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Abstract

The theme of this presentation relates to solving portfolio
selection problems using linear and fractional programming.
Two key contributions:

Generalization of the CVaR linear optimization framework
(see Rockafellar and Uryasev [3, 4]).
Equivalences among four formulations of CDRM
optimization problems.
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Motivations

Practical portfolio selection problems
Good risk measures
Well-studied programming models

Question
Can we connect this together? We want to solve practical
portfolio optimization problems with sophisticated risk
measures using a programming model that can be solved
efficiently.
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We wish to..

Incorporate a general class of risk measure into a
well-studied programming model
Study equivalences among different formulations of
portfolio selection problems
Solve portfolio selection problems of interest efficiently
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Scenario Generation

Loss Matrix

p1 →
p2 →
...

...
pm →

L =


L11 L12 · · · L1n
L21 L22 · · · L2n

... · · · . . .
...

Lm1 Lm2 · · · Lmn


→ l1 = l(x ,p1)
→ l2 = l(x ,p2)
...

...
→ lm = l(x ,pm)

Let l(1) ≤ · · · ≤ l(m) be the ordered losses, p(i), i = 1, · · · ,m be
the corresponding probability masses.

Return/Price/Premium/Profit Vector

c = [c1, · · · , cm]′
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CVaR Optimization

Background

Consider the special function

F (x , ζ) = ζ +
1

1− α

m∑
j=1

pj(lj − ζ)+

Rockafellar and Uryasev [3, 4] showed that

1 CVaRα(x) = minζ∈R F (x , ζ)

2 minx∈X CVaRα(x) = min(x ,ζ)∈X×R F (x , ζ)
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CVaR Optimization

CVaR portfolio selection problems can be formulated as LPs.
Suppose X is the set of all feasible portfolios.

CVaR minimization subject to a return constraint

minimize ζ + 1
1−α

m∑
j=1

pjzj

subject to c′x ≥ µ
l(x ,pj)− ζ ≤ zj j = 1, · · · ,m

0 ≤ zj j = 1, · · · ,m
(x , ζ) ∈ X × R
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CVaR Optimization

Return maximization subject to CVaR constraint(s)

maximize c′x

subject to ζi + 1
1−α

m∑
j=1

pjzij ≤ ηi i = 1, · · · , k

l(x ,pj)− ζi ≤ zij ∀i , j
0 ≤ zij ∀i , j

(x , ζ) ∈ X × Rk
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Definition and Representation Theorem

Two Equivalent Definitions

A risk measure ρ(x) is a CDRM if it is
A comonotone law-invariant coherent risk measure
A distortion risk measure with a concave distortion function

Representation Theorem for CDRM

A risk measure ρ(x) is a CDRM if and only if there exists a

function w : [0,1] 7→ [0,1], satisfying
1∫

α=0
wαdα = 1, such that

ρ(x) =

1∫
α=0

CVaRα(x)wαdα
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Representation Theorem in Discrete Case

Finite Generation Theorem for CDRM

Given a concave distortion function g, ρ(x) =
m∑

i=1
qi l(i),

moreover

ρ(x) =
m∑

i=1

wiCVaR i−1
m

(x), where

wi =


q1

p(1)
if i = 1

(qi −
p(i)

p(i−1)
qi−1)

m∑
j=i

p(j)

p(i)
if i = 2, · · · ,m
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CDRM Optimization

CDRM minimization subject to a return constraint

minimize
m∑

i=1
wi(ζi + 1

1−α

m∑
j=1

pjzij)

subject to c′x ≥ µ
l(x ,pj)− ζi ≤ zij ∀i , j

0 ≤ zij ∀i , j
(x , ζ) ∈ X × Rm
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CDRM Optimization

Return maximization subject to one CDRM constraint

maximize c′x

subject to
m∑

i=1
wi(ζi + 1

1−α

m∑
j=1

pjzij) ≤ η

l(x ,pj)− ζi ≤ zij ∀i , j
0 ≤ zij ∀i , j

(x , ζ) ∈ X × Rm
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CDRM Optimization

