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a reduced lifetime standard of living. On the other hand, 
financially risk-tolerant investors accept more risk in 
their portfolios in exchange for the potential—never a 
guarantee—of a higher standard of living in retirement. 
But the impact of longevity risk aversion on retirement 
spending behavior has not received as much attention, 
and most practitioners are unfamiliar with the concept.

Although neither our framework nor our mathematical 
solution is original—they can be traced back almost 80 
years—we believe that the insights from a normative 
life-cycle model (LCM) are worth emphasizing in the 
current environment, which has grown jaded by eco-
nomic models and their prescriptions. Our pedagogical 
objective was to contrast the optimal (i.e., utility-
maximizing) retirement spending policy with popular 
recommendations offered by the investment media and 
financial planners.

The main results of our investigation are as follows: 
Counseling retirees to set initial spending from invest-
able wealth at a constant inflation-adjusted rate (e.g., 
the widely popular 4 percent rule) is consistent with 
life-cycle consumption smoothing only under a very 
limited set of implausible preference parameters—that 
is, there is no universally optimal or safe retirement 
spending rate. Rather, the optimal forward-looking 
behavior in the face of personal longevity risk is to con-
sume in proportion to survival probabilities—adjusted 
upward for pension income and downward for longev-
ity risk aversion—as opposed to blindly withdrawing 
constant income for life.

HISTORY OF THE PROBLEM
The first problem I propose to tackle is this: How much 
of its income should a nation save?

With those words, the 24-year-old Cambridge University 
economist Frank R. Ramsey began a celebrated paper 
published two years before his tragic death, in 1930. 
The so-called Ramsey (1928) model and the resultant 
Keynes–Ramsey rule, implicitly adopted by thousands 
of economists in the last 80 years (including Fisher 
1930; Modigliani and Brumberg 1954; Phelps 1962; 
Yaari 1965; Modigliani 1986), form the foundation for 
life-cycle utility optimization. They are also the work-
horse supporting the original asset allocation models of 
Samuelson (1969) and Merton (1971).

RECOMMENDATIONS FROM THE MEDIA AND 
FINANCIAL PLANNERS REGARDING RETIRE-
MENT SPENDING RATES DEVIATE CONSIDER-
ABLY FROM UTILITY MAXIMIZATION MODELS. 
This study argues that wealth managers should advocate 
dynamic spending in proportion to survival prob-
abilities, adjusted up for exogenous pension income and 
down for longevity risk aversion.

In our study, we 
attempted to derive, 
analyze, and explain 
the optimal retirement 
spending policy for a 
utility-maximizing con-
sumer facing (only) a 
stochastic lifetime. We 
deliberately ignored 
financial market risk 
by assuming that all 
investment assets are 
allocated to risk-free 
bonds (e.g., Treasury 
In f l a t ion -Pro tec ted 
Securities [TIPS]). We 
made this simplifying 
assumption in order to 
focus attention on the 

role of longevity risk aversion in determining optimal 
consumption and spending rates during a retirement 
period of stochastic length.

By longevity risk aversion, we mean that different 
people might have different attitudes toward the “fear” 
of living longer than anticipated and possibly depleting 
their financial resources. Some might respond to this 
economic risk by spending less early on in retirement, 
whereas others might be willing to take their chances 
and enjoy a higher standard of living while they are still 
able to do so. 

Indeed, the impact of financial risk aversion on optimal 
asset allocation has been the subject of many studies 
and is intuitively well understood by practitioners. On 
the one hand, investors who are particularly concerned 
about losing money (i.e., risk averse) invest conserva-
tively and thus sacrifice the potential upside, leading to 
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LITERATURE ON RETIREMENT 
SPENDING RATES
Within the community of retirement income planners, 
a frequently cited study is Bengen (1994), in which he 
used historical equity and bond returns to search for the 
highest allowable spending rate that would sustain a 
portfolio for 30 years of retirement. Using a 50/50 equi-
ty/bond mix, Bengen settled on a rate between 4 percent 
and 5 percent. In fact, this rate has become known as 
the Bengen or 4 percent rule among retirement income 
planners and has caught on like wildfire. The rule sim-
ply states that for every $100 in the retirement nest egg, 
the retiree should withdraw $4 adjusted for inflation 
each year—forever, or at least until the portfolio runs 
dry or the retiree dies, whichever occurs first.

Indeed, it is hard to overestimate the influence of the 
Bengen (1994) study and its embedded “rule” on the 
community of retirement income planners. Other stud-
ies in the same vein include Cooley, Hubbard, and Walz 
(1998), often referred to as the Trinity Study. In the last 
two decades, these and related studies have been quoted 
and cited thousands of times in the popular media (e.g., 
Money Magazine, USA Today, Wall Street Journal).2

The 4 percent spending rule now seems destined for the 
same immortality enjoyed by other (unduly simplistic) 
rules of thumb, such as “buy term and invest the differ-
ence” and dollar cost averaging. And although numer-

In its basic form, the normative LCM assumes a ratio-
nal individual who seeks to maximize the discounted 
additive utility of consumption over his entire life. 
Despite its macroeconomic origins, the Ramsey model 
has been extended by scores of economists. Indeed, ask 
a first-year graduate student in economics how a con-
sumer should be “spending” over some deterministic 
time horizon T, and she will most likely respond with 
a Ramsey-type model that spreads human capital and 
financial capital (i.e., total wealth) between time zero 
and the terminal time, T.

The pertinent finance literature has advanced since 
1928 and now falls under the rubric “portfolio choice” 
or extensions of the Merton model. We counted more 
than 50 scholarly articles on this topic published in 
the top finance journals over the last decade alone. 
Unfortunately, much of the financial planning com-
munity has ignored these dynamic optimization models, 
and nowhere is this ignorance more evident than in the 
world of “retirement income planning.”

Lamentably, the financial crisis, coupled with gen-
eral skepticism toward financial models, has moved the 
practice of personal finance even further away from a 
dynamic optimization approach. In fact, many popular 
and widely advocated strategies are at odds with the 
prescriptions of financial economics. For examples of 
how economists “think about” problems in personal 
finance and how their thinking differs from convention-
al wisdom, see Bodie and Treussard (2007); Kotlikoff 
(2008); Bodie, McLeavey, and Siegel (2008); Ayres and 
Nalebuff (2010).

Along the same lines, we attempted to narrow the gap 
between the advice of the financial planning com-
munity regarding retirement spending policies and the 
“advice” of financial economists who use a rational 
utility-maximizing model of consumer choice.1

In particular, we focused exclusively on the impact of 
life span uncertainty—longevity risk—on the optimal 
consumption and retirement spending policy. To isolate 
the impact of longevity risk on optimal portfolio retire-
ment withdrawal rates, we placed our deliberations on 
Planet Vulcan, where investment returns are known 
and unvarying, the inhabitants are rational and utility-
maximizing consumption smoothers, and only life 
spans are random. CONTINUED ON PAGE 26
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rate (PWR) is the annualized ratio of the amount with-
drawn from the portfolio divided by the value of the 
portfolio at that time. (3) The initial PWR is the annu-
alized ratio of the initial amount withdrawn from the 
portfolio divided by the initial value of the portfolio.

Recall that we are spending our retirement on Vulcan, 
where only life spans are random. Our approach forced 
us to specify a real (inflation-adjusted) investment 
return. So, after carefully examining the real yield from 
U.S. TIPS over the last 10 years on the basis of data 
from the Fed, we found that the maximum real yield 
over the period was 3.15 percent for the 10-year bond 
and 4.24 percent for the 5-year bond. The average yield 
was 1.95 percent and 1.50 percent, respectively. 

The longer-maturity TIPS exhibited higher yields but 
obviously entailed some duration risk. After much 
deliberation, we decided to assume a real interest rate 
of 2.5 percent for most of the numerical examples, even 
though current (fall 2010) TIPS rates were substantially 
lower. Readers can code the formulas in Appendix A—
with their favorite riskfree-return estimate—to obtain 
their own rational spending rates. Our values are 
consistent with the view expressed by Arnott (2004) 
regarding the future of the lower ERP.

As for longevity risk, we exercised a great deal of mod-
eling caution because it was the impetus for our investi-
gation. We assumed that the retiree’s remaining lifetime 
obeys a (unisex) biological law of mortality under 
which the hazard rate increases exponentially over 
time. This notion is known as the Gompertz assumption 
in the actuarial literature, and we calibrated this model 
to common pension annuitant mortality tables. (See 
Appendix A for a full description of the mortality law.)

In most of our numerical examples, therefore, we 
assumed an 86.6 percent probability that a 65-year-old 
will survive to the age of 75, a 57.3 percent probability 
of surviving to 85, a 36.9 percent probability of reach-
ing 90, a 17.6 percent probability of reaching 95, and 
a 5 percent probability of attaining 100. Again, note 
that we do not plan for a life expectancy or an ad hoc 
30-year retirement. Rather, we account for the entire 
term structure of mortality.

ous authors have extended, refined, and recalibrated 
these spending rules, the spirit of each rule remains 
intact across all versions.3

We are not the first to point out that this “start by 
spending x percent” strategy has no basis in eco-
nomic theory. For example, Sharpe, Scott, and Watson 
(2007) and Scott, Sharpe, and Watson (2008) raised 
similar concerns and alluded to the need for a life-cycle 
approach, but they never actually solved or calibrated 
such a model. The goal of our study was to illustrate 
the solution to the lifecycle problem and demonstrate 
how longevity risk aversion—in contrast to financial 
risk aversion, so familiar to financial analysts—affects 
retirement spending rates.

Other researchers have recently teased out the implica-
tions of mortality and longevity risk for portfolio choice 
and asset allocation (see, e.g., Bodie, Detemple, Ortuba, 
and Walter 2004; Dybvig and Liu 2005; Babbel and 
Merrill 2006; Chen, Ibbotson, Milevsky, and Zhu 2006; 
Jiménez-Martín and Sánchez Martín 2007; Lachance, 
forthcoming 2011). Likewise, Milevsky and Robinson 
(2005) argued that retirement spending rates should be 
reduced because the embedded equity risk premium 
(ERP) assumption is too high. In our study, however, 
we used an economic LCM approach to retirement 
income planning.

NUMERICAL EXAMPLES AND CASES
The model we used is fully described in Appendix A so 
that readers can select their own parameter values and 
derive optimal values under any assumptions. Using 
our equations, readers can obtain values quite easily 
in Microsoft Excel. We selected one (plausible) set to 
illustrate the main qualitative insights, which are rather 
insensitive to assumed parameter values.

Note that we use the following terms (somewhat 
loosely and interchangeably, depending on the context) 
throughout the article: (1) The consumption rate is an 
annualized dollar amount that includes withdrawals 
from the portfolio, as well as pension income, and is 
scaled to reflect an initial portfolio value of $100. The 
retirement consumption rate is synonymous with the 
retirement spending rate. (2) The portfolio withdrawal 
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Let us now take a look at some results. We will assume 
a 65-year-old with a (standardized) $100 nest egg. 
Initially, we allow for no pension annuity income, 
and therefore, all consumption must be sourced to the 
investment portfolio that is earning a deterministic 
interest rate. On Planet Vulcan, financial wealth must 
be depleted at the very end of the life cycle (say, age 
120) and bequest motives are nonexistent. So, accord-
ing to Equation A5 (see Appendix A), the optimal con-
sumption rate at retirement age 65 is $4.605 when the 
risk-aversion parameter is set to (  = 4) (see Table 1), 
and the optimal consumption rate is $4.121 when the 
risk-aversion parameter is set to (  = 8).

Note that these rates—perhaps surprisingly—are within 
the range of numbers quoted by the popular press for 
optimal portfolio withdrawal (spending) rates. Thus, at 
first glance, these numbers seem to suggest that simple 
4 percent rules of thumb are consistent with an LCM. 
Unfortunately, the euphoria is short-lived. The numbers 
(may) coincide only in the first year of withdrawals 
(at age 65) and for a limited range of risk-aversion 
coefficients (most importantly, no pension income). As 
retirees age, they rationally consume less each year—in 
proportion to their survival probability adjusted for risk 
aversion. For example, at our baseline intermediate 
level of risk aversion (  = 4), the optimal consumption 
rate drops from $4.605 at age 65 to $4.544 at age 70, 

Our main objective was to focus attention on the impact 
of risk aversion on the optimal PWR and especially the 
initial PWR. Therefore, we display results for a range 
of values—for example, for a retiree with a very low  
(  = 1) and a relatively high (  = 8) coefficient of rela-
tive risk aversion (CRRA).

To aid a clear understanding of mortality risk aver-
sion, we offer the following analogy to classical asset 
allocation models. An investor with a CRRA value of  
(  = 4) would invest 40 percent of her assets in an 
equity portfolio and 60 percent in a bond portfolio, 
assuming an equity risk premium of 5 percent and vola-
tility of 18 percent. This analogy comes from the famed 
Merton ratio. Our model does not have a risky asset and 
does not require an ERP, but the idea is that the CRRA 
can be mapped onto more easily understood risk atti-
tudes. Along the same lines, the very low risk-aversion 
value of (  = 1), which is often labeled the Bernoulli 
utility specification, would lead to an equity allocation 
of 150 percent, and a high risk-aversion value of ( = 8) 
implies an equity allocation of 20 percent (all rounded 
to the nearest 5 percent).

Finally, to complete the parameter values required for 
our model, we assume that the subjective discount rate 

, which is a proxy for personal impatience, is equal 
to the risk-free rate (mostly 2.5 percent in our numerical 
examples). To those familiar with the basic LCM with-
out lifetime uncertainty, this assumption suggests that 
the optimal consumption rates would be constant over 
time in the absence of longevity risk considerations. 
Again, our motivation for all these assumptions is to 
tease out the impact of pure longevity risk aversion.

In the language of economics, when the subjective dis-
count rate (SDR) in an LCM is set equal to the constant 
and risk-free interest rate, a rational consumer will 
spend his total (human plus financial) capital evenly 
and in equal amounts over time. In other words, in a 
model with no horizon uncertainty, consumption rates 
and spending amounts are, in fact, constant, regardless 
of the consumer’s elasticity of intertemporal substitu-
tion (EIS).4

The question is, what happens when lifetimes are sto-
chastic?

C H A I R S P E R S O N ’ S  C O R N E RR I S K  R E S P O N S E

Table 1. Optimal Rate (pre-$100)  
under Medium Risk Aversion (γ=4)
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Including Pension Annuities. 
Let us now use the same model to examine what hap-
pens when the retiree has access to a defined benefit 
(DB) pension income annuity, which provides a guar-
anteed lifetime cash flow. In the United States, the 
maximum benefit from Social Security, which is the 
ultimate real pension annuity, is approximately $25,000 
per annuitant. Let us examine the behavior of a retiree 
with 100, 50, and 20 times this amount in her nest 
egg—that is, $2,500,000, $1,250,000, and $500,000 in 
investable retirement assets.

