3.25	4.34	33%	4.36	34%

Table: Prices and efficiency loss of A_{T}^{\star} and \hat{A}_{T} compared against A_{T} across different parameters.

Stochastic Interest Rates

Extension to a market with Vasicek short rate:

1. State price process expressed as a function of market variables
2. Pricing formula for the AIO

Summary

- Reviewed the use of averaging and indexing in the context of executive compensation
- Constructed a strictly cheaper payoff with the same features as the AIO using cost-efficiency
- Numerical examples that illustrate reshuffling of payoffs and loss of efficiency
- Extension to the case of stochastic interest rates