Return-CDRM utility maximization

maximize c′x − τ
m∑

i=1
wi(ζi + 1

1−α

m∑
j=1

pjzij)

subject to l(x ,pj)− ζi ≤ zij ∀i , j
0 ≤ zij ∀i , j

(x , ζ) ∈ X × Rm

This formulation is very similar to a return maximization
problem with m CVaR constraints. Yet we converted m CVaR
constraints into the objective function.
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CDRM Optimization

CDRM-based Sharpe ratio maximization

maximize c′x−ν
m∑

i=1
wi (ζi+

1
1−α

m∑
j=1

pj zij )

subject to l(x ,pj)− ζi ≤ zij ∀i , j
0 ≤ zij ∀i , j

(x , ζ) ∈ X × Rm

This is an LFP, but we can solve it by solving at most two
related LPs using a variable transformation method studied by
Charnes and Cooper [1].
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Formulation Equivalences

Equivalences among four formulations, part 1

Problem Max-Return Min-CDRM
Preset
Parameter

η µ

Implied
Parameters
η = N/A ρ(x∗)
µ = c′x∗ N/A
τ = u1 1

u2

ν = c′x∗ − u1ρ(x∗) R(x∗)− 1
u2 ρ(x∗)

If the return and CDRM constraints are binding at respective
optimal solutions, the preset parameter for Max-Return equals
to the implied parameter for Min-CDRM and vice versa.
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Formulation Equivalences

Equivalences among four formulations, part 1

Problem Max-Utility Max-Sharpe
Preset
Parameter

τ ν

Implied
Parameters
η = ρ(x∗) ρ(x∗)
µ = c′x∗ c′x∗

τ = N/A c′x∗−ν
ρ(x∗)

ν = c′x∗ − τρ(x∗) N/A

We will see that the preset parameter for Max-Return equals to
the implied parameter for Min-CDRM and vice versa.
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Case Study 1: Constructing Reinsurance Portfolios

We wish to construct profit-CVaR0.95(L) efficient portfolios from
the following 10 risk contracts. Simulations are done for 10,000
scenarios.

Contract Premium Losses
Mean STD 95%VaR 95%CVaR

1 554271 311388 1377843 2613161 5885442
2 364272 222117 1172497 588329 4338214
3 91763 55953 739026 0 1119065
4 867176 437968 1806626 3845685 7937610
5 798005 438464 2913258 0 8769284
6 107585 43381 263019 0 867624
7 878525 375438 1375166 3160679 5974087
8 3081188 1283828 2199151 5661191 8442634
9 65162 29352 324061 0 587044

10 885897 385173 1047454 1506500 3693435
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Case Study 1: Constructing Reinsurance Portfolios

Balanced portfolio consisting of 0.1 unit of each risk.

Summary of balanced portfolio

Premium Losses Expected
ProfitMean STD 95%VaR 95%CVaR

769384 358306 667647 1716458 2656764 40578

Profit-95%CVaR utility maximization with τ = 0.2

Summary of target portfolio

Premium Losses Expected
ProfitMean STD 95%VaR 95%CVaR

769384 305689 492425 1313074 1815641 463695
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Profit-CVaR Efficient Frontier (Enlarged)
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Profit-CVaR Efficient Frontier
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Case 1: Reinsurance portfolio selection with simulated data
Case 2: Investment portfolio selection with historical data

Data decriptions

2 stocks from each of the 10 sectors defined in Global
Industry Classification Standard(GICS).
Weekly prices from Jan-02-2001 to May-31-2011
Adjusted closing prices obtained from finance.yahoo.com
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Sum of these 20 stocks’ prices can be viewed as the “market”

Market Portfolio Value from 2001 to 2011

Year

M
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tfo

lio
Va

lu
e

500

1000

1500

2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
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Case 1: Reinsurance portfolio selection with simulated data
Case 2: Investment portfolio selection with historical data

Optimization Settings

Replace scenario generation by historical data
Constant “sample” size of 100.
c = expected sample returns, L = negative returns matrix.
Weekly rebalancing via CDRM-minimization.
x ≥ 0, x ≤ 0.2, budget constraint, and return constraint.
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Case 1: Reinsurance portfolio selection with simulated data
Case 2: Investment portfolio selection with historical data

