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Abstract 
 

A renewal model for the aggregate discounted payments and 
expenses assumed by the insurer is proposed for the “medical 
malpractice” insurance, where the real interest rates could be 
stochastic and the dependency is examined through the theory 
of copulas. 
 

As a first approach to this problem, we present formulas for the 
first two raw moments and the first joint moment of this 
aggregate risk process. Examples are given for exponential 
claims interoccurence times and the dependency is illustrated 
by an Archimedean copula, in which the autocovariance and the 
autocorrelation functions are also examined. 
 
Keywords : Aggregate discounted payments; Copulas; Joint and 
raw moments; Medical malpractice; Renewal process; Stochastic 
interest rate. 
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Overview on Medical Malpractice Insurance 
 
 
Definition : 
 
“Medical malpractice” is generally defined as a professional 
negligence by act or omission by a health care provider in which 
the treatment provided falls below the accepted standard of 
practice in the medical community and eventually causes injury or 
death to the patient, with most cases involving medical error. 
 
Premiums :  
 
- Medical malpractice insurers take several factors into account 
when setting premiums, and these are usually charged to 
individuals, groups of practice, hospitals or governments. 
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- One of the main factor is the type of work a health-care provider 
does. Some specialties have a significantly higher rate of claims 
than others and will thus pay higher premiums, such as in 
neurosurgery and obstetrics/gynecology. 
 
- Another important factor is the region where a provider 
practices. Indeed standards and regulations for medical 
malpractice vary by country and even by jurisdictions within 
countries, which is particularly apparent in USA. 
 
- Among the other factors that are usually considered by the 
insurer are : some degree of experience rating, administrative 
expenses, litigation expenses, future investment income, profit 
margin sought, insurance business cycle, supply and demand. 
 
- The physician professionals’ claims experience is too variable 
over short time periods but presents more stability for hospitals. 
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Type of insurance :  
 
- Premiums will also vary depending on the type of insurance 
coverage choosen for medical malpractice. 
 
- There are essentially two primary types of insurance coverage for 
medical malpractice : “claims-made” and “occurrence” policies. 
 
- Claims-made insurance, like auto or home insurance, provides 
coverage for incidents that occur while the policy is in force. 
However, an important condition is that the claim must also be 
filed while the policy is in force for the incident to be covered. For 
this type of insurance, a “tail coverage” is highly recommended to 
cover incidents that have not been reported to the company 
during the policy term.  
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- Occurrence coverage policies differ from the claims-made 
coverage by the fact that they cover any incident that occurs 
while the policy is in force, no matter when the claim is filed. 
 
- As generally observed within this insurance market, the first type 
of insurance is substantially less expensive in the very first years 
but by the fourth or fifth year it reaches a mature level at about 
95% of the cost of an occurrence policy. 
 
- Claims-made policies are what are normally issued by most 
insurance carriers nowadays. In spite of that, the decision between 
a claims-made and an occurrence policy will obviously depend of 
what is best suited for the specific needs of the insured entity.  
 
* In this research, only the claims-made policies will be considered. 



 7 

Dependency : 
 
- The business line “Medical malpractice” is characterized by a 
strong degree of uncertainty under many aspects often related. 
 
- Many empirical observations seem to show that there is a 
positive dependency between the delay from the reception to the 
settlement of the claim, the final payment of the claim and the 
amount of expenses allocated to the claim. 
 
- The discount rates used to actualize the payment of the claims 
and the expenses are not necessarily independent. 
 
- To represent the dependencies mentionned previously, the 
theory of copulas seems to be most suitable and has been largely 
applied in the actuarial litterature since the last decade. 
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A renewal model, with copula and  
stochastic interest rate 

 
 
Motivated mainly by the works of Léveillé & Garrido (2001) and 
Léveillé & Adékambi (2011) on discounted compound renewal 
sums, we present a stochastic model for the medical malpractice 
insurance where the counting process is an ordinary renewal 
process, the discount factors related to the payments and the 
expenses may be stochastic and dependent, and the dependencies 
are eventually governed by copulas. 
 
