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Abstract

We study the two-sided exit problem of a time-homogeneous diffusion process with
tax payments of loss-carry-forward type and obtain explicit formulas for the exit prob-
abilities. If the lower boundary is understood as the default threshold, then the non-
default probability is solved as a special case. A suffi cient and necessary condition for
the tax identity is discovered.
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1 Introduction

We are interested in the default risk of a firm. Throughout the paper, denote by a ≥ 0 the
default threshold, so the firm is defaulted whenever its value is below a. In particular, the
threshold a is set to 0 in ruin theory. Suppose that the value of the firm before taxation is
modelled by a time-homogeneous diffusion process X = {Xt, t ≥ 0} satisfying

dXt = µ (Xt) dt+ σ (Xt) dBt, t ≥ 0, (1.1)

where X0 = u > a is the initial wealth, {Bt, t ≥ 0} is a standard Brownian motion, and
µ(·) and σ(·) > 0 are two measurable functions on [a,∞). As usual, assume that µ(·) and
σ(·) satisfy the conditions of the existence and uniqueness theorem for stochastic differential
equations; namely, there exists a constant K > 0 such that, for all x1, x2 ∈ [a,∞),

|µ(x1)− µ(x2)|+ |σ(x1)− σ(x2)| ≤ K |x1 − x2| , µ2(x1) + σ2(x1) ≤ K2
(
1 + x2

1

)
. (1.2)
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Then the unique solution of (1.1) possesses strong Markov property. See Ḡıhman and Sko-
rohod (1972, pages 40 and 107).
Denote by TX(x) = inf {t ≥ 0 : Xt = x} the first hitting time of X at level x ≥ a. In

particular, TX(a) stands for the time of default. Throughout the paper, let

0 ≤ a < u < b. (1.3)

The two-sided exit problem for the diffusion processX has been well studied in the literature.
The exit probabilities from the interval [a, b] can be expressed in terms of the function

G(y) = C exp

{
−
∫ y

a

2µ(x)

σ2(x)
dx

}
, y ≥ a,

where C > 0 is some constant. Note that S(z) =
∫ z
a
G(y)dy for z ≥ a is termed the scale

function of X. More precisely, under (1.2), it is well known that

P
(
TX(a) > TX(b)

)
=

∫ u
a
G(y)dy∫ b

a
G(y)dy

, P
(
TX(a) < TX(b)

)
=

∫ b
u
G(y)dy∫ b

a
G(y)dy

; (1.4)

see, e.g. Ḡıhman and Skorohod (1972, page 110) or Klebaner (2005, Section 6.4). The non-
default probability follows immediately by letting b ↑ ∞ in the first relation in (1.4), as

P
(
TX(a) =∞

)
=

∫ u
a
G(y)dy∫∞

a
G(y)dy

. (1.5)

Recently, ruin problems with tax have become an attractive research topic. Albrecher
and Hipp (2007) first introduced tax payments with constant rate at profitable times to
the compound Poisson risk model and established a charming tax identity for the non-ruin
probability. Later on, Albrecher et al.(2009) found a simple proof using downward excursions
and extended the study to a wealth-dependent tax rate. Further extensions to the Lévy
framework were done by Albrecher et al. (2008), Kyprianou and Zhou (2009) and Renaud
(2009), among others. See also Hao and Tang (2009) for the study in the Lévy framework
but under periodic taxation. So far there is little study beyond the Lévy framework with
diffi culty mainly in the two-sided exit problem.
Following this new trend of ruin theory, we introduce a wealth-dependent tax rate to the

time-homogeneous diffusion model (1.1). More precisely, whenever the process X coincides
with its running maximum MX defined by MX

t = sup0≤τ≤tXτ , t ≥ 0, the firm pays tax at
rate γ(MX

t ), where γ(·) : [u,∞)→ [0, 1) is a measurable function satisfying∫ ∞
u

(1− γ(z)) dz =∞. (1.6)

This is the so-called loss-carry-forward taxation. It is easy to understand that the wealth
process after taxation satisfies

