Pricing Weather Derivatives for Extreme Events

Rob Erhardt

University of North Carolina at Chapel Hill

46th Actuarial Research Conference, August 13, 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□ → ◆圖 → ◆画 → ◆画 → 一画

Source: NASA Earth Observatory

<ロト <回ト < 注ト < 注ト

ж

(日) (同) (日) (日)

Source: European Space Agency, July 29 2010

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Motivating Example: US Heatwave, July 2011

◆□ > ◆□ > ◆三 > ◆三 > ○ = ○ ○ ○ ○

Weather Derivatives

- 1. Weather index
- 2. Well-defined time period
- 3. Weather station used for reporting
- 4. Payment *L*(*m*; *s*, *t*), where *m* is weather value, and *s*, *t* are strike and limit values

Example: Loss is 1,000 per degree if maximum daily temperature in Phoenix, AZ exceeds 116 in the month of August

Three steps to procedure:

- 1. Model extremes of weather process
- 2. Monte Carlo weather simulations \rightarrow Monte Carlo simulated payments

3. Estimate risk-loaded premium as $\hat{P} = \hat{E}(L) + \lambda \cdot \widehat{var}(L)$

Generalize Extreme Value distribution

- Let *Y*₁, ..., *Y_n* be i.i.d. from *F*
- Define *M_n* = max(*Y*₁, ..., *Y_n*)

If there exist sequences of constants $a_n > 0$ and b_n such that

$$\lim_{n\to\infty}F\left(\frac{M_n-b_n}{a_n}\leq z\right)\to G(z)$$

for some non-degenerate distribution function G, then G is a member of the *Generalized Extreme Value* (GEV) family, and

$$G(z) = \exp\left[-\left(1+\xi \frac{z-\mu}{\sigma}\right)_{+}^{-1/\xi}\right]$$

Here $a_+ = \max(a, 0)$, and μ, σ , and ξ are the location, scale, and shape parameters, respectively

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Example: Maximum Summer Temperature in Phoenix, AZ

Example: Maximum Summer Temperature in Phoenix, AZ

Recall premium is $\hat{P} = \hat{E}(L) + \lambda \cdot \widehat{var}(L)$

Estimate moments using Monte Carlo simulation

$$\frac{1}{I}\sum_{i=1}^{I}L(m_i)^d \to E(L(M)^d) = \int L(m)^d g(m) \, dm \quad \text{ (almost surely)}$$

Example: Derivative pays $L = \max(1, 000(M - s), 0)$ for maximum temperature M in Phoenix, AZ

Threshold <i>s</i>	114	116	118	120	122	124
$\hat{E}(L)$	1,882.13	732.20	224.57	56.39	11.59	1.87
$\hat{E}(L^2) \cdot 10^{-3}$	7,336.56	2,369.34	627.82	137.98	24.45	3.26

For s = 116, $\hat{P} = 732.30 + 1,833,223.2 \cdot \lambda$

Extension to Spatial Extremes: Max-stable Processes

- Let Y(x) be a non-negative stationary process on X ⊆ ℝ^p such that E(Y(x)) = 1 at each x.
- Let Π be a Poisson process on \mathbb{R}_+ with intensity $s^{-2}ds$.

If $Y_i(x)$ are independent replicates of Y(x), then

$$Z(x) = \max s_i Y_i(x), \quad x \in X$$

is a stationary max-stable process with GEV margins.

"Rainfall-storms" interpretation: think of $Y_i(x)$ as the shape of the i^{th} storm, and s_i as the intensity.

Realization of a Max-stable Process

Figure: Extremal Gaussian process with Whittle-Matérn correlation with nugget=1, range=3, and smooth=1

Composite Likelihood

The joint likelihood function cannot be written in closed form for more than 2 locations. Substitute composite log-likelihood:

$$\mathcal{L}_{C} = \sum_{n=1}^{N} \sum_{j=1}^{J} \sum_{i=j+1}^{l} \log(f(x_{i,n}, x_{j,n}; \theta))$$

- Maximizing numerically yields $\hat{\theta}_{MCLE} = \operatorname{argmax}_{\theta} \mathcal{L}_C$
- $\hat{\theta}_{MCLE} \sim N(\theta, I(\theta)^{-1})$, where $I(\theta) = H(\theta)J^{-1}(\theta)H(\theta)$, $H(\theta) = E(-H(\mathcal{L}_{C}))$, $J(\theta) = var(D(\mathcal{L}_{C}))$

For a single derivative, risk load varies with variance

$$R(L) = \lambda \cdot \operatorname{var}(L)$$

For a K^{th} derivative, risk load varies with marginal variance

$$R(L_{\mathcal{K}}) = \lambda \left(\mathsf{var}(L_{\mathcal{K}}) + 2 \sum_{j=1}^{\mathcal{K}-1} \mathsf{a}_{j,\mathcal{K}} \cdot \mathsf{cov}(L_j, L_{\mathcal{K}}) \right)$$

where $a_{j,K}$ is chosen to fairly split covariance; one possibility is

$$a_{j,\kappa} = rac{E(L_{\kappa})}{E(L_j) + E(L_{\kappa})}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: Midwest Temperature Portfolio

Midwest Temperature Example Locations

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の < @

Example: Midwest Temperature Portfolio

Event	L_1	L_2	L ₃	$\sum_{j=1}^{3} L_j$	L_4	$\sum_{j=1}^{4} L_j$
1	0	0	0	0	0	0
2	0	757.76	0	757.76	0	757.76
3	0	0	0	0	0	0
4	1,000	964.02	0	1,964.02	444.94	2,408.96
100,000	0	0	0	0	0	0
Mean	221.75	96.751	11.892	330.393	55.271	385.664
Variance $(\cdot 10^{-3})$	172.58	99.89	6.35	381.38	46.95	561.98
$Cov(L_j, L_4)(\cdot 10^{-3})$	28.46	29.93	8.43	66.82		
$\hat{a}_{j,4}$	0.1995	0.3636	0.8229			

$$\hat{P}(L_4) = \hat{E}(L_4) + \lambda \left(\widehat{\text{var}}(L_4) + 2 \sum_{j=1}^{3} \hat{a}_{j,4} \cdot \widehat{\text{cov}}(L_j, L_4) \right) \\ = 55.271 + 93,944.73 \cdot \lambda$$

<□ > < @ > < E > < E > E のQ @

Conclusion

- Model targets extremes and incorporates spatial dependence
- Uses Monte Carlo simulations to obtain moments of payments L(m)
- Computes risk-loaded premiums
- Future research: Bayesian model fitting through approximate Bayesian computing, which incorporates parameter uncertainty into risk-loaded premiums

Thanks.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <