Coherent Distortion Risk Measures in Portfolio Selection (Joint work with Dr Ken Seng Tan)

Ming Bin Feng

University of Waterloo

The 46th Actuarial Research Conference

Abstract

The theme of this presentation relates to solving portfolio selection problems using linear and fractional programming. Two key contributions:

- Generalization of the CVaR linear optimization framework (see Rockafellar and Uryasev [3, 4]).
- Equivalences among four formulations of CDRM optimization problems.

Motivations Goals

Outline

2 CDRM Optimization

3 Case Studies

4 Conclusions and Future Directions

イロト イポト イヨト イヨト

ъ

Motivations

- Practical portfolio selection problems
- Good risk measures
- Well-studied programming models

Question

Can we connect this together? We want to solve practical portfolio optimization problems with sophisticated risk measures using a programming model that can be solved efficiently.

Motivations

イロト イポト イヨト イヨト

æ

Motivations Goals

We wish to ..

- Incorporate a general class of risk measure into a well-studied programming model
- Study equivalences among different formulations of portfolio selection problems
- Solve portfolio selection problems of interest efficiently

æ

CVaR Optimization CDRM Representation Theorem CDRM Optimization Formulation Equivalences

э

- ∢ ⊒ →

< < >> < <</>

Outline

ntroduction

CDRM Optimization

- CVaR Optimization
- CDRM Representation Theorem
- CDRM Optimization
- Formulation Equivalences

3 Case Studies

CVaR Optimization CDRM Representation Theorem CDRM Optimization Formulation Equivalences

Scenario Generation

Loss Matrix

$$\begin{array}{cccc} p_1 & \rightarrow & \\ p_2 & \rightarrow & \\ \vdots & \vdots & \\ p_m & \rightarrow & \end{array} \mathbf{L} = \begin{bmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{21} & L_{22} & \cdots & L_{2n} \\ \vdots & \cdots & \ddots & \vdots \\ L_{m1} & L_{m2} & \cdots & L_{mn} \end{bmatrix} \begin{array}{c} \rightarrow & l_1 = l(\mathbf{x}, p_1) \\ \rightarrow & l_2 = l(\mathbf{x}, p_2) \\ \vdots & \vdots \\ \rightarrow & l_m = l(\mathbf{x}, p_m) \end{array}$$

Let $l_{(1)} \leq \cdots \leq l_{(m)}$ be the ordered losses, $p_{(i)}$, $i = 1, \cdots, m$ be the corresponding probability masses.

Return/Price/Premium/Profit Vector

$$\boldsymbol{c} = [\boldsymbol{c}_1, \cdots, \boldsymbol{c}_m]'$$

Ming Bin Feng

7/ 37

ヘロト 人間 とくほ とくほう

CVaR Optimization CDRM Representation Theorem CDRM Optimization Formulation Equivalences

イロト イポト イヨト イヨト

ъ

CVaR Optimization

Background

Consider the special function

$$F(\boldsymbol{x},\zeta) = \zeta + \frac{1}{1-\alpha} \sum_{j=1}^{m} p_j (l_j - \zeta)^+$$

Rockafellar and Uryasev [3, 4] showed that

•
$$CVaR_{\alpha}(\mathbf{x}) = \min_{\zeta \in \mathbb{R}} F(\mathbf{x}, \zeta)$$

$$2 \min_{\boldsymbol{x} \in \boldsymbol{X}} CVaR_{\alpha}(\boldsymbol{x}) = \min_{(\boldsymbol{x},\zeta) \in \boldsymbol{X} \times \mathbb{R}} F(\boldsymbol{x},\zeta)$$

CVaR Optimization CDRM Representation Theorem CDRM Optimization Formulation Equivalences

イロト イポト イヨト イヨト

CVaR Optimization

CVaR portfolio selection problems can be formulated as LPs. Suppose X is the set of all feasible portfolios.