Alternatively, one can interpret Table 2 as display-
ing the optimal policy for four different retirees with 
varying degrees of longevity risk aversion, each with 
$1,000,000 in investable retirement assets. The first 
retiree has no pension (  = $0), the second has an 
annual pension of $10,000 (  = $1), the third has an 
annual pension of $20,000 (  = $2), and the fourth has 
a pension of $50,000 (  = $5).

Table 2 shows the net initial PWR (i.e., the optimal 
amount withdrawn from the investment portfolio) 
as a function of the risk-aversion values and pre-
existing pension income. Thus, for example, when the  
(  = 4) retiree (medium risk aversion) has $1,000,000 
in investable assets and is entitled to a real lifetime pen-
sion of $50,000—which, in our language, is a scaled 
nest egg of $100 and a pension ( = $5)—the optimal 
total consumption rate is $10.551 in the first year. Of 
that amount, $5.00 obviously comes from the pension 
and $5.551 is withdrawn from the portfolio. The net 
initial PWR is thus 5.551 percent.

In contrast, if the retiree has the same $1,000,000 in 
assets but is entitled to only $10,000 in lifetime pension 
income, the optimal total consumption rate is $5.873 
per $100 of assets at age 65, of which $1.00 comes from 
the pension and $4.873 is withdrawn from the portfolio. 
Hence, the initial PWR is 4.873 percent. All these num-
bers are derived directly from Equation A5.

The main point of our study can be summarized in 
one sentence: The optimal portfolio withdrawal rate 
depends on longevity risk aversion and the level of 
pre-existing pension income. The larger the amount of 
the pre-existing pension income, the greater the optimal 
consumption rate and the greater the PWR. 

and then to $4.442 at age 75, $3.591 at 90, and $2.177 
at 100, assuming the retiree is still alive. All these val-
ues are derived from Equation A5. 

Note how a lower real interest rate (e.g., 0.5 percent 
in Table 1) leads to a reduced optimal retirement con-
sumption/spending rate. Indeed, in the yield curve and 
TIPS environment of fall 2010, our model offered an 
important message for Baby Boomers: Your parents’ 
retirement plans might not be sustainable anymore.

The first insight in our model is that a fully rational plan 
is for retirees to spend less as they progress through 
retirement. Life-cycle optimizers (i.e., “consumption 
smoothers” on Vulcan) spend more at earlier ages and 
reduce spending as they age, even if their SDR is equal 
to the real interest rate in the economy. 

Intuitively, they deal with longevity risk by setting 
aside a financial reserve and by planning to reduce 
consumption (if that risk materializes) in proportion to 
their survival probability adjusted for risk aversion—all 
without any pension annuity income.

As Irving Fisher (1930) observed in The Theory  
of Interest, 

The shortness of life thus tends powerfully to 
increase the degree of impatience or rate of 
time preference beyond what it would other-
wise be. . . . Everyone at some time in his life 
doubtless changes his degree of impatience for 
income. . . . When he gets a little older . . . he 
expects to die and he thinks: instead of piling 
up for the remote future, why shouldn’t I enjoy 
myself during the few years that remain? (pp. 
85, 90)

R I S K  R E S P O N S E
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Table 2. Initial PWR at age 65 with Pension Income,  
as a Function of Risk Aversion
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ed investment return is less than the risk-free rate, the 
investor shuns the risky asset. Of course, this analogy is 
not quite correct because retirees cannot shun longevity 
risk, but the spirit is the same. The longevity probability 
they see is not the longevity probability they feel.

Again, an important take-away is the impact of pen-
sion annuities on retirement consumption. Although 
the point of our study was not to advocate for pen-
sion annuities or examine the market for longevity 
protection—already well achieved in a recent book by 
Sheshinski (2008), as well as the excellent collection of 
studies by Brown, Mitchell, Poterba, and Warshawsky 
(2001)—we present yet another way to use Equations 
A5 and A6.

Table 3 reports the optimal consumption rate at various 
ages, assuming that a fixed percentage of the retirement 
nest egg is used to purchase a pension annuity (“pen-
sionized”). The cost of each lifetime dollar of income 

The pension acts primarily as a buffer and allows the 
retiree to consume more from discretionary wealth. 
Even at high levels of longevity risk aversion, the 
risk of living a long life does not “worry” retirees too 
much because they have pension income to fall back 
on should that chance (i.e., a long life) materialize. We 
believe that this insight is absent from most of the popu-
lar media discussion (and practitioner implementation) 
of optimal spending rates. If a potential client has sub-
stantial income from a DB pension or Social Security, 
she can afford to withdraw more—percentagewise—
than her neighbor, who is relying entirely on his invest-
ment portfolio to finance his retirement income needs. 

Table 2 confirms a number of other important results. 
Note that the optimal PWR—for a range of risk-aver-
sion and pension income levels—is between 8 percent 
and 4 percent, but only when the inflation-adjusted 
interest rate is assumed to be a rather generous 2.5 
percent. Adding another 100 bps to the investment 
return assumption raises the initial PWR by 60–80 bps. 
Reducing interest assumptions, however, will have the 
opposite effect. Readers can input their own assump-
tions into Equation A5 to obtain suitable consumption/
spending rates. 

The impact of longevity risk aversion can be described 
in another way. If the remaining future lifetime has a 
modal value of (m = 89.335) and a dispersion (volatil-
ity) value of (b = 9.5), then a consumer averse to lon-
gevity risk behaves (consumes) as if the modal value 
were [m* = m + bln( )] but with the same dispersion 
parameter, b.

Longevity risk aversion manifests itself by (essentially) 
assuming that retirees will live longer than the biologi-
cal/medical estimate. Only extremely risk-tolerant retir-
ees (  = 1) behave as if their modal life spans were the 
true (biological) modal value. Note that this behavior is 
not risk neutrality, which would ignore longevity risk 
altogether. 

In the asset allocation literature, the closest analogy 
to these risk-adjusted mortality rates is the concept of 
risk-adjusted investment returns. A risk-averse investor 
observes a 10 percent expected portfolio return and 
adjusts it downward on the basis of the volatility of the 
return and her risk aversion. If the (subjectively) adjust-

C H A I R S P E R S O N ’ S  C O R N E RR I S K  R E S P O N S E

Table 3. Impact of Pensionization on Retirement Consumption Rates
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is displayed in Equation A2, which is the expression 
for the pension annuity factor. So, if 30 percent of $100
is pensionized, the corresponding value of F0 is $70 and 
the resulting pension annuity income is

We note that the pricing of pension (income) annuities 
by private sector insurance companies usually involves 
mortality rates that differ from population rates owing 
to anti-selection concerns. This factor could be easily 
incorporated by using different mortality parameters, 
but we will keep things simple to illustrate the impact of 
lifetime income on optimal total spending rates. 

Results are reported for a retirement age of 65 and 
planned consumption 15 years later (assuming the 
retiree is still alive), at age 80. We illustrate with a 
variety of scenarios in which 0 percent, 20 percent 40 
percent, 60 percent, or 100 percent of initial wealth is 
pensionized—that is, a nonreversible pension annuity 
(priced by Equation A2) is purchased on the basis of the 
going market rate.5

Table 3 shows total dollar consumption rates, including 
the corresponding pension annuity income. These rates 
are not (only) the PWRs that are reported in percent-
ages in Table 2. For example, if the retiree with medium 
risk aversion allocates $20 (from the $100 available) to 
purchase a pension annuity that pays $1.261 for life, 
optimal consumption will be $1.261 + $3.997 = $5.258 
at age 65. Note that the $3.997 withdrawn from the 
remaining portfolio of $80 is equivalent to an initial 
PWR of 4.996 percent.