Ut = Xt −
∫ t

0

γ
(
MX

τ

)
dMX

τ , t ≥ 0, (1.7)

with U0 = X0 = u. Our goal is to solve the two-sided exit problem of U and, hence, to
obtain the non-default probability of U as a corollary.
The rest of this paper consists of two sections. In Section 2 we present our main result

and its corollaries and in Section 3 we prove these results.
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2 Main Result and Related Discussions

Recall the initial wealth u, the lower boundary a and the upper boundary b as specified by
(1.3). Following Kyprianou and Zhou (2009), we define

γ̄(x) = x−
∫ x

u

γ(z)dz = u+

∫ x

u

(1− γ(z)) dz, x ≥ u,

which is strictly increasing and continuous in x, with γ̄(u) = u and γ̄(∞) = ∞ by (1.6).
Thus, its inverse function γ̄−1(·) is well defined on [u,∞). Note that both x − γ̄(x) and
γ̄−1(s)− s are non-decreasing and continuous functions.
As before, denote by TU(x) = inf {t ≥ 0 : Ut = x} the first hitting time of U at level

x ≥ a. Our main result is the following:

Theorem 2.1 Under (1.2) and (1.6), it holds that

P
(
TU(a) > TU(b)

)
= exp

{
−
∫ γ̄−1(b)

u

G (x)∫ x
x−γ̄(x)+a

G(y)dy
dx

}
(2.1)

and that P
(
TU(a) < TU(b)

)
= 1− P

(
TU(a) > TU(b)

)
.

The proof of Theorem 2.1 is deferred to Section 3. Clearly, relation (2.1) agrees with
the first relation in (1.4) provided γ(·) ≡ 0. Letting b ↑ ∞ in (2.1) yields the non-default
probability of U as follows:

Corollary 2.1 Under (1.2) and (1.6), it holds that

P
(
TU(a) =∞

)
= exp

{
−
∫ ∞
u

G (x)∫ x
x−γ̄(x)+a

G(y)dy
dx

}
. (2.2)

Tax payments increase default risk, of course. The non-default probability with tax given
by (2.2) is always smaller than the non-default probability without tax given by (1.5) unless
x − γ̄(x) ≡ 0 (or, equivalently, γ(·) = 0 almost everywhere). Thus, relation (2.2) provides
us with a quantitative understanding of the impact of the tax payments on default risk.
In particular, the following example shows that the standard Black-Scholes model without
tax has a positive probability to survive forever while any constant tax rate, no matter how
small it is, will drive the firm to default.

Example 2.1 Consider the geometric Brownian motion

dXt = µXtdt+ σXtdBt,

where X0 = u > 0 is the initial wealth and µ, σ are positive constants satisfying c =

2µ/σ2 > 1. In addition, we assume the default threshold a > 0. Then by relation (1.5) with
G(y) = C (a/y)c for y ≥ a, the non-default probability without tax is

P
(
TX(a) =∞

)
= 1−

(a
u

)c−1

> 0.
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However, in the presence of a constant tax rate 0 < γ < 1, by (2.2) we have

P
(
TU(a) =∞

)
= exp

{
−
∫ ∞
u

x−c∫ x
γx−γu+a

y−cdy
dx

}
= 0.

In order to compare our Theorem 2.1 with Theorem 1.1 of Kyprianou and Zhou (2009),
we can use change of variables x = γ̄−1(s) to rewrite equation (2.1). In particular, if
γ(·) ≡ γ ∈ [0, 1) is constant, then γ̄(x) = x− γx+ γu and relation (2.1) is reduced to

P
(
TU(a) > TU(b)

)
= exp

−
∫ b

u

G
(
s−γu
1−γ

)
∫ s−γu

1−γ
γs−γu
1−γ +a

G(y)dy
ds


1

1−γ

. (2.3)

As mentioned in Section 1, for the case of a constant tax rate γ, the tax identity

P
(
TU(0) =∞

)
=
(
P
(
TX(0) =∞

)) 1
1−γ (2.4)

has been established by Albrecher and Hipp (2007), Albrecher et al. (2008), Albrecher et al.
(2009) and Kyprianou and Zhou (2009) in various situations within the Lévy framework.
However, relation (2.3) indicates that such an identity does not hold in general within the
diffusion framework.
Motivated by these cited works, we now consider under what condition the identity

P
(
TU(a) > TU(b)

)
=
(
P
(
TX(a) > TX(b)

)) 1
1−γ (2.5)

holds. Interestingly, the answer is that µ(·)/σ2(·) has to be constant.