CVaR minimization subject to a return constraint

minimize
$$\zeta + \frac{1}{1-\alpha} \sum_{j=1}^{m} p_j z_j$$

subject to $c' \mathbf{x} \ge \mu$
 $l(\mathbf{x}, p_j) - \zeta \le z_j \qquad j = 1, \cdots, m$
 $0 \le z_j \qquad j = 1, \cdots, m$
 $(\mathbf{x}, \zeta) \in \mathbf{X} \times \mathbb{R}$

CVaR Optimization CDRM Representation Theorem CDRM Optimization Formulation Equivalences

イロン 不得 とくほ とくほとう

3

CVaR Optimization

Return maximization subject to CVaR constraint(s)

CVaR Optimization CDRM Representation Theorem CDRM Optimization Formulation Equivalences

Definition and Representation Theorem

Two Equivalent Definitions

A risk measure $\rho(\mathbf{x})$ is a CDRM if it is

- A comonotone law-invariant coherent risk measure
- A distortion risk measure with a concave distortion function

Representation Theorem for CDRM

A risk measure $\rho(\mathbf{x})$ is a CDRM if and only if there exists a function $w : [0, 1] \mapsto [0, 1]$, satisfying $\int_{\alpha=0}^{1} w_{\alpha} d\alpha = 1$, such that

$$\rho(\boldsymbol{x}) = \int_{\alpha=0}^{1} C VaR_{\alpha}(\boldsymbol{x}) w_{\alpha} d\alpha$$

CVaR Optimization **CDRM Representation Theorem** CDRM Optimization Formulation Equivalences

イロト イポト イヨト イヨト

э

Representation Theorem in Discrete Case

Finite Generation Theorem for CDRM

Given a concave distortion function g, $\rho(\mathbf{x}) = \sum_{i=1}^{m} q_i l_{(i)}$, moreover

$$\rho(\mathbf{x}) = \sum_{i=1}^{m} w_i CVaR_{\frac{i-1}{m}}(\mathbf{x}), \text{ where}$$

$$w_i = \begin{cases} \frac{q_1}{p_{(1)}} & \text{if } i = 1\\ (q_i - \frac{p_{(i)}}{p_{(i-1)}}q_{i-1})\frac{\sum_{j=i}^{m} p_{(j)}}{p_{(i)}} & \text{if } i = 2, \cdots, m \end{cases}$$

CVaR Optimization CDRM Representation Theorem CDRM Optimization Formulation Equivalences

イロン 不得 とくほ とくほとう

3

CDRM Optimization

CDRM minimization subject to a return constraint

CVaR Optimization CDRM Representation Theorem CDRM Optimization Formulation Equivalences

イロト イポト イヨト イヨト

3

CDRM Optimization

Return maximization subject to one CDRM constraint

maximize	<i>c' x</i>			
subject to	$\sum_{i=1}^{m} w_i(\zeta_i + \frac{1}{1-\alpha} \sum_{i=1}^{m} p_j z_{ij})$	\leq	η	
	$I(\mathbf{x}, \mathbf{p}_j) - \zeta_i$	\leq	Z _{ij}	$\forall i, j$
		\leq	.,	$\forall i, j$
	$(\pmb{x}, \pmb{\zeta})$	\in	$X \times \mathbb{R}^m$	

CVaR Optimization CDRM Representation Theorem CDRM Optimization Formulation Equivalences

イロト イポト イヨト イヨト

CDRM Optimization

Return-CDRM utility maximization

$$\begin{array}{rll} \text{maximize} \quad \boldsymbol{C}' \boldsymbol{x} - \tau \sum_{i=1}^{m} \boldsymbol{w}_i (\zeta_i + \frac{1}{1-\alpha} \sum_{j=1}^{m} \boldsymbol{p}_j \boldsymbol{Z}_{ij}) \\ \text{subject to} \quad \boldsymbol{I}(\boldsymbol{x}, \boldsymbol{p}_j) - \zeta_i &\leq \boldsymbol{Z}_{ij} & \forall i, j \\ \boldsymbol{0} &\leq \boldsymbol{Z}_{ij} & \forall i, j \\ \boldsymbol{(x}, \boldsymbol{\zeta}) &\in \boldsymbol{X} \times \mathbb{R}^m \end{array}$$

This formulation is very similar to a return maximization problem with m CVaR constraints. Yet we converted m CVaR constraints into the objective function.