In contrast, the retiree with a high degree of longevity 
risk aversion (  = 8) will receive the same $1.261 from 
the $20 that has been pensionized but will optimally 
spend only $3.535 from the portfolio (a withdrawal 
rate of 4.419 percent), for a total consumption rate of 
$4.801 at age 65.

If the entire nest egg is pensionized at 65, leading to 
$6.3303 of lifetime income, the consumption rate is 
constant for life—and independent of risk aversion—
because there is no financial capital from which to draw 
down any income. This example is yet another way 
to illustrate the benefit of converting financial wealth 
into a pension income flow. The $6.3303 of annual 
consumption is the largest of all the consumption plans. 
Thus, most financial economists are strong advocates of 
pensionizing (or at least annuitizing) a portion of one’s 
retirement nest egg.

Visualizing the Results. Figure 1 depicts the optimal 
consumption path from retirement to the maximum 
length of life as a function of the retiree’s level of lon-
gevity risk aversion (  in our model). This figure pro-
vides yet another perspective on the rational approach 
and attitude toward longevity risk management. It uses 
Equation A5 to trace the entire consumption path, from 
retirement at age 65 to age 100.
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Figure 1. Optimal Consumption: $5 Pension Income with  
Investment Rate = 2.5%
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Figure 2. Financial Capital: $5 Pension Income with  
Investment Rate = 2.5%



1.  Using Equation A8, recalibrate the model from time 
zero but with the shocked level of wealth and com-
pute the new WDT. 

2.  Use Equation A7 to compute the new level of initial 
consumption, which will be different from the old 
consumption level because of the financial shock. 

3.  Continue retirement consumption from time s onward 
on the basis of Equation A5.

To understand how this approach would work in prac-
tice, let us begin with a (CRRA = 4) retiree who has 
$100 in investable assets and is entitled to $2 of lifetime 
pension income. With a real interest rate of r = 2.5 per-
cent, the optimal policy is to consume a total of $7.078 
at age 65 ($2 from the pension and $5.078 from the 
portfolio) and adjust withdrawals downward over time 
in proportion to the survival probability to the power of 
the risk-aversion coefficient. The WDT is at age 105.

Under this dynamic policy, the expectation is that at age 
70, the financial capital trajectory will be $86.668 and 
total consumption will be $6.984 if the retiree follows 
the optimal consumption path for the next five years.

Now let us assume that the retiree survives the next five 
years and experiences a financial shock that reduces the 
portfolio value from the expected $86.668 to $60 at age 
70, which is 31 percent less than planned. In this case, 
the optimal plan is to reduce consumption to $5.583, 
which is obtained by solving the problem from the 
beginning but with a starting age of 70. This result is a 
reduction of approximately 20 percent compared with 
the original plan.

Of course, this scenario is a bit of an apples-to-oranges 
comparison because (1) a shock is not allowed in our 
model and (2) the time zero consumption plan is based 
on a conditional probability of survival that could 
change on the basis of realized health status. The prob-
lem of stochastic versus hazard rates obviously takes us 
far beyond the simple agenda of our study.

In sum, a rational response to an x percent drop in one’s 
retirement portfolio is not to reduce consumption and 
spending by the same x percent. Consumption smooth-
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Note that the optimal consumption rate declines with 
age and in relation to the retiree’s attitude toward lon-
gevity risk as measured by the CRRA.

Figure 1 plots four cases that correspond to various 
levels of the CRRA. Note that the consumption rate 
eventually hits $5, which is the pension income flow. 
For example, the consumer with a CRRA of 2 (i.e., very 
low aversion to longevity risk) will start retirement by 
withdrawing 6.55 percent from his nest egg plus his 
pension income of $5. The withdrawals from the port-
folio will continue until the retiree rationally exhausts 
his wealth at age 95. From the wealth depletion time 
(WDT) onward, he consumes only his pension.6

Figure 2 shows the corresponding trajectory for financial 
capital. At all levels of longevity risk aversion, the curve 
begins at $100 and then declines. The rate of decline is 
higher and faster for lower levels of longevity risk aversion 
because the retiree is “unafraid” of living to an advanced 
age. She will deplete her wealth after 24.6 years (at age 
90), after which she will live on her pension ($5).

In contrast, the retiree with a longevity risk aversion 
of CRRA = 8 does not (plan to) deplete wealth until 
age 105 and draws down wealth at a much slower 
rate. When there is no pension annuity income at all, 
the WDT is exactly at the end of the terminal horizon, 
which is the last possible age on the mortality table. In 
other words, wealth is never completely exhausted. This 
result can also be seen from Equation A8, in which the 
only way to obtain zero (on the right-hand side) is for 
the survival probability to be zero, which can happen 
only when  equals the maximum length of life.

Reacting to Financial Shocks. Using our methodol-
ogy, one can examine the optimal reaction to financial 
shocks over the retirement horizon. Take someone who 
experiences a 30 percent loss in his investment portfolio 
and wants to rationally reduce spending to account for 
the depleted nest egg. The rule of thumb suggesting that 
retirees spend 4–5 percent says nothing about how to 
update the rule in response to a shock to wealth.

The rational reaction to a financial shock at time s, 
which results in a new (reduced) portfolio value, would 
be to follow these steps:

CONTINUED ON PAGE 32
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ing in the LCM is about amortizing unexpected losses 
and gains over the remaining lifetime horizon, adjusted 
for survival probabilities.

SUMMARY 
To a financial economist, the optimal retirement con-
sumption rate, asset allocation (investments), and prod-
uct allocation (insurance) are a complicated func-
tion of mortality expectations, economic forecasts, 
and the trade-off between the preference for retire-
ment sustainability and the desire to leave a financial  
legacy (bequest motive). Although it is not an easy 
problem to solve even under some very simplifying 
assumptions, the qualitative trade-off can be illustrated 
(see Figure 3).

Retirees can afford to spend more if they are willing to 
leave a smaller financial legacy and risk early depletion 
times. They should spend less if they desire a larger leg-
acy and greater sustainability. Optimization of invest-
ments and insurance products occurs on this retirement 
income frontier. Ergo, a simple rule that advises all 
retirees to spend x percent of their nest egg adjusted up 
or down in some ad hoc manner is akin to the broken 
clock that tells time correctly only twice a day. 

We are not the first authors—and will certainly not be 
the last—to criticize the “spend x percent” approach to 
retirement income planning. For example, as noted by 
Scott, Sharpe, and Watson (2008), 

The 4 percent rule and its variants finance a con-
stant, non-volatile spending plan using a risky, 
volatile investment strategy. Two of the rule’s inef-
ficiencies—the price paid for funding its unspent 
surpluses and the overpayments for its spending 
distribution—apply to all retirees, independent of 
their preferences. (p. 18)

Although we obviously concur, the focus of our study 
was to illustrate what exactly a life-cycle model says 
about optimal consumption rates. Our intention was to 
contrast ad hoc recommendations with “advice” that a 
financial economist might give to a utility-maximizing 
consumer and see whether the two approaches have 
any overlap and how much they differ. In particular, 
we shined a light on aversion to longevity risk—uncer-
tainty about the human life span—and examined how 
this aversion affects optimal spending rates.7

Computationally, we solved an analytic LCM that was 
calibrated to actuarial mortality rates (see Appendix A). 
Our model can easily be used by anyone with access to 
an Excel spreadsheet. Our main insights are as follows:
 
1.  The optimal initial PWR, which the “planning lit-

erature” says should be an exogenous percentage of 
(only) one’s retirement nest egg, critically depends on 
both the consumer’s risk aversion—where risk con-
cerns longevity and not just financial markets—and 
any preexisting pension annuity income. For exam-
ple, if the portfolio’s assumed annual real investment 
return is 2.5 percent, the optimal initial PWR can be 
as low as 3 percent for highly risk-averse retirees and 
as high as 7 percent for those who are less risk averse. 
The same approach applies to any pension annuity 
income. The greater the amount of pre-existing pen-
sion income, the larger the initial PWR, all else being 
equal. Of course, if one assumes a healthier retiree 
and/or lower inflation-adjusted returns, the optimal 
initial PWR is lower. 