Corollary 2.2 Consider constant tax rates and assume (1.2) and (1.6).

(1) For arbitrarily fixed u and a with 0 ≤ a < u, relation (2.5) holds for all b > u and
0 ≤ γ < 1 if and only if µ(x)/σ2(x) is constant for x ≥ a.

(2) For arbitrarily fixed a and b with 0 ≤ a < b, relation (2.5) holds for all a < u < b and
0 ≤ γ < 1 if and only if µ(x)/σ2(x) is constant for a ≤ x ≤ b.

The proof of Corollary 2.2 is deferred to Section 3. By letting b ↑ ∞ and a = 0 in part
(2) of Corollary 2.2 and going along the same lines of its proof, we obtain the following:

Corollary 2.3 Consider constant tax rates and assume (1.2), (1.6) and
∫∞

0
G(y)dy < ∞.

Then relation (2.4) holds for all 0 < u < ∞ and 0 ≤ γ < 1 if and only if µ(x)/σ2(x) is
constant for x ≥ 0.

The condition
∫∞

0
G(y)dy < ∞ in Corollary 2.3 is necessary; otherwise, the probability

P
(
TX(0) =∞

)
is equal to 0 and relation (2.4) becomes trivial.
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3 Proofs

As before, denote by MU
t = sup0≤τ≤t Uτ , t ≥ 0, the running maximum of U . In terms of the

function γ̄(·), we can rewrite the process U in (1.7) as

Ut = Xt −MX
t + γ̄

(
MX

t

)
, t ≥ 0. (3.1)

As shown in Lemma 2.1 of Kyprianou and Zhou (2009), we have

MU
t = MX

t −
∫ t

0

γ
(
MX

τ

)
dMX

τ = γ̄
(
MX

t

)
, t ≥ 0, (3.2)

and, hence, TU (s) = TX (γ̄−1(s)) for s ≥ u.
Trivially, in order for U to hit b before a, for every s ∈ [u, b), after TU(s) the process U

must enter (s,∞) before it hits a. By equation (3.1), this fact can be restated in terms ofX as
follows. After TX (γ̄−1(s)), the process X must enter (γ̄−1(s),∞) before it hits γ̄−1(s)−s+a.
Thus, the event

(
TU(a) > TU(b)

)
necessitates a two-sided exit problem of X for every s ∈

[u, b). Based on this intuition, we establish lower and upper discrete approximations for the
event

(
TU(a) > TU(b)

)
in Lemma 3.1 and a precise discrete approximation in Lemma 3.2.

Our idea stems from the work of Lehoczky (1977). Nonetheless, we consider a much more
complicated situation due to taxation.

Lemma 3.1 Let u = s0 < s1 < · · · < sn = b form a partition of the interval [u, b], n ∈ N.
Then, almost surely,

n⋂
i=1

Ai ⊂
(
TU(a) > TU(b)

)
⊂

n⋂
i=1

Bi, (3.3)

where each Ai denotes the event that after TX (γ̄−1(si−1)), the process X hits γ̄−1(si) before
γ̄−1(si)− si + a while each Bi denotes the event that after TX (γ̄−1(si−1)), the process X hits
γ̄−1(si) before γ̄−1(si−1)− si−1 + a.

Proof. To prove the first inclusion in (3.3), assume that the path of X is continuous such
that

⋂n
i=1 Ai holds. Arbitrarily choose t ∈ [0, TX (γ̄−1(b))] and suppose that t falls into the

interval [TX (γ̄−1(si−1)) , TX (γ̄−1(si))] for some i = 1, . . . , n. Then MX
t ≤ γ̄−1(si) and, by

relation (3.1), the monotonicity of s− γ̄(s) and the decription of Ai, we have

Ut = Xt − (MX
t − γ̄(MX

t )) ≥ Xt −
(
γ̄−1(si)− γ̄

(
γ̄−1(si)

))
> a.