Efficient Frontier, beginning of 2003
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Case 1: Reinsurance portfolio selection with simulated data
Case 2: Investment portfolio selection with historical data

Efficient Frontier, beginning of 2007
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Case 1: Reinsurance portfolio selection with simulated data
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Portfolio Selection over Different CDRMs

Well-known CDRMs
CVaRα distortion:
gCVaR(x , α) = min{ x

1−α ,1}
Wang Transform(WT) distortion:
gWT (x , β) = Φ[Φ−1(x)− Φ−1(β)]

Proportional hazard(PH) distortion:
gPH(x , γ) = xγ with γ ∈ (0,1]

Lookback(LB) distortion:
gLB(x , δ) = xδ(1− δ ln x) with δ ∈ (0,1]
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Case 2: Investment portfolio selection with historical data

Portfolio Values with Out-of-Sample Returns
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Case 1: Reinsurance portfolio selection with simulated data
Case 2: Investment portfolio selection with historical data

Summary statistics of optimal out-of-sample returns

Mean STD Skew Kurt Sharpe
CVaR0.9 0.00148 0.01891 -0.93697 6.08202 0.07833
CVaR0.95 0.00117 0.02050 -0.56738 4.96513 0.05718
CVaR0.99 0.00139 0.02243 -0.20805 4.47107 0.06219
WT0.75 0.00164 0.01919 -1.00243 7.06069 0.08560
WT0.85 0.00261 0.01915 -0.77534 5.88635 0.07477
WT0.95 0.00232 0.02107 -0.30517 5.46812 0.06628
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Case 1: Reinsurance portfolio selection with simulated data
Case 2: Investment portfolio selection with historical data

Portfolio Values with Out-of-Sample Returns
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Case 1: Reinsurance portfolio selection with simulated data
Case 2: Investment portfolio selection with historical data

Summary statistics of optimal out-of-sample returns

Mean STD Skew Kurt Sharpe
PH0.1 0.00130 0.02218 -0.26156 5.14293 0.05844
PH0.5 0.00148 0.02091 -0.83421 8.50931 0.07091
PH0.9 0.00277 0.02622 -0.95739 6.78000 0.10574
LB0.1 0.00134 0.02230 -0.22880 4.59996 0.05995
LB0.5 0.00137 0.02130 -0.34008 5.15387 0.06439
LB0.9 0.00145 0.01893 -0.80400 6.04230 0.07645
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Case 1: Reinsurance portfolio selection with simulated data
Case 2: Investment portfolio selection with historical data

Portfolio Values with Out-of-Sample Returns
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Case 1: Reinsurance portfolio selection with simulated data
Case 2: Investment portfolio selection with historical data

Summary statistics of optimal out-of-sample returns

Mean STD Skew Kurt Sharpe
1
n -portfolio 0.00208 0.03038 0.25175 13.73943 0.06845
CVaR0.9 0.00148 0.01891 -0.93697 6.08202 0.07833
WT0.75 0.00164 0.01919 -1.00243 7.06069 0.08560
PH0.9 0.00277 0.02622 -0.95739 6.78000 0.10574
LB0.9 0.00145 0.01893 -0.80400 6.04230 0.07645
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Linear optimization for CDRM portfolio selection

CDRM portfolio optimization with LPS and LFPs
CDRM includes CVaR, WT, PH, and LB
Choose CDRM that suits specific risk appetites
Four different CDRM formulations are equivalent
Equivalences are helpful for interpretation of parameters,
verification of consistencies, and estimation of implied
information
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Empirical results

Simple portfolio construction rules can be very inefficient,
active management is important.
Despite the inefficiency of the 1

n -portfolio, its terminal
wealth (based on out-of sample returns) can be high
We have found CDRM efficient portfolios with higher
Sharpe ratio than the 1

n -portfolio’s
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Future Directions

Apply various decomposition methods to solve CDRM
problems more efficiently
Apply stochastic programming techniques to solve CDRm
problems
Apply CDRM approach in multi-period models
Explore/identify other members of CDRM (Higher moment
coherent risk measure)
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