2.  The optimal consumption rate ( *
tc )—which is the 

total amount of money consumed by the retiree in 
any given year, including all pension income—is a 
declining function of age. In other words, retirees 
(on Vulcan) should consume less at older ages. The 
consumption rate for discretionary wealth is propor-
tional to the survival probability  and is a func-

R I S K  R E S P O N S E

Spending Retirement on Planet Vulcan | from Page 31

Stocks 
Bonds 
Pensions

Figure 3. Economic Tradeoffs at Retirement:
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tion of risk aversion, even when the subjective rate 
of time preferences is equal to the interest rate. 
The rational consumer—planning at age 65—is will-
ing to sacrifice some income at 100 in exchange the 
age of 100 the same preference weight as the age of 
80 can be explained within an LCM only if the SDR 

 is a time-dependent function that exactly offsets 
the declining survival probability. That people might 
have such preferences is highly unrealistic. 

3.  The interaction between (longevity) risk aversion and 
survival probability is quite important. In particular, 
risk aversion tends to increase the effective prob-
ability of survival. So, imagine two retirees with the 
same amount of initial retirement wealth and pension 
income (and the same SDR) but with different levels 
of risk aversion (γ). The retiree with greater risk aver-
sion behaves as if her modal value of life were high-
er. Specifically, she behaves as if it were increased 
by an amount proportional to ln(γ) and spends less 
in anticipation of a longer life. Observers will never 
know whether such retirees are averse to longevity 
risk or simply believe they are much healthier than 
the population. 

4.  The optimal trajectory of financial capital also 
declines with age. Moreover, for retirees with pre-
existing pension income, spending down wealth 
by some advanced age, and thereafter living exclu-
sively on pension income, is rational. The WDT 
can be at age 90—or even 80 if the pension income 
is sufficiently large. Greater (longevity) risk aver-
sion, which is associated with lower consumption, 
induces greater financial capital at all ages. Planning 
to deplete wealth by some advanced age is neither 
wrong nor irrational.8  

5.  The rational reaction to portfolio shocks (i.e., losses) 
is nonlinear and dependent on when the shock occurs 
and the amount of pre-existing pension income. One 
does not reduce portfolio withdrawals by the exact 
amount of a financial shock unless the risk aver-
sion is (γ = 1), known as the Bernoulli utility. For 
example, if the portfolio suffers an unexpected loss 
of 30 percent, the retiree might reduce consumption 
by only 30 percentage points. 

6.  Converting some of the initial nest egg into a stream 
of lifetime income increases consumption at all ages 
regardless of the cost of the pension annuity. Even 

when interest rates are low and the cost of $1 of 
lifetime income is (relatively) high, the net effect 
is that pensionization increases consumption. Note 
that we are careful to distinguish between real-world 
pension annuities—in which the buyer hands over a 
nonrefundable sum in exchange for a constant real 
stream—and tontine annuities, which are the founda-
tion of most economic models but are completely 
unavailable in the marketplace. 

7.  Although not pursued in the numerical examples, 
one result that follows from our analysis is counter-
intuitive and perhaps even controversial: Borrowing 
against pension income might be optimal at advanced 
ages. For retirees with relatively large pre-existing 
(DB) pension income, preconsuming and enjoying 
their pensions while they are still able to do so might 
make sense. The lower the longevity risk aversion, 
the more optimal this path becomes.

The “cost” of our deriving a simple analytic expres-
sion—described by Equations A1–A8—is that we had 
to assume a deterministic investment return. Although 
we assumed a safe and conservative return for most of 
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our numerical examples, we essentially ignored the last 
50 years of portfolio modeling theory. Recall, however, 
that our goal was to shed light on the oft-quoted rules of 
thumb and how they relate to longevity risk, as opposed 
to developing a full-scale dynamic optimization model.

CONCLUSION: BACK TO PLANET 
EARTH 
How might a full stochastic model—with possible 
shocks to health and their related expenses— change 
optimal consumption policies? Assuming agreement on 
a reasonable model and parameters for long-term port-
folio returns, the risk-averse retiree would be exposed 
to the risk of a negative (early) shock and would plan 
for this risk by consuming less. With a full menu of 
investment assets and products available, however, the 
retiree would be free to optimize around pension annui-
ties and other downside-protected products, in addi-
tion to long-term-care insurance and other retirement 
products. In other words, even the formulation of the 
problem itself becomes much more complex. 

More importantly, the optimal allocation  depends on 
the retiree’s preference for personal consumption ver-
sus bequest, as illustrated in Figure 3. A product and 
asset allocation suitable for a consumer with no bequest 
or legacy motives— those in the lower left-hand corner 
of the figure—is quite different from the optimal port-
folio for someone with strong legacy preferences. In 
our study, we assumed that the retiree’s objective is to 
maximize utility of lifetime consumption without any 
consideration for the value of bequest or legacy. 

Although some have argued that a behavioral explana-
tion is needed to rationalize the desire for a constant 
consumption pattern in retirement, we note that very 
high longevity risk aversion leads to relatively constant 
spending rates and might “explain” these fixed rules. 
In other words, we do not need a behavioral model to 
justify constant 4 percent spending. Extreme risk aver-
sion does that for us.

That said, we believe that another important take-away 
from our study is that offering the following advice to 
retirees is internally inconsistent: “You might live a 
very long time, so you better make sure to own a lot of 

stocks and equity.” The first part of the sentence implies 
longevity risk aversion, while the second part is suitable 
only for risk-tolerant retirees. Risk is risk.

To make this sort of statement more precise, we are 
working on a follow-up study in which we derive the 
optimal portfolio withdrawal rate for both pension and 
tontine annuities in a robust capital market environ-
ment à la Richard (1975) and Merton (1971) but with 
a model that breaks the reciprocal link between the 
elasticity of intertemporal substitution and general risk 
aversion. Another fruitful line of research would be to 
explore the optimal time to retire in the context of a 
mortalityonly LCM, which would take us far beyond 
the current literature.9

One thing seems clear: Longevity risk aversion and 
pension annuities remain very important factors to con-
sider when giving advice regarding optimal portfolio 
withdrawal rates. That is the main message of our study, 
a message that does not change here on Planet Earth.

We thank Zvi Bodie, Larry Kotlikoff, Peng Chen, 
François Gaddene,  Mike Zwecher, David Macchia, 
Barry Nalebuff, Glenn Harrison, Sherman Hanna, 
and Bill Bengen—as well as participants at the 2010 
Retirement Income Industry Association conference 
in Chicago, seminar participants at Georgia State 
University, and participants at the QMF2010 confer-
ence in Sydney—for helpful comments. We also offer 
a special acknowledgment to our colleagues at York 
University—Pauline Shum, Tom Salisbury, Nabil 
Tahani, Chris Robinson, and David Promislow—
for helpful discussions during the many years of 
this research program. Finally, we thank Alexandra 
Macqueen and Faisal Habib at the QWeMA Group 
(Toronto) for assistance with editing and analytics.