Hence consider the following aggregate discounted payments and 
expenses process 
 

 
Z t( ) = Z1 t( ) + Z2 t( ) =: D1 Tk + τ k( )Xk

k=1

N t( )

∑ + D2 Tk + τ k( )Yk
k=1

N t( )

∑  
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where 
 

•  τ k , k ∈{ } is a sequence of continuous positive independent 
and identically distributed (i.i.d.) random variables, such that τ k  
represents the inter-occurrence time between the k −1( )-th and 
k-th claims. 
 
•  Tk , k ∈{ } is a sequence of random variables such that 

Tk = τ k
i=1

k

∑ , T0 = 0, and then Tk  represents the occurrence time of 

the claims received by the insurer. 
 

•  τ k , k ∈{ } is a sequence of continuous positive i.i.d. random 
variables, independent of the τ k , such that  τ k  is the time from 
Tk  taken by the insurer to pay the k-th claim. 
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•  Xk , k ∈{ } is a sequence of positive i.i.d. random variables, 
independent of the Tk , such that Xk  represents the deflated 
amount of the claim effectively paid by the insurer. 

 
•  Yk , k ∈{ } is a sequence of positive i.i.d. random variables, 
independent of the Tk , such that Yk  represents the deflated 
amount of the expenses incurred by the insurer to fix the 
payment corresponding to the k-th claim. 

 
• N t( ) , t ≥ 0{ } is an ordinary renewal process generated by the 
inter-occurrence times  τ k , k ∈{ }, which represents the 
number of claims received by the insurer in 0,t[ ]. 
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 • The random variables Xk , Yk  and  τ k  are eventually dependent 
and this dependency relation is generated by a copula 
C u1,u2 ,u3( ), where u1,u2 ,u3( )∈ 0,1[ ] 3, which has positive measures 
of dependence and concordance. 

 

• Di t( ) = exp − δ u( )du
0

t

∫
⎧
⎨
⎩

⎫
⎬
⎭
, i = 1,2 , is the discount factor at t = 0 

corresponding to Zi t( ) and δ i t( ) is the force of net interest 
which could be deterministic or stochastic. Moreover, we will 
assume that δ1 t( ), t ≥ 0{ } and δ 2 t( ), t ≥ 0{ } could be dependent 
but are independent of the processes N t( ) , t ≥ 0{ },  τ k , k ∈{ }, 

 Xk , k ∈{ } and  Yk , k ∈{ }. 
 
* Here, we make the choice of not representing the possible 
dependency between the discount factors by another copula in 
order not to weigh down our model. 
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First and second raw moments of Z (t) 
 
The following theorem gives an integral expression for the first 
moment of Z t( ), in agreement with our hypotheses. 
 
Theorem 1 : Consider the discounted aggregate payments and 
expenses process, such as assumed previously. Then, for 
stochastic forces of interest δ1 t( ) and δ 2 t( ), the first moment of 
Z t( ) is given by : 
 

 

E Z t( )⎡⎣ ⎤⎦ = E X τ = v⎡⎣ ⎤⎦ E D1 u + v( )⎡⎣ ⎤⎦dm u( )
0

t

∫
⎧
⎨
⎩

⎫
⎬
⎭
dFτ v( )

0

∞

∫

+ E Y τ = v⎡⎣ ⎤⎦ E D2 u + v( )⎡⎣ ⎤⎦dm u( )
0

t

∫
⎧
⎨
⎩

⎫
⎬
⎭
dFτ v( )

0

∞

∫ , 

 
where m t( ) is the renewal function.                
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Corollary 1 : For positive constant forces of interest δ1 and δ 2    
Theorem 1 yields  
 

 
E Z t( )⎡⎣ ⎤⎦ = E e−δ1 τ X⎡⎣ ⎤⎦ e−δ1v dm v( )

0

t

∫ + E e−δ2 τY⎡⎣ ⎤⎦ e−δ2v dm v( )
0

t

∫ . 