In sum, Ut > a for all t ∈ [0, TX (γ̄−1(b))]. Hence, TU(a) > TX (γ̄−1(b)) = TU(b).
To prove the second inclusion in (3.3). Assume by contradiction that there exists some i =

1, . . . , n such that after TX (γ̄−1(si−1)) the path of X hits γ̄−1(si−1)−si−1 +a before γ̄−1(si).
Then at the moment of hitting γ̄−1(si−1) − si−1 + a, by relation (3.1), the monotonicity of
s− γ̄(s) and MX

t ≥ γ̄−1(si−1), we have

Ut = Xt − (MX
t − γ̄(MX

t )) ≤ γ̄−1(si−1)− si−1 + a−
(
γ̄−1(si−1)− γ̄

(
γ̄−1(si−1)

))
= a,

which contradicts to TU(a) > TU(b).

The two bounds given by (3.3) can actually be made arbitrarily close to each other, as
shown in the following:

5



Lemma 3.2 Let {sn,i, i = 0, . . . ,mn}, n ∈ N, constitute a sequence of increasing partitions
of the interval [u, b] with u = sn,0 < sn,1 < · · · < sn,mn = b and the maximum length of
subintervals ∆n = max1≤i≤n(sn,i − sn,i−1) ↓ 0 as n→∞. Then, almost surely,

(
TU(a) > TU(b)

)
=
∞⋃
n=1

mn⋂
i=1

An,i, (3.4)

where each An,i denotes the event that after TX (γ̄−1(sn,i−1)), the process X hits γ̄−1(sn,i)

before γ̄−1(sn,i)− sn,i + a.

Proof. For every δ > 0, there exists some nδ ∈ N such that, for all n ≥ nδ,

γ̄−1(sn,i)− sn,i + a ≤ γ̄−1(sn,i−1)− sn,i−1 + a+ δ, i = 1, . . . ,mn.

Denote by Bδ
n,i the event that after T

X (γ̄−1(sn,i−1)), the process X hits γ̄−1(sn,i) before
γ̄−1(sn,i−1)− sn,i−1 + a+ δ. Applying Lemma 3.1 twice, we obtain, for all n ≥ nδ,(

TU(a) > TU(b)
)
⊃

mn⋂
i=1

An,i ⊃
mn⋂
i=1

Bδ
n,i ⊃

(
TU(a+ δ) > TU(b)

)
.

Note that
(
TU(a) > TU(b)

)
=
⋃
δ>0

(
TU(a+ δ) > TU(b)

)
. Since

⋂mn
i=1 An,i is increasing in n,

we have (
TU(a) > TU(b)

)
=
⋃
δ>0

mn⋂
i=1

An,i =
∞⋃
n=1

mn⋂
i=1

An,i.

This proves relation (3.4).

The proof of Theorem 2.1 below is based on Lemma 3.2 but we point out that Lemma
3.1 can play the same role here.

Proof of Theorem 2.1. By relation (3.2) and the fact U ≤ X, the event that U always
stays in (a, b) implies the event that X always stays in (a, γ̄−1(b)). By this and (1.4),

P
(
TU(a) = TU(b) =∞

)
≤ P

(
TX(a) = TX

(
γ̄−1(b)

)
=∞

)
= 0.

Thus, P
(
TU(a) < TU(b)

)
= 1− P

(
TU(a) > TU(b)

)
.

Next we focus on the proof of relation (2.1). As mentioned before, the intersection⋂mn
i=1An,i is increasing in n. Thus, by Lemma 3.2 we have

P
(
TU(a) > TU(b)

)
= lim

n→∞
P

(
mn⋂
i=1

An,i

)
= lim

n→∞
Pn.