CVaR Optimization CDRM Representation Theorem CDRM Optimization Formulation Equivalences

イロト イポト イヨト イヨト

CDRM Optimization

CDRM-based Sharpe ratio maximization

maximize	$\frac{\boldsymbol{c}'\boldsymbol{x}-\nu}{\sum\limits_{i=1}^{m} w_i(\zeta_i+\frac{1}{1-\alpha}\sum\limits_{j=1}^{m} p_j z_{ij})}$			
subject to	$I(\boldsymbol{x}, \boldsymbol{p}_j) - \zeta_i$			$\forall i, j$
		\leq		∀ <i>i</i> , <i>j</i>
	$(\pmb{x}, \pmb{\zeta})$	\in	$X \times \mathbb{R}^m$	

This is an LFP, but we can solve it by solving at most two related LPs using a variable transformation method studied by Charnes and Cooper [1].

CVaR Optimization CDRM Representation Theorem CDRM Optimization Formulation Equivalences

Formulation Equivalences

Equivalences among four formulations, part 1

Problem	Max-Return	Min-CDRM
Preset Parameter	η	μ
Implied Parameters		
$\eta =$	N/A	$ ho({oldsymbol{x}}^*)$
$\mu =$	C' X*	N/A
$\tau =$	<i>u</i> ¹	$\frac{1}{u^2}$
$\nu =$	$c'x^* - u^1 ho(x^*)$	$R(x^*) - \frac{1}{u^2}\rho(\mathbf{x}^*)$

If the return and CDRM constraints are binding at respective optimal solutions, the preset parameter for Max-Return equals to the implied parameter for Min-CDRM and vice versa.

CVaR Optimization CDRM Representation Theorem CDRM Optimization Formulation Equivalences

ヘロト ヘワト ヘビト ヘビト

э

Formulation Equivalences

Equivalences among four formulations, part 1

Problem	Max-Utility	Max-Sharpe
Preset Parameter	au	ν
Implied Parameters		
$\eta =$	$ ho({oldsymbol{x}}^*)$	$ ho({oldsymbol{x}}^*)$
$\mu =$	<i>C'X</i> *	C'X *
$\tau =$	N/A	$rac{oldsymbol{c}'oldsymbol{x}^*- u}{ ho(oldsymbol{x}^*)}$
$\nu =$	$\boldsymbol{c}^{\prime} \boldsymbol{x}^{*} - au ho(\boldsymbol{x}^{*})$	N/A

We will see that the preset parameter for Max-Return equals to the implied parameter for Min-CDRM and vice versa.

Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data

< ロ > < 同 > < 三 >

Outline

- 3 Case Studies
 - Case 1: Reinsurance portfolio selection with simulated data
 - Case 2: Investment portfolio selection with historical data

Case Study 1: Constructing Reinsurance Portfolios

We wish to construct profit- $CVaR_{0.95}(L)$ efficient portfolios from the following 10 risk contracts. Simulations are done for 10,000 scenarios.

Contract	Premium		Lo	sses	
Contract	Fremum	Mean	STD	95%VaR	95%CVaR
1	554271	311388	1377843	2613161	5885442
2	364272	222117	1172497	588329	4338214
3	91763	55953	739026	0	1119065
4	867176	437968	1806626	3845685	7937610
5	798005	438464	2913258	0	8769284
6	107585	43381	263019	0	867624
7	878525	375438	1375166	3160679	5974087
8	3081188	1283828	2199151	5661191	8442634
9	65162	29352	324061	0	587044
10	885897	385173	1047454	1506500	3693435

Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data

Case Study 1: Constructing Reinsurance Portfolios

Balanced portfolio consisting of 0.1 unit of each risk.

Summary of balanced portfolio

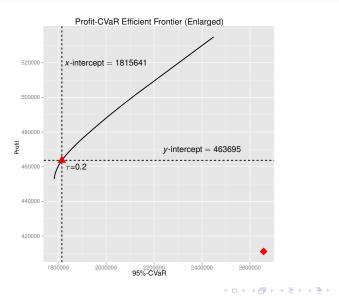
Premium		L	osses		Expected
	Mean	STD	95%VaR	95%CVaR	Profit
769384	358306	667647	1716458	2656764	40578

Profit-95%CVaR utility maximization with $\tau = 0.2$

Summary of target portfolio							
Premium Losses Expecte							
1 Ternium	Mean	STD	95%VaR	95%CVaR	Profit		
769384	305689	492425	1313074	1815641	463695		