 
 
Example 1: Assume that the deflated amounts Xk  and Yk  have 
respectively, for x > 0 , Pareto distributions 
 

FX x( ) = 1− β1
β1 + x

⎡

⎣
⎢

⎤

⎦
⎥

α1

    ,    FY x( ) = 1− β2
β2 + x

⎡

⎣
⎢

⎤

⎦
⎥

α2

, 

 
where β1 > 0 , β2 > 0 , α1 > 2 and α 2 > 2,  
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and that the interoccurrence times of the claims τ k  and the 
delays  τ k  have respectively, for t > 0 , exponential distributions 
 

Fτ t( ) = 1− e−λt     ,     Fτ t( ) = 1− e− λt  , 
 
where λ > 0 ,  λ > 0 . 
 
Furthermore assume that the dependency relation between Xk , Yk  
and  τ k  is generated by the Archimedian copula 
 

C u1,u2 ,u3( ) = 1− 1− 1− 1− ui( )γ⎡
⎣

⎤
⎦

i=1

3

∏⎡
⎣⎢

⎤
⎦⎥

1
γ
=:1− f

1
γ u1,u2 ,u3,γ( ) , 

 
where  u1 = FX x( ) , u2 = FY y( ) , u3 = Fτ t( ) and γ ≥1. 
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Applying Corollary 1, and with the help of a software such as 
“Maple”, the preceding identity for E Z t( )[ ] can be calculated 
numerically. 
 
Hence, if we consider the particular case where δ1 = 0.02 , δ 2 = 0.03, 
α1 = 3, α 2 = 5 , β1 = β2 = 1, λ = 1,  λ = 2  and γ = 2 , then we get from 
Corollary 1 the following function for the first raw moment of Z t( ), 
 

E Z t( )⎡⎣ ⎤⎦ ≈ 24.48( ) 1− e−0.02t⎡⎣ ⎤⎦ + 8.1( ) 1− e−0.03t⎡⎣ ⎤⎦  . 
 
 
* The next theorem gives an integral expression for the second 
moment of Z t( ) where the assumed dependencies of the model 
are also present in each term of this expression. 
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Theorem 2 : Consider the discounted aggregate payments and 
expenses process, such as assumed previously. Then, for 
stochastic forces of interest δ1 t( ) and δ 2 t( ), the second moment 
of Z t( ) is given by: 
 

 

E Z 2 t( )⎡⎣ ⎤⎦ = E X 2 τ = w⎡⎣ ⎤⎦ E D1
2 v +w( )⎡⎣ ⎤⎦dm v( )

0

t

∫
⎧
⎨
⎩

⎫
⎬
⎭
dFτ w( )

0

∞

∫

+ E Y 2 τ = w⎡⎣ ⎤⎦ E D2
2 v +w( )⎡⎣ ⎤⎦dm v( )

0

t

∫
⎧
⎨
⎩

⎫
⎬
⎭
dFτ w( )

0

∞

∫

+2 E XY τ = w⎡⎣ ⎤⎦ E D1 v +w( )D2 v +w( )⎡⎣ ⎤⎦dm v( )
0

t

∫
⎧
⎨
⎩

⎫
⎬
⎭
dFτ w( )

0

∞

∫

+2 E X τ = w⎡⎣ ⎤⎦E X τ = ′w⎡⎣ ⎤⎦
0

∞

∫
0

∞

∫

× E D1 u +w( )D1 u + v + ′w( )⎡⎣ ⎤⎦dm u( )dm v( )
0

t−v

∫
0

t

∫
⎧
⎨
⎩

⎫
⎬
⎭
dFτ w( )dFτ ′w( )
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+ 2 E Y τ = w⎡⎣ ⎤⎦E Y τ = ′w⎡⎣ ⎤⎦
0

