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Motivating Example: Russian Heatwave, July 2010

Source: NASA Earth Observatory



Motivating Example: Russian Heatwave, July 2010



Motivating Example: Russian Heatwave, July 2010

Source: European Space Agency, July 29 2010



Motivating Example: Russian Heatwave, July 2010



Motivating Example: US Heatwave, July 2011



Weather Derivatives

1. Weather index

2. Well-defined time period

3. Weather station used for reporting

4. Payment L(m; s, t), where m is weather value, and s, t are strike and limit
values

Example: Loss is $1,000 per degree if maximum daily temperature in Phoenix,
AZ exceeds 116 in the month of August

Three steps to procedure:

1. Model extremes of weather process

2. Monte Carlo weather simulations → Monte Carlo simulated payments

3. Estimate risk-loaded premium as P̂ = Ê(L) + λ · v̂ar(L)



Generalize Extreme Value distribution

• Let Y1, ...,Yn be i.i.d. from F

• Define Mn = max(Y1, ...,Yn)

If there exist sequences of constants an > 0 and bn such that

lim
n→∞

F

(
Mn − bn

an
≤ z

)
→ G(z)

for some non-degenerate distribution function G , then G is a member of the
Generalized Extreme Value (GEV) family, and

G(z) = exp

[
−
(

1 + ξ
z − µ
σ

)−1/ξ

+

]
Here a+ = max(a, 0), and µ, σ, and ξ are the location, scale, and shape
parameters, respectively



Example: Maximum Summer Temperature in Phoenix, AZ
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Example: Maximum Summer Temperature in Phoenix, AZ

Recall premium is P̂ = Ê(L) + λ · v̂ar(L)

Estimate moments using Monte Carlo simulation

1

I

I∑
i=1

L(mi )
d → E(L(M)d) =

∫
L(m)dg(m) dm (almost surely)

Example: Derivative pays L = max(1, 000(M − s), 0) for maximum temperature
M in Phoenix, AZ

Threshold s 114 116 118 120 122 124

Ê(L) 1,882.13 732.20 224.57 56.39 11.59 1.87

Ê(L2) · 10−3 7,336.56 2,369.34 627.82 137.98 24.45 3.26

For s = 116, P̂ = 732.30 + 1, 833, 223.2 · λ



Extension to Spatial Extremes: Max-stable Processes

• Let Y (x) be a non-negative stationary process on X ⊆ Rp such that
E(Y (x)) = 1 at each x .

• Let Π be a Poisson process on R+ with intensity s−2ds.

If Yi (x) are independent replicates of Y (x), then

Z(x) = max siYi (x), x ∈ X

is a stationary max-stable process with GEV margins.

“Rainfall-storms” interpretation: think of Yi (x) as the shape of the i th storm,
and si as the intensity.



Realization of a Max-stable Process

Figure: Extremal Gaussian process with Whittle-Matérn correlation with nugget=1,
range=3, and smooth=1

.



Composite Likelihood

The joint likelihood function cannot be written in closed form for more than 2
locations. Substitute composite log-likelihood:

LC =
N∑

n=1

J∑
j=1

I∑
i=j+1

log(f (xi,n, xj,n; θ))

• Maximizing numerically yields θ̂MCLE = argmaxθLC

• θ̂MCLE ∼ N(θ, I (θ)−1), where I (θ) = H(θ)J−1(θ)H(θ),
H(θ) = E(−H(LC )), J(θ) = var(D(LC ))



Example: Pricing a Portfolio of Weather Derivatives

For a single derivative, risk load varies with variance

R(L) = λ · var(L)

For a K th derivative, risk load varies with marginal variance

R(LK ) = λ

(
var(LK ) + 2

K−1∑
j=1

aj,K · cov(Lj , LK )

)

where aj,K is chosen to fairly split covariance; one possibility is

aj,K =
E(LK )

E(Lj) + E(LK )



Example: Midwest Temperature Portfolio
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Example: Midwest Temperature Portfolio

Event L1 L2 L3

∑3
j=1 Lj L4

∑4
j=1 Lj

1 0 0 0 0 0 0
2 0 757.76 0 757.76 0 757.76
3 0 0 0 0 0 0
4 1,000 964.02 0 1,964.02 444.94 2,408.96
... ... ... ... ... ... ...

100,000 0 0 0 0 0 0

Mean 221.75 96.751 11.892 330.393 55.271 385.664
Variance (·10−3) 172.58 99.89 6.35 381.38 46.95 561.98

Cov(Lj , L4)(·10−3) 28.46 29.93 8.43 66.82
âj,4 0.1995 0.3636 0.8229

P̂(L4) = Ê(L4) + λ

(
v̂ar(L4) + 2

3∑
j=1

âj,4 · ĉov(Lj , L4)

)
= 55.271 + 93, 944.73 · λ



Conclusion

• Model targets extremes and incorporates spatial dependence

• Uses Monte Carlo simulations to obtain moments of payments L(m)

• Computes risk-loaded premiums

• Future research: Bayesian model fitting through approximate Bayesian
computing, which incorporates parameter uncertainty into risk-loaded
premiums

Thanks.


