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Options Preliminaries
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• Ŝ4 = 4
√

S1S2S3S4 = 92.12, Ĥ4 = 4
√

H1H2H3H4 = 99.19

• European Call Option Payoff = max(S4 − K , 0) = 0

• Asian Option Payoff = max(Ŝ4 − K , 0) = 2.12

• Asian Indexed Option Payoff = max(Ŝ4 − Ĥ4, 0) = 0



Assumptions

1. Black-Scholes market:
• Extension to Vasicek short rate

2. Stock St and benchmark Ht driven by Brownian motions

3. Existence of state-price process ξt

4. Agents preferences depend only on the terminal distribution of
wealth



Asian Executive Indexed Option

Asian Executive Indexed Option (AIO) proposed by Tian (2011):

• Averaging: Prevent stock price manipulation

• Indexing: Only reward out-performance

• More cost-effective than traditional stock options

• Provide stronger incentives to increase stock prices

Construct a better payoff:

• Same features as the AIO

• Strictly cheaper

• Use the concept of cost-efficiency



Cost-Efficiency

From Bernard, Boyle and Vanduffel (2011):

Definition (1)

The cost of a strategy with terminal payoff XT is given by

c(XT ) = EP[ξTXT ]

where the expectation is taken under the physical measure P.

Intuition: ξT represents the price of a particular state

Definition (2)

A payoff is cost-efficient (CE) if any other strategy that generates
the same distribution costs at least as much.



Cost-Efficiency

Theorem (1)

Let ξT be continuous. Define

Y ?
T = F−1XT

(1− FξT (ξT ))

as the cost-efficient counterpart (CEC) of the payoff XT . Then,
Y ?
T is a CE payoff with the same distribution as XT and is almost

surely unique.

Intuition: CEC is achieved by reshuffling the outcome of XT in
each state in reverse order with ξT while preserving the original
distribution



Constructing a Cheaper Payoff

1. Apply Theorem 1 to each term of the AIO

ÂT = max(ŜT − ĤT , 0)

to get

A?T = max
(

dSS
1/
√
3

T − dHH
1/
√
3

T , 0
)

2. It can be shown that:
• ÂT

d
=A?

T

• A?
T costs strictly less than ÂT

A?T inherits the desired features of ÂT , but comes at a cheaper
price



True Cost Efficient Counterpart

True CEC
AT = F−1

ÂT
(1− FξT (ξT ))

is estimated numerically

Examples:

1. Empirical cumulative distribution functions (CDFs) for each
payoff in the base case 1

2. Reshuffling of ÂT to A?T and AT

3. Order of ÂT , A? and AT vs ξT

4. Price of each payoff and the efficiency loss

1
K = 100, S0 = 100, r = 6%, µS = 12%, µI = 10%, σS = 30%, σI = 20%, ρ = 0.75, qS = 2%,

qI = 3%, T = 1



Numerical Results
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Figure: Comparison of the CDFs of AT , A?
T and ÂT .



Numerical Results
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Numerical Results
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Numerical Results
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Figure: Plot of outcomes of ÂT vs ξT



Numerical Results

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

ξT

A
⋆ T

Plot of A⋆
T vs ξT

Figure: Plot of outcomes of A?
T vs ξT



Numerical Results
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Numerical Results

Case
AT A?T ÂT

VT V ?
T Eff Loss V̂T Eff Loss

Base Case 3.26 4.34 33% 4.36 34%
r = 4% 2.96 4.37 48% 4.40 49%
µS = 8% 3.97 4.35 10% 4.36 10%
µI = 13% 3.26 4.34 33% 4.36 34%
σS = 35% 3.97 5.04 27% 5.07 28%
σI = 15% 3.27 4.34 33% 4.36 33%
ρ = 0.9 2.28 2.86 25% 2.87 26%

qS = 1.5% 3.27 4.35 33% 4.37 34%
qI = 2% 3.25 4.34 33% 4.36 34%

Table: Prices and efficiency loss of A?
T and ÂT compared against AT

across different parameters.



Stochastic Interest Rates

Extension to a market with Vasicek short rate:

1. State price process expressed as a function of market variables

2. Pricing formula for the AIO



Summary

• Reviewed the use of averaging and indexing in the context of
executive compensation

• Constructed a strictly cheaper payoff with the same features
as the AIO using cost-efficiency

• Numerical examples that illustrate reshuffling of payoffs and
loss of efficiency

• Extension to the case of stochastic interest rates