∞

∫
0

∞

∫

× E D2 v +w( )D2 u + v + ′w( )⎡⎣ ⎤⎦dm u( )dm v( )
0

t−v

∫
0

t

∫
⎧
⎨
⎩

⎫
⎬
⎭
dFτ w( )dFτ ′w( )

+ 2 E X τ = w⎡⎣ ⎤⎦E Y τ = ′w⎡⎣ ⎤⎦
0

∞

∫
0

∞

∫

× E D1 v +w( )D2 u + v + ′w( )⎡⎣ ⎤⎦dm u( )dm v( )
0

t−v

∫
0

t

∫
⎧
⎨
⎩

⎫
⎬
⎪

⎭⎪
dFτ w( )dFτ ′w( )

+ 2 E X τ = ′w⎡⎣ ⎤⎦E Y τ = w⎡⎣ ⎤⎦
0

∞

∫
0

∞

∫

× E D2 v +w( )D1 u + v + ′w( )⎡⎣ ⎤⎦dm u( )dm v( )
0

t−v

∫
0

t

∫
⎧
⎨
⎩

⎫
⎬
⎪

⎭⎪
dFτ w( )dFτ ′w( )

 

  
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Corollary 2 : For positive constant forces of real interest δ1 
and δ 2 , Theorem 2 yields  
 

 

E Z 2 t( )⎡⎣ ⎤⎦ = E e−2δ1 τX 2⎡⎣ ⎤⎦ e−2δ1v dm v( )
0

t

∫ + E e−2δ2 τY 2⎡⎣ ⎤⎦ e−2δ2v dm v( )
0

t

∫

+ 2E e− δ1+δ2( ) τXY⎡⎣ ⎤⎦ e− δ1+δ2( )v dm v( )
0

t

∫

+ 2 E2 e−δ1 τX⎡⎣ ⎤⎦ e−δ1 u+2v( ) dm u( )dm v( )
0

t−v

∫
0

t

∫ + E2 e−δ2 τY⎡⎣ ⎤⎦ e−δ2 u+2v( ) dm u( )dm v( )
0

t−v

∫
0

t

∫
⎧
⎨
⎩

+E e−δ1 τX⎡⎣ ⎤⎦E e−δ2 τY⎡⎣ ⎤⎦ e− δ1+δ2( )v e−δ1u + e−δ2u⎡⎣ ⎤⎦dm u( )dm v( )
0

t−v

∫
0

t

∫
⎫
⎬
⎭
.
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Example 2 : Consider the same distributions, copula and 
parameters such as given in Example 1, then by combining the 
results of Example 1 and Corollary 2 we get 

 

E Z 2 t( )⎡⎣ ⎤⎦ ≈ 22.75( ) 1− e−0.04 t⎡⎣ ⎤⎦ + 2.5( ) 1− e−0.06t⎡⎣ ⎤⎦ + 11.6( ) 1− e−0.05t⎡⎣ ⎤⎦

+ 2 773,762.5( ) 1− 2e−0.02t + e−0.04 t⎡⎣ ⎤⎦{ + 36,450.29( ) 1− 2e−0.03t + e−0.06t⎡⎣ ⎤⎦

+ 330,480.66( ) 1− e−0.02t − e−0.03t + e−0.05t⎡⎣ ⎤⎦} .  
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From Examples 1 and 2, we get the following table for the 
expectation and standard deviation of Z t( ), and for a premium 
based on the standard deviation principle. 

 
Table 1: E Z t( )⎡⎣ ⎤⎦, σ Z t( )⎡⎣ ⎤⎦, Π Z t( )⎡⎣ ⎤⎦ = E Z t( )⎡⎣ ⎤⎦ +σ Z t( )⎡⎣ ⎤⎦ . 

 
t 1 2 3 4 5 6 7 

E Z t( )⎡⎣ ⎤⎦ 0.72 1.43 2.12 2.80 3.46 4.10 4.73 
σ Z t( )⎡⎣ ⎤⎦ 32.53 64.32 95.40 125.80 155.52 184.59 213.00 
Π Z t( )⎡⎣ ⎤⎦ 33.25 65.75 97.52 128.60 158.98 188.69 217.73 

 
 
If time t is measured in units of year and the paid amounts and the 
expenses are both measured in units of $10,000 , then we note 
that the premium charged by the insurer is very expensive and 
increases substantially with the insurance coverage period. 
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Remark : The choice of the Archimedian copula used in the 
previous examples is arbitrary but presents positive measures of 
concordance and dependence as our model requires it.  
 