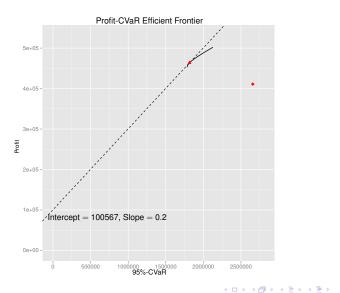
Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data

æ



Ming Bin Feng 2

Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data



Ming Bin Feng 23

Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data

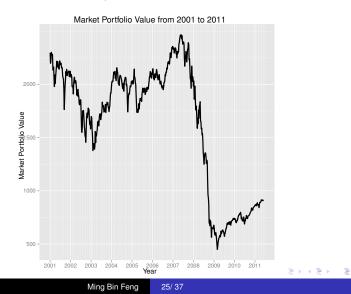
.⊒...>

Data decriptions

- 2 stocks from each of the 10 sectors defined in Global Industry Classification Standard(GICS).
- Weekly prices from Jan-02-2001 to May-31-2011
- Adjusted closing prices obtained from *finance.yahoo.com*

Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data

Sum of these 20 stocks' prices can be viewed as the "market"



Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data

イロト イ理ト イヨト イヨト

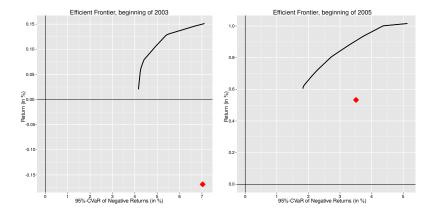
Optimization Settings

- Replace scenario generation by historical data
- Constant "sample" size of 100.
- c = expected sample returns, L = negative returns matrix.
- Weekly rebalancing via CDRM-minimization.
- $x \ge 0$, $x \le 0.2$, budget constraint, and return constraint.

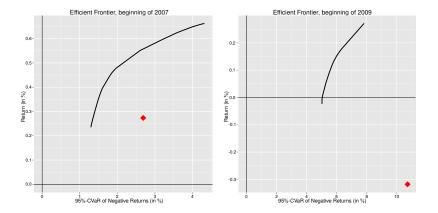
Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data

・ロト ・聞ト ・ヨト ・ヨト

æ



Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data



Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data

イロト イポト イヨト イヨト

Portfolio Selection over Different CDRMs

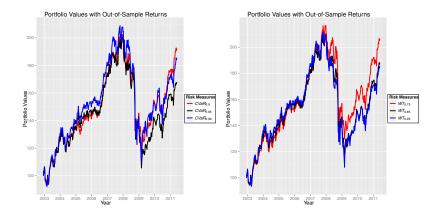
Well-known CDRMs

- $CVaR_{\alpha}$ distortion: $g_{CVaR}(x, \alpha) = \min\{\frac{x}{1-\alpha}, 1\}$
- Wang Transform(WT) distortion: $g_{WT}(x,\beta) = \Phi[\Phi^{-1}(x) - \Phi^{-1}(\beta)]$
- Proportional hazard(PH) distortion:
 g_{PH}(x, γ) = x^γ with γ ∈ (0, 1]
- Lookback(LB) distortion: $g_{LB}(x, \delta) = x^{\delta}(1 - \delta \ln x)$ with $\delta \in (0, 1]$

Case 2: Investment portfolio selection with historical data

イロト イポト イヨト イヨト

æ



Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data

イロト 不得 とくほ とくほとう

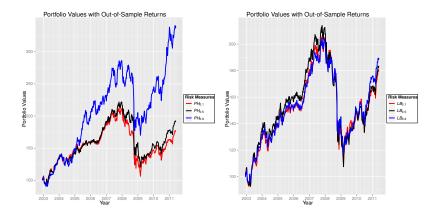
ъ

Summary statistics of optimal out-of-sample returns

	Mean	STD	Skew	Kurt	Sharpe
CVaR _{0.9}	0.00148	0.01891	-0.93697	6.08202	0.07833
<i>CVaR</i> _{0.95}	0.00117	0.02050	-0.56738	4.96513	0.05718
<i>CVaR</i> _{0.99}	0.00139	0.02243	-0.20805	4.47107	0.06219
<i>WT</i> _{0.75}	0.00164	0.01919	-1.00243	7.06069	0.08560
WT _{0.85}	0.00261	0.01915	-0.77534	5.88635	0.07477
WT _{0.95}	0.00232	0.02107	-0.30517	5.46812	0.06628

Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data

æ



Ming Bin Feng 32

Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data

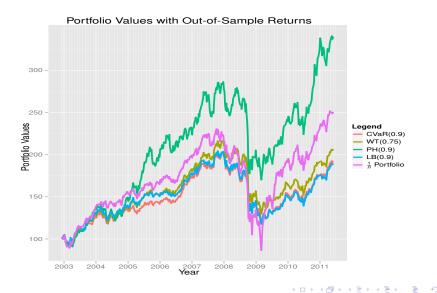
イロト 不得 とくほ とくほとう

ъ

Summary statistics of optimal out-of-sample returns

	Mean	STD	Skew	Kurt	Sharpe
<i>PH</i> _{0.1}	0.00130	0.02218	-0.26156	5.14293	0.05844
<i>PH</i> _{0.5}	0.00148	0.02091	-0.83421	8.50931	0.07091
<i>PH</i> _{0.9}	0.00277	0.02622	-0.95739	6.78000	0.10574
<i>LB</i> _{0.1}	0.00134	0.02230	-0.22880	4.59996	0.05995
<i>LB</i> _{0.5}	0.00137	0.02130	-0.34008	5.15387	0.06439
<i>LB</i> _{0.9}	0.00145	0.01893	-0.80400	6.04230	0.07645

Case 2: Investment portfolio selection with historical data



Ming Bin Feng

Case 1: Reinsurance portfolio selection with simulated data Case 2: Investment portfolio selection with historical data

イロン 不同 とくほ とくほ とう

3

Summary statistics of optimal out-of-sample returns

	Mean	STD	Skew	Kurt	Sharpe
$\frac{1}{n}$ -portfolio	0.00208	0.03038	0.25175	13.73943	0.06845
CVaR _{0.9}	0.00148	0.01891	-0.93697	6.08202	0.07833
WT _{0.75}	0.00164	0.01919	-1.00243	7.06069	0.08560
PH _{0.9}	0.00277	0.02622	-0.95739	6.78000	0.10574
<i>LB</i> _{0.9}	0.00145	0.01893	-0.80400	6.04230	0.07645

Concluding remarks Future Directions

イロト イポト イヨト イヨト

ъ

Outline

3 Case Studies

Concluding remarks Future Directions

イロト イポト イヨト イヨト

Linear optimization for CDRM portfolio selection

- CDRM portfolio optimization with LPS and LFPs
- CDRM includes CVaR, WT, PH, and LB
- Choose CDRM that suits specific risk appetites
- Four different CDRM formulations are equivalent
- Equivalences are helpful for interpretation of parameters, verification of consistencies, and estimation of implied information

Concluding remarks Future Directions

イロト イポト イヨト イヨト

Empirical results

- Simple portfolio construction rules can be very inefficient, active management is important.
- Despite the inefficiency of the $\frac{1}{n}$ -portfolio, its terminal wealth (based on out-of sample returns) can be high
- We have found CDRM efficient portfolios with higher Sharpe ratio than the $\frac{1}{n}$ -portfolio's

Concluding remarks Future Directions

Future Directions

- Apply various decomposition methods to solve CDRM problems more efficiently
- Apply stochastic programming techniques to solve CDRm problems
- Apply CDRM approach in multi-period models
- Explore/identify other members of CDRM (Higher moment coherent risk measure)

ヘロト 人間 ト ヘヨト ヘヨト

Concluding remarks Future Directions

イロト イポト イヨト イヨト

References I

- A. Charnes and W.W. Cooper.
 Programming with linear fractional functionals.
 Naval Research Logistics Quarterly, 9(3-4):181–186, 1962.
- P.A. Krokhmal, J. Palmquist, and S. Uryasev. Portfolio optimization with conditional value-at-risk objective and constraints.

Journal of Risk, 4:43-68, 2002.

R.T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. *Journal of risk*, 2:21–42, 2000.

Concluding remarks Future Directions

イロト イポト イヨト イヨト

æ

References II

R.T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7):1443–1471, 2002.