APPENDIX A. LIFE-CYCLE MODEL IN 
RETIREMENT 
The value function in the LCM during retirement 
years when labor income is zero, assuming no bequest 
motive, can be written as follows:
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Appendix A. Life-Cycle Model 
in Retirement
The value function in the LCM during retirement
years when labor income is zero, assuming no
bequest motive, can be written as follows:

(A1)

where
x = the age of the retiree when the consump-

tion/spending plan is formulated (e.g.,
60 or 65)

D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:

(A2)

which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:

(A2a)

See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:

(A3)

where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by

(A3a)

where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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try Association conference in Chicago, seminar partici-
pants at Georgia State University, and participants at the
QMF2010 conference in Sydney—for helpful comments.
We also offer a special acknowledgment to our colleagues
at York University—Pauline Shum, Tom Salisbury, Nabil
Tahani, Chris Robinson, and David Promislow—for help-
ful discussions during the many years of this research
program. Finally, we thank Alexandra Macqueen and
Faisal Habib at the QWeMA Group (Toronto) for assis-
tance with editing and analytics.
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where 
x =    the age of the retiree when the consumption/ 

spending plan is formulated (e.g., 60 or 65)  
D =    the maximum possible life span years in 

retirement (the upper bound of the utility inte-
gration, which is currently 122 on the basis 
of the world’s longest-lived person, Jeanne 
Calment, who died in France in 1997)  

ρ =     the SDR, or personal time preference (which 
ranges in value from 0 percent to as high as 20 
percent in some empirical studies)  

tPx =    the conditional probability of survival from 
retirement age x to age x + t, which is based 
on an actuarial mortality table

We parameterize (tPx) on the basis of the Gompertz 
law of mortality, under which the biological hazard rate 
is λt = (1/b)e(x – m + t)/b, which grows exponentially with 
age—m denotes the modal value of life (e.g., 80 years), 
and b denotes the dispersion coefficient (e.g., 10 years) 
of the future lifetime random variable. Both numbers 
are calibrated to U.S. mortality tables to fit advanced-
age survival rates. 

In our study, we assumed that the utility function of 
consumption exhibits constant elasticity of intertem-
poral substitution, which is synonymous with (and the 
reciprocal of) constant relative risk aversion (RRA) 
under conditions of perfect certainty and time-sep-
arable utility. The exact specification is u(c) = c1– γ/
(1–γ), where γ is the coefficient of relative (longevity)  
risk aversion, which can take on values from Bernoulli 
(γ = 1) up to infinity.

The actuarial present value function, denoted by    
depends implicitly on the survival probability 

curve (tpx) via the parameters (m,b). It is defined and 
computed by using the following: 
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sion annuity that pays a real $1 a year until death
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not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
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is possible in terms of the incomplete gamma func-
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where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
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rower pays R plus the insurance (to protect the
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where
x = the age of the retiree when the consump-

tion/spending plan is formulated (e.g.,
60 or 65)

D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:

(A2)

which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:

(A2a)

See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:

(A3)

where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by

(A3a)

where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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which is the retirement age “price”—under a real, 
constant discount rate 

March/April 2011 www.cfapubs.org 55

Spending Retirement on Planet Vulcan

Appendix A. Life-Cycle Model 
in Retirement
The value function in the LCM during retirement
years when labor income is zero, assuming no
bequest motive, can be written as follows:

(A1)

where
x = the age of the retiree when the consump-

tion/spending plan is formulated (e.g.,
60 or 65)

D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 
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is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.
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and time-separable utility. The exact specification is
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(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:

(A2)

which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:
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The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:
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where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by
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where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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—of a life-contingent pension 
annuity that pays a real $1 a year until death or time 
T, whichever comes first. Although we do not include 
a mortality risk premium from the perspective of the 
insurance company in this valuation model, one could 

include it by tilting the survival rate toward a longer 
life.

A closed-form representation of Equation A2 is possi-
ble in terms of the incomplete gamma function Γ(A,B), 
which is available analytically:  
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which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
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is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:
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The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:
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where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by
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where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
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See Milevsky (2006, p. 61) for instructions on how to 
code the gamma function in Microsoft Excel.

The wealth trajectory (financial capital during retire-
ment) is denoted by Ft , and the dynamic constraint 
in our model—linked to the objective function in 
Equation A1—can now be expressed as follows:
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constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
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not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.
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denotes the interest rate on financial capital and
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where the dot is shorthand notation for a derivative 
of wealth (financial capital) with respect to time, π0 
denotes the income (in real dollars) from any preexist-
ing pension annuities, and the function multiplying 
wealth itself is defined by 
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where R ≥ r. The discontinuous function 
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Appendix A. Life-Cycle Model 
in Retirement
The value function in the LCM during retirement
years when labor income is zero, assuming no
bequest motive, can be written as follows:

(A1)

where
x = the age of the retiree when the consump-

tion/spending plan is formulated (e.g.,
60 or 65)

D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:

(A2)

which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:

(A2a)

See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:

(A3)

where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by

(A3a)

where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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(t,Ft) denotes 
the interest rate on financial capital and allows Ft to be 
negative. For credit cards and other unsecured lines of 
credit, 
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in Retirement
The value function in the LCM during retirement
years when labor income is zero, assuming no
bequest motive, can be written as follows:

(A1)

where
x = the age of the retiree when the consump-

tion/spending plan is formulated (e.g.,
60 or 65)

D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:

(A2)

which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:

(A2a)

See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:

(A3)

where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by

(A3a)

where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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(t,Ft) = R + λt. The borrower pays R plus the 
insurance (to protect the lender in the event of the bor-
rower’s death). 

Note that we do not assume a complete liquidity con-
straint that prohibits borrowing in the sense of Deaton 
(1991), Leung (1994), or Bütler (2001). We do not 
allow stochastic returns. Equations A1, A2, and A3 are 
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(A1)

where
x = the age of the retiree when the consump-

tion/spending plan is formulated (e.g.,
60 or 65)

D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:
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which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:

(A2a)

See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:
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where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by
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where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).
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where
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tion/spending plan is formulated (e.g.,
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D = the maximum possible life span years in
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ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:
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which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:

(A2a)

See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
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The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:
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where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by
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where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
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essentially the Yaari (1965) setup, under which pension 
annuities, but not tontine annuities, are available.

The initial condition is F0 = W, where W denotes the 
investable assets at retirement. The terminal condition 
is Fτ = 0, where τ denotes the wealth depletion time, at 
which point only the pension annuity income is con-
sumed. Leung (1994, 2007) explored the existence of 
a WDT in a series of theoretical papers. In theory, the 
WDT can be at the final horizon time (τ = D) if the pen-
sion income is minimal (or zero) and/or the borrowing 
rate is relatively low. To be very precise, it is possible 
for Ft < 0 for some time t < D. We are not talking about 
the zero values of the function. Rather, the definition of 
our WDT is Ft = 0; t > τ permanently. One can show 
that when R > ρ, borrowing is not optimal and τ < D 
under certain conditions. For our numerical results, we 
assume a high-enough value of R.