To verify that, hereafter we compute (numerically) three classical 
measures corresponding to the copula used in our examples, 
precisely 
 
… the trivariate Kendall’s tau τ 3 defined by 
 

τ 3 =
1
3
8 C u1,u2 ,u3( )dC u1,u2 ,u3( )

0,1[ ]3∫ −1{ } ⇒ τ 3 ≈ 0.354  , 

 
… the trivariate Spearman’s rho ρ3 defined by, 
 

ρ3 = 8 C u1,u2 ,u3( )du1 du2 du30,1[ ]3∫ −1 ⇒ ρ3 ≈ 0.44  , 
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… the multivariate upper tail dependence coefficient λU
1..h h+1..3

defined by 
 

λU
1..h h+1..3 = lim

u→1−

n
n − i

⎛
⎝⎜

⎞
⎠⎟
−1( )i ϕ−1 iϕ u( )( )⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭i=1

n∑
n − h
n − h − i

⎛
⎝⎜

⎞
⎠⎟
−1( )i ϕ−1 iϕ u( )( )⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭i=0

n−h∑
    ,  h = 1,2 , 

 
where ϕ u( ) is the generator of this Archimedian copula 
 

ϕ u( ) = − ln 1− 1− u( )γ⎡⎣ ⎤⎦ ⇒ ϕ−1 u( ) = 1− 1− e−u⎡⎣ ⎤⎦
γ −1

, 
 

which implies that 
 

λU
1 2,3 ≈ 0.84   , λU

1,2 3 ≈ 0.49  . 
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First joint moment between Z (t) and Z (t+h) 
 
In this section, we present an integral expression for the 
covariance between Z t( ) and Z t + h( ), where the terms depending 
on h are also highly “affected” by the dependencies of the model. 
 
Theorem 3 : Consider the discounted aggregate payments and 
expenses process, such as assumed previously. Then, for 
stochastic forces of interest δ1 t( ) and δ 2 t( ), the first joint moment 
between Z t( ) and Z t + h( ) is given by : 
 

 

E Z t( )Z t + h( )⎡⎣ ⎤⎦ = E Z 2 t( )⎡⎣ ⎤⎦

+ E X τ = w⎡⎣ ⎤⎦E X τ = ′w⎡⎣ ⎤⎦
0

∞

∫
0

∞

∫

× E D1 v +w( )D1 u + v + ′w( )⎡⎣ ⎤⎦dm u( )dm v( )
t−v

t+h−v

∫
0

t

∫
⎧
⎨
⎩

⎫
⎬
⎭
dFτ w( )dFτ ′w( )
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+ E Y τ = w⎡⎣ ⎤⎦E Y τ = ′w⎡⎣ ⎤⎦
0

∞

∫
0

∞

∫

× E D2 v +w( )D2 u + v + ′w( )⎡⎣ ⎤⎦dm u( )dm v( )
t−v

t+h−v

∫
0

t

∫
⎧
⎨
⎩

⎫
⎬
⎭
dFτ w( )dFτ ′w( )

+ E X τ = w⎡⎣ ⎤⎦E Y τ = ′w⎡⎣ ⎤⎦
0

∞

∫
0

∞

∫

× E D1 v +w( )D2 u + v + ′w( )⎡⎣ ⎤⎦dm u( )dm v( )
t−v

t+h−v

∫
0

t

∫
⎧
⎨
⎩

⎫
⎬
⎭
dFτ w( )dFτ ′w( )