By virtue of the strong Markov property and time homogeneity of the diffusion X, it is easy
to see that, for all large n,

Pn =

mn∏
i=1

P
(
TX
(
γ̄−1(sn,i)

)
< TX

(
γ̄−1(sn,i)− sn,i + a

)∣∣X0 = γ̄−1(sn,i−1)
)

= exp

{
mn∑
i=1

log
(
1− q

(
γ̄−1(sn,i)− sn,i + a, γ̄−1(sn,i)

∣∣ γ̄−1(sn,i−1)
))}

,
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where q (c1, c2|c0), 0 ≤ c1 < c0 < c2, denotes the probability of
(
TX(c1) < TX(c2)

)
condi-

tional on X0 = c0. By the second relation in (1.4),

q
(
γ̄−1(sn,i)− sn,i + a, γ̄−1(sn,i)

∣∣ γ̄−1(sn,i−1)
)

=

∫ γ̄−1(sn,i)

γ̄−1(sn,i−1)
G(y)dy∫ γ̄−1(sn,i)

γ̄−1(sn,i)−sn,i+aG(y)dy

≤ C max
1≤i≤mn

(γ̄−1(sn,i)− γ̄−1(sn,i−1)),

where the constant C is defined as

C =
supu≤y≤γ̄−1(b) G(y)

infu≤w≤γ̄−1(b)

∫ w
w−u+a

G(y)dy
<∞.

This means that the conditional probabilities q (c1, c2|c0) appearing in Pn are uniformly small
for all large n. Therefore, by the elementary relation log(1 − q) ∼ −q as q ↓ 0, it holds for
arbitrarily fixed 0 < ε < 1 and all large n that

Pn ≤ exp

{
−(1− ε)

mn∑
i=1

q
(
γ̄−1(sn,i)− sn,i + a, γ̄−1(sn,i)

∣∣ γ̄−1(sn,i−1)
)}

= exp

−(1− ε)
mn∑
i=1

∫ γ̄−1(sn,i)

γ̄−1(sn,i−1)
G(y)dy∫ γ̄−1(sn,i)

γ̄−1(sn,i)−sn,i+aG(y)dy

 .

Since the function G(·) is continuous and away from 0 over the interval [u, γ̄−1(b)], it holds
for all large n and i = 1, . . . ,mn that∫ γ̄−1(sn,i)

γ̄−1(sn,i−1)

G(y)dy ≥ (1− ε)G
(
γ̄−1(sn,i)

) (
γ̄−1(sn,i)− γ̄−1(sn,i−1)

)
.

It follows that

lim sup
n→∞

Pn ≤ lim
n→∞

exp

−(1− ε)2

mn∑
i=1

G (γ̄−1(sn,i))∫ γ̄−1(sn,i)

γ̄−1(sn,i)−sn,i+aG(y)dy

(
γ̄−1(sn,i)− γ̄−1(sn,i−1)

)
= exp

{
−(1− ε)2

∫ γ̄−1(b)

u

G (x)∫ x
x−γ̄(x)+a

G(y)dy
dx

}
.

By the arbitrariness of ε, we have

lim sup
n→∞

Pn ≤ exp

{
−
∫ γ̄−1(b)

u

G (x)∫ x
x−γ̄(x)+a

G(y)dy
dx

}
.

The inequality for lim infn→∞ Pn can be established symmetrically. This ends the proof of
Theorem 2.1.

Proof of Corollary 2.2. Clearly, µ(x)/σ2(x) is a constant for x ≥ a if and only if

G(x) = c1ec2x, x ≥ a,
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for some constants c1 > 0 and c2. The suffi ciency of both parts can be checked directly. We
now prove the necessity separately for both parts.
(1) For arbitrarily fixed u and a with 0 ≤ a < u, we assume that relation (2.5) holds for

all b > u and 0 ≤ γ < 1. By (2.3), (2.5) and (1.4),

∫ b

u

G
(
s−γu
1−γ

)
∫ s−γu

1−γ
γs−γu
1−γ +a

G(y)dy
ds =

∫ b

u

G(s)∫ s
a
G(y)dy

ds, b > u, 0 ≤ γ < 1.