The Euler–Lagrange theorem from the calculus of 
variations leads to the following. The optimal trajec-
tory, Ft, in the region over which it is positive, assuming 
that v(t,Ft) = r, can be expressed as the solution to the 
following second-order nonhomogeneous differential 
equation: 
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,

(A8a)

 F k r F rk F kt t t t t t− +( ) + = −π0 ,

c c e pt
kt

t x* * / ,= ( )0
1 γ

c0*

ct*

c0*

c0*

F W
r

e

a r k m b c e
r

t
rt

x
t rt

= +⎛
⎝⎜

⎞
⎠⎟

− −( ) −

π

π

0

0
0, *, ,*

c0*

c
W r e r

a r k m b e

r

x
r0

0 0* / /

, *,
.=

+( ) −

−( )
π πτ

τ τ

ax
τ

cτ*

W r e r

a r k m b e
e p

r

x
r

k
x

+( ) −

−( )
( ) =

π π
π

τ

τ τ
τ

τ
γ0 0 1

0
/ /

, *,
./

τ γ π ρ= ( )f W r x m b, , , , , , .0

   
where the double dots denote the second derivative with 
respect to time and the time-dependent function kt =  
(r – ρ – λt)/γ is introduced to simplify notation. The real 
interest rate, r, is a positive constant and a pivotal input 
to the model. We reiterate that Equation A4 is valid 
only until the wealth depletion time, τ. But one can 
always force a wealth depletion time τ < D by assuming 
a minimal pension annuity, as well as a large-enough 
(arbitrary) interest rate 
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Appendix A. Life-Cycle Model 
in Retirement
The value function in the LCM during retirement
years when labor income is zero, assuming no
bequest motive, can be written as follows:

(A1)

where
x = the age of the retiree when the consump-

tion/spending plan is formulated (e.g.,
60 or 65)

D = the maximum possible life span years in
retirement (the upper bound of the util-
ity integration, which is currently 122 on
the basis of the world’s longest-lived
person, Jeanne Calment, who died in
France in 1997) 

 = the SDR, or personal time preference
(which ranges in value from 0 percent to
as high as 20 percent in some empirical
studies)

tpx = the conditional probability of survival
from retirement age x to age x + t, which
is based on an actuarial mortality table

We parameterize (tpx) on the basis of the Gom-
pertz law of mortality, under which the biological
hazard rate is t = (1/b)e(x – m + t)/b, which grows
exponentially with age—m denotes the modal value
of life (e.g., 80 years), and b denotes the dispersion
coefficient (e.g., 10 years) of the future lifetime ran-
dom variable. Both numbers are calibrated to U.S.
mortality tables to fit advanced-age survival rates.

In our study, we assumed that the utility func-
tion of consumption exhibits constant elasticity of
intertemporal substitution, which is synonymous
with (and the reciprocal of) constant relative risk
aversion (RRA) under conditions of perfect certainty
and time-separable utility. The exact specification is

u(c) = c1 – /(1 – ), where  is the coefficient of relative
(longevity) risk aversion, which can take on values
from Bernoulli ( = 1) up to infinity.

The actuarial present value function, denoted
by  depends implicitly on the survival
probability curve (tpx) via the parameters (m,b). It
is defined and computed by using the following:

(A2)

which is the retirement age “price”—under a real,
constant discount rate v—of a life-contingent pen-
sion annuity that pays a real $1 a year until death
or time T, whichever comes first. Although we do
not include a mortality risk premium from the per-
spective of the insurance company in this valuation
model, one could include it by tilting the survival
rate toward a longer life.

A closed-form representation of Equation A2
is possible in terms of the incomplete gamma func-
tion (A,B), which is available analytically:

(A2a)

See Milevsky (2006, p. 61) for instructions on
how to code the gamma function in Microsoft
Excel.

The wealth trajectory (financial capital during
retirement) is denoted by Ft, and the dynamic con-
straint in our model—linked to the objective func-
tion in Equation A1—can now be expressed as
follows:

(A3)

where the dot is shorthand notation for a derivative
of wealth (financial capital) with respect to time, 0
denotes the income (in real dollars) from any pre-
existing pension annuities, and the function multi-
plying wealth itself is defined by

(A3a)

where R  r. The discontinuous function v(t,Ft)
denotes the interest rate on financial capital and
allows Ft to be negative. For credit cards and other
unsecured lines of credit, v(t,Ft) = R + t. The bor-
rower pays R plus the insurance (to protect the
lender in the event of the borrower’s death).

We thank Zvi Bodie, Larry Kotlikoff, Peng Chen, François
Gaddene, Mike Zwecher, David Macchia, Barry Nalebuff,
Glenn Harrison, Sherman Hanna, and Bill Bengen—as
well as participants at the 2010 Retirement Income Indus-
try Association conference in Chicago, seminar partici-
pants at Georgia State University, and participants at the
QMF2010 conference in Sydney—for helpful comments.
We also offer a special acknowledgment to our colleagues
at York University—Pauline Shum, Tom Salisbury, Nabil
Tahani, Chris Robinson, and David Promislow—for help-
ful discussions during the many years of this research
program. Finally, we thank Alexandra Macqueen and
Faisal Habib at the QWeMA Group (Toronto) for assis-
tance with editing and analytics.

max ,c
t

t x t
DV c e p u c dt( ) = ( ) ( )∫ −ρ
0

a v m bx
T , , ,( )

a v m b e p dsx
T vsT

s x, , ,( ) = ∫ ( )−
0

a v m b
b vb

x m
b

m x v
x m

b

x
T , ,

, exp

exp exp
( )

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

( ) ⎛
⎝⎜

⎞
⎠

=
−

−

− −
−

Γ

⎟⎟⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

( ) ⎛
⎝⎜

⎞
⎠

−
−

− +

− −
−

b vb
x m T

b

m x v
x m

b

Γ , exp

exp exp ⎟⎟⎡
⎣⎢

⎤
⎦⎥

.

F v t F F ct t t t= ( ) − +, ,π0

v t F
r F

R Ft
t

t t
,

,
,

,( ) =
≥

+ <
⎧
⎨
⎩

0
0λ

(t,Ft) on borrowing when Ft < 
0. For a more detailed discussion, including the impact 
of a stochastic mortality rate, see Huang, Milevsky, and 
Salisbury (2010).

The solution to the differential Equation A4 is obtained 
in two stages. First, the optimal consumption rate 
while Ft > 0 can be shown to satisfy the equation     
 

where k = (r – ρ)/γ and the unknown initial consump-
tion rate,
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,
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, can be solved for. The optimal consump-
tion rate declines when the SDR, ρ, is equal to the 
interest rate, r, and hence, k = 0. This outcome is a very 
important implication (and observable result) from the 
LCM. Planning to even if (ρ = r).
 
Note also that consumption as defined earlier includes 
the pension annuity income, π0. Therefore, the portfo-
lio withdrawal rate (PWR), which is the main item of 
interest in our study, is (
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,

(A8a)

 F k r F rk F kt t t t t t− +( ) + = −π0 ,

c c e pt
kt

t x* * / ,= ( )0
1 γ

c0*

ct*

c0*

c0*

F W
r

e

a r k m b c e
r

t
rt

x
t rt

= +⎛
⎝⎜

⎞
⎠⎟

− −( ) −

π

π

0

0
0, *, ,*

c0*

c
W r e r

a r k m b e

r

x
r0

0 0* / /

, *,
.=

+( ) −

−( )
π πτ

τ τ

ax
τ

cτ*

W r e r

a r k m b e
e p

r

x
r

k
x

+( ) −

−( )
( ) =

π π
π

τ

τ τ
τ

τ
γ0 0 1

0
/ /

, *,
./

τ γ π ρ= ( )f W r x m b, , , , , , .0

– π0)/Ft, and the initial PWR 
(i.e., the retirement spending rate) is (
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,
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– π0)/F0.  The 
optimal financial capital trajectory (also defined as only 
until time t < τ), which is the solution to Equation A4, 
can be expressed as a function of 
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,
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as follows:

where the modified modal value in the annuity factor 
is m* = m + bln(γ). The actuarial present value term 
multiplying time zero consumption values a life-con-
tingent pension annuity under a shifted modal value of  
m + bln(γ) and a shifted valuation rate of r – (r – ρ)/γ 
instead of r. Plugging Equation A6 into the differen-
tial Equation A4, however, confirms that the solution is 
correct and valid over the domain t 
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,

(A8a)
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 (0,τ).