+ E Y τ = w⎡⎣ ⎤⎦E X τ = ′w⎡⎣ ⎤⎦
0

∞

∫
0

∞

∫

× E D2 v +w( )D1 u + v + ′w( )⎡⎣ ⎤⎦dm u( )dm v( )
t−v

t+h−v

∫
0

t

∫
⎧
⎨
⎩

⎫
⎬
⎭
dFτ w( )dFτ ′w( )

 
 

  
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Corollary 3 : For positive constant forces of interest δ1 and δ 2 , 
Theorem 3 yields 
 
 

 

E Z t( )Z t + h( )⎡⎣ ⎤⎦ = E Z 2 t( )⎡⎣ ⎤⎦ + E
2 e−δ1 τX⎡⎣ ⎤⎦ e−δ1 u+2v( ) dm u( )dm v( )

t−v

t+h−v

∫
0

t

∫

+ E2 e−δ2 τY⎡⎣ ⎤⎦ e−δ2 u+2v( ) dm u( )dm v( )
t−v

t+h−v

∫
0

t

∫

+E e−δ1 τX⎡⎣ ⎤⎦E e−δ2 τY⎡⎣ ⎤⎦ e− δ1+δ2( )v e−δ1u + e−δ2u⎡⎣ ⎤⎦dm u( )dm v( )
t−v

t+h−v

∫
0

t

∫ .
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Example 3 : Again, using the same assumptions and the results 
obtained in Examples 1 and 2, we get 
 
 
E Z t( )Z t + h( )⎡⎣ ⎤⎦ ≈ E Z 2 t( )⎡⎣ ⎤⎦ + 1,498,176( ) e−0.02t 1− e−0.02t⎡⎣ ⎤⎦ 1− e

−0.02h⎡⎣ ⎤⎦
+ 72,899.93( ) e−0.03t 1− e−0.03t⎡⎣ ⎤⎦ 1− e

−0.03h⎡⎣ ⎤⎦

+ 330,480.66( ) e−0.02t 1− e−0.02h⎡⎣ ⎤⎦ + e
−0.03t 1− e−0.03h⎡⎣ ⎤⎦ − e

−0.05t 2 − e−0.02h − e−0.03h⎡⎣ ⎤⎦{ },
 

 
 
where E Z 2 t( )⎡⎣ ⎤⎦ is given in Example 2. 
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By using the data of Table 1, we obtain the following table for the 
autocovariance and autocorrelation functions of Z t( ), where we 
define 
 

C t,h( ) = C ov Z t( ), Z t + h( )( )   ,   ρ t,h( ) = C t,h( )
σ Z t( )⎡⎣ ⎤⎦σ Z t + h( )⎡⎣ ⎤⎦

  . 

 
Table 2 : C t,h( ), ρ t,h( ). 

 
h 1 2 3 4 5 6 7 

C 1,h( ) 2072.7 3064.5 4034.4 4982.7 5910.0 6816.8 7703.6 
ρ 1,h( ) 0.9905 0.9874 0.9858 0.9848 0.9842 0.9837 0.9833 

 
This table corroborates the strong linear correlation observed 
between the values of E Z t( )[ ] in Table 1. Obviously, this last 
function is concave and tends (approximatively) to the 
value 32.58 as t→∞ . 
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Conclusion 
 
A renewal model for medical malpractice insurance has been 
proposed. This model incorporates stochastic interest rates and a 
copula to establish the dependence between the payment of the 
claim, the expenses and the delay between the receipt and the 
settlement of the claim. 
 

Integral formulas has been given for the first two raw moments 
and the first joint moment of our risk process. The autocorrelation 
function has also been examined, as well as the incidence of our 
model on the premium. 
 

Several important challenges arise now from this model, such as 
the calibration of the copulas that will characterize adequately the 
dependency relations within our problem and the choice of the 
discount rates that will best represent the yields expected by the 
insurer, to mention only those. 
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