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Motivating Example: Russian Heatwave, July 2010

Land Surface Temperature Anomaly (" C)
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Source: NASA Earth Observatory



Motivating Example: Russian Heatwave, July 2010




Motivating Example: Russian Heatwave, July 2010

Source: European Space Agency, July 29 2010



Motivating Example: Russian Heatwave, July 2010
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Motivating Example: US Heatwave, July 2011

High Temperature July 18
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Weather Derivatives

Weather index
Well-defined time period

Weather station used for reporting

sl S .

Payment L(m; s, t), where m is weather value, and s, t are strike and limit
values

Example: Loss is $1,000 per degree if maximum daily temperature in Phoenix,
AZ exceeds 116 in the month of August

Three steps to procedure:
1. Model extremes of weather process
2. Monte Carlo weather simulations — Monte Carlo simulated payments
3. Estimate risk-loaded premium as P = E(L) + X - var(L)



Generalize Extreme Value distribution

o Let Y1,..., Y, bei.id. from F
o Define M, = max(Yi, ..., Ya)
If there exist sequences of constants a, > 0 and b, such that

lim F (@ < z) — G(z)

n—oo

for some non-degenerate distribution function G, then G is a member of the
Generalized Extreme Value (GEV) family, and

G(z) = exp {, (1 +eZ u);l/s}

g

Here a; = max(a,0), and p, 0, and & are the location, scale, and shape
parameters, respectively



Model

Return Level

Example: Maximum Summer Temperature in Phoenix,

Probability Plot

AZ
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0
- N o Z
—
@
@
©
7 2
=3
<
S 5
< |
© = T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 110 112 114 116 118 120
Empirical Model

Return Level Plot

Model for 2011 Maximum Temperature

o
]
B

T T
20 5.0 20.0
Return Period

i T T
02 05 100.0

0.00 0.05 0.10 0.15

T T T
115 120 125

Temperature



Example: Maximum Summer Temperature in Phoenix, AZ

Recall premium is P = E(L) + \ - var(L)
Estimate moments using Monte Carlo simulation

%Z L(m)® — E(L(M)®) = /L(m)dg(m) dm  (almost surely)

Example: Derivative pays L = max(1,000(M — s),0) for maximum temperature
M in Phoenix, AZ

Threshold s || 114 116 118 120 122 124
E(L) 1,882.13 73220 22457 5639 1159 1.87
E(1*)-107% || 7,336.56 2,369.34 627.82 137.98 24.45 3.26

For s = 116, P = 732.30 4 1,833,223.2 - A



Extension to Spatial Extremes: Max-stable Processes

e Let Y(x) be a non-negative stationary process on X C R” such that
E(Y(x)) =1 at each x.

e Let I be a Poisson process on Ry with intensity s~2ds.

If Yi(x) are independent replicates of Y(x), then
Z(x) = maxs;iYi(x), x€X
is a stationary max-stable process with GEV margins.

“Rainfall-storms” interpretation: think of Y;(x) as the shape of the i*" storm,
and s; as the intensity.



Realization of a Max-stable Process

range=3, and smooth=1

Figure: Extremal Gaussian process with Whittle-Matérn correlation with nugget=1,
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Composite Likelihood

The joint likelihood function cannot be written in closed form for more than 2
locations. Substitute composite log-likelihood:

L= > log(f(xin %.ni 0))

n=1 j=1 i=j+1

e Maximizing numerically yields OycLe = argmaxyLc

o Oucie ~ N(O, 1(6)™1), where 1(0) = H(0)J~1(0)H(6),
H(8) = E(—H(Lc¢)), J(8) = var(D(Lc))



Example: Pricing a Portfolio of Weather Derivatives

For a single derivative, risk load varies with variance
R(L) = X -var(L)

For a K derivative, risk load varies with marginal variance

R(Lk) = A (var(LK) +2 z_: aj Kk - cov(Lj, LK))

j=t
where aj i is chosen to fairly split covariance; one possibility is

E(Lk)

WK = E(L) + E(Lk)



Latitude (degrees)
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Example: Midwest Temperature Portfolio

Midwest Temperature Example Locations

-104 -102 -100 -98 -96 -94  -92
Longitude (degrees)



Example: Midwest Temperature Portfolio

Event Ly Ly Ls Sl Ly Sl
1 0 0 0 0 0 0
2 0 757.76 0 757.76 0 757.76
3 0 0 0 0 0 0
4 1,000  964.02 0 1,964.02 444.94 2,408.96
100,000 0 0 0 0 0 0
Mean 221.75 96.751 11.892 330.393 55271 385.664

Variance (-107%) | 17258 99.89  6.35  381.38 4695  561.98
Cov(Lj,Ls)(-107%) || 28.46 2093 843  66.82
5.4 01995 0.3636 0.8229

3

(L) = E(L4)+A<@(L4)+2Zsﬁ4.@(g,u)>

Jj=1

o

— 55.271+93,944.73- \



Conclusion

Model targets extremes and incorporates spatial dependence
Uses Monte Carlo simulations to obtain moments of payments L(m)

Computes risk-loaded premiums

Future research: Bayesian model fitting through approximate Bayesian
computing, which incorporates parameter uncertainty into risk-loaded
premiums

Thanks.