In other words, the value function in Equation A1—
and thus life-cycle utility—is maximized when the 
consumption rate and the wealth trajectory satisfy 
Equations A5 and A6, respectively. Of course, these 
two equations are functions of two unknowns— 
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,

(A8a)
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and τ—and we must now solve for them, which we 
will do sequentially.

First, from Equation A6 and the definition of the WDT 
(Fτ = 0), we can solve for the initial consumption rate:
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation
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Put another way,

(A8a)
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,
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Note that when γ = 1, π0 = 0, and ρ = r, Equation A7 
collapses to 
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation

(A8)

Put another way,
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Finally, the WDT, τ, is obtained by substituting Equation 
A7 into Equation A5 and searching the resulting non-
linear equation over the range (0,D) for the value of τ 
that solves 
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation
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Put another way,

(A8a)
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– π0 = 0. In other words, if a WDT exists, 
then for consumption to remain smooth at that point—
which is part of the foundation of life-cycle theory—it 
must converge to π0.

Mathematically, the WDT, τ, satisfies the equation    

Put another way,  

The optimal consumption policy (described by Equa-
tion A5) and the optimal trajectory of wealth (described 
by Equation A6) are now available explicitly. Practi-
cally speaking, the WDT (τ ≤ D) is extracted from 
Equation A8, and the initial consumption rate is then 
obtained from Equation A7. Everything else follows. 
These expressions can be coded in Excel in a few  
minutes.  
 
NOTES
1.  Thus, our use of “Planet Vulcan” in the title of 

our study, inspired by Thaler and Sunstein (2008), 
who distinguished “humans” from perfectly rational 
“econs,” much like the Star Trek character Spock, 
who is from Vulcan. 

2.  See, for example, Walter Updegrave, “Retirement: 
The 4 Percent Solution,” Money Magazine (16 
August 2007): http:/ /money.cnn.com/2007/08/13/pf/
expert/expert.moneymag/ index.htm. 

3.  In fact, to some extent, Milevsky and Robinson 
(2005) encouraged this approach by deriving and 
publishing an analytic expression for the lifetime 
ruin probability that assumes a constant consumption 
spending rate. 

4.  For detailed information on possible parameter esti-
mates for the EIS and how they affect consumption 
under deterministic life-cycle models in which the 
SDR is not equal to the interest rate, see Hanna, Fan, 
and Chang (1995) and Andersen, Harrison, Lau, and 
Rutstrom (2008). 

5.  This annuity is quite different from the Yaari (1965) 
tontine annuity, in which mortality credits are paid 
out instantaneously by adding the mortality haz-
ard rate, λt, to the investment return, r. Thus, we 
use the term pensionization to distinguish it from 
economists’ use of the term annuitization. The lat-
ter assumes a pool in which survivors inherit the 
assets of the deceased, whereas the former requires 
an insurance company or pension fund to guarantee 
the lifetime payments. See Huang, Milevsky, and 
Salisbury (2010) for a discussion of the distinction 
between the two and their impact on optimal retire-
ment planning in a stochastic versus deterministic 
mortality model. 

6.  The consumption function is concave until the WDT, 
at which point it is nondifferentiable and set equal to 
the pension annuity income. 

7.  A (tongue-in-cheek) rule of thumb that could be sub-
stituted for the static 4 percent algorithm is to counsel 
retirees to pick any initial spending rate between 
2 percent and 5 percent but to reduce the actual 
spending amount each year by the proportion of 
their friends and acquaintances who have died. This 
approach would roughly approximate the optimal 
decline based on anticipated survival rates. 

8.  Thus, one could say that there are bag ladies on 
Vulcan.  9. See Stock and Wise (1990) for an exam-
ple of this burgeoning literature.
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).

Note also that consumption as defined earlier
includes the pension annuity income, 0. Therefore,
the portfolio withdrawal rate (PWR), which is the
main item of interest in our study, is (  – 0)/Ft,
and the initial PWR (i.e., the retirement spending
rate) is (  – 0)/F0.

The optimal financial capital trajectory (also
defined as only until time t < ), which is the solu-
tion to Equation A4, can be expressed as a function
of  as follows:

(A6)

where the modified modal value in the annuity
factor is m* = m + bln(). The actuarial present value
term multiplying time zero consumption values a
life-contingent pension annuity under a shifted
modal value of m + bln() and a shifted valuation
rate of r – (r – )/ instead of r. Plugging Equation
A6 into the differential Equation A4, however, con-
firms that the solution is correct and valid over the
domain t  (0,).

In other words, the value function in Equation
A1—and thus life-cycle utility—is maximized
when the consumption rate and the wealth trajec-
tory satisfy Equations A5 and A6, respectively. Of
course, these two equations are functions of two
unknowns—  and —and we must now solve for
them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
sumption rate:

(A7)

Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation
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Note that we do not assume a complete liquid-
ity constraint that prohibits borrowing in the sense
of Deaton (1991), Leung (1994), or Bütler (2001). We
do not allow stochastic returns. Equations A1, A2,
and A3 are essentially the Yaari (1965) setup, under
which pension annuities, but not tontine annuities,
are available.

The initial condition is F0 = W, where W
denotes the investable assets at retirement. The
terminal condition is F = 0, where  denotes the
wealth depletion time, at which point only the
pension annuity income is consumed. Leung (1994,
2007) explored the existence of a WDT in a series of
theoretical papers. In theory, the WDT can be at the
final horizon time ( = D) if the pension income is
minimal (or zero) and/or the borrowing rate is
relatively low. To be very precise, it is possible for
Ft < 0 for some time t < D. We are not talking about
the zero values of the function. Rather, the defini-
tion of our WDT is Ft = 0; t >  permanently. One
can show that when R > , borrowing is not optimal
and  < D under certain conditions. For our numer-
ical results, we assume a high-enough value of R.

The Euler–Lagrange theorem from the calcu-
lus of variations leads to the following. The optimal
trajectory, Ft, in the region over which it is positive,
assuming that v(t,Ft) = r, can be expressed as the
solution to the following second-order nonhomo-
geneous differential equation:

(A4)

where the double dots denote the second derivative
with respect to time and the time-dependent func-
tion kt = (r –  – t)/ is introduced to simplify
notation. The real interest rate, r, is a positive con-
stant and a pivotal input to the model. We reiterate
that Equation A4 is valid only until the wealth
depletion time, . But one can always force a wealth
depletion time  < D by assuming a minimal pen-
sion annuity, as well as a large-enough (arbitrary)
interest rate v(t,Ft) on borrowing when Ft < 0. For a
more detailed discussion, including the impact of a
stochastic mortality rate, see Huang, Milevsky, and
Salisbury (2010).

The solution to the differential Equation A4 is
obtained in two stages. First, the optimal consump-
tion rate while Ft > 0 can be shown to satisfy the
equation

(A5)

where k = (r – )/ and the unknown initial con-
sumption rate, , can be solved for. The optimal
consumption rate declines when the SDR, , is
equal to the interest rate, r, and hence, k = 0. This
outcome is a very important implication (and
observable result) from the LCM. Planning to

reduce one’s standard of living with age is rational,
even if ( = r).
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them, which we will do sequentially.

First, from Equation A6 and the definition of
the WDT (F = 0), we can solve for the initial con-
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Note that when  = 1, 0 = 0, and  = r, Equation
A7 collapses to W/ .

Finally, the WDT, , is obtained by substituting
Equation A7 into Equation A5 and searching the
resulting nonlinear equation over the range (0,D) for
the value of  that solves  – 0 = 0. In other words,
if a WDT exists, then for consumption to remain
smooth at that point—which is part of the founda-
tion of life-cycle theory—it must converge to 0.

Mathematically, the WDT, , satisfies the equation
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