It follows that
G
(
γs−γu

1−γ + s
)

∫ γs−γu
1−γ +s

γs−γu
1−γ +a

G(y)dy
=

G(s)∫ s
a
G(y)dy

, s > u, 0 ≤ γ < 1.

Using change of variables x = (γs− γu)/(1− γ) on the left-hand side of above, upon some
simple rearrangement we obtain∫ s

a
G(y)dy

G(s)
G (x+ s) =

∫ x+s

x+a

G(y)dy, s > u, x ≥ 0.

By the continuity of G(·), it follows that∫ s
a
G(y)dy

G(s)
G (x+ s) =

∫ x+s

x+a

G(y)dy, s ≥ u, x ≥ 0. (3.5)

Taking derivative with respect to s, upon some simple rearrangement we obtain

G′ (x+ s)

G(x+ s)
=
G′(s)

G(s)
, s > u, x ≥ 0.

This means that G′(·)/G(·) is constant over the interval (u,∞). Hence, by the positivity
and continuity of G(·), it must hold that

G(x) = c1ec2x, x ≥ u, (3.6)

for some constants c1 > 0 and c2. Substituting (3.6) into (3.5) with s = u yields

ec2x
∫ u

a

G(y)dy =

∫ x+u

x+a

G(y)dy, x ≥ 0.

Taking derivative with respect to x and using (3.6), we have

G(x) = e−c2a
(
c1ec2u − c2

∫ u

a

G(y)dy

)
ec2x, x ≥ a.

Comparing this with (3.6), we must have e−c2a
(
c1ec2u − c2

∫ u
a
G(y)dy

)
= c1 since G(·) is

continuous at u. One can also easily check this by substitution. Hence, G(x) = c1ec2x is
valid over [a,∞).
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(2) For arbitrarily fixed a and b with 0 ≤ a < b, we assume that relation (2.5) holds for
all u ∈ (a, b) and γ ∈ [0, 1). Similarly as in the proof of part (1), by (2.1), (2.5) and (1.4)
one sees that∫ b−γu

1−γ

u

G (x)∫ x
γx−γu+a

G(y)dy
dx =

1

1− γ

∫ b

u

G(x)∫ x
a
G(y)dy

dx, u ∈ (a, b), γ ∈ [0, 1).

Taking derivative with respect to u and cancelling γ, we obtain that, over the range u ∈ (a, b)

and γ ∈ (0, 1),

1

1− γ
G(u)∫ u

a
G(y)dy

− 1

1− γ
G( b−γu

1−γ )∫ b−γu
1−γ
γb−γu
1−γ +a

G(y)dy
=

∫ b−γu
1−γ

u

G (x)G(γx− γu+ a)(∫ x
γx−γu+a

G(y)dy
)2 dx.

Letting γ → 0 yields

G(u)∫ u
a
G(y)dy

− G(b)∫ b
a
G(y)dy

=

∫ b

u

G (x)G(a)(∫ x
a
G(y)dy

)2 dx, u ∈ (a, b).

Upon some rearrangement we obtain

G(b)−G(a)∫ b
a
G(y)dy

∫ u

a

G(y)dy =

∫ u

a

G′(y)dy, u ∈ (a, b),

which implies that
G(b)−G(a)∫ b

a
G(y)dy

G(x) = G′(x), x ∈ (a, b).

Therefore, it must hold that

G(x) = c1ec2x, x ∈ [a, b],

for some constants c1 > 0 and c2 by the positivity and continuity of G(·).

Acknowledgments. The work was supported by the Centers of Actuarial Excellence (CAE)
Research Grant (2011-2014) from the Society of Actuaries. The authors would like to thank
Prof. Lihe Wang for his stimulating discussions.

References
[1] Albrecher, H.; Borst, S.; Boxma, O.; Resing, J. The tax identity in risk theory– a simple

proof and an extension. Insurance Math. Econom. 44 (2009), no. 2, 304—306.

[2] Albrecher, H.; Hipp, C. Lundberg’s risk process with tax. Bl. DGVFM 28 (2007), no. 1,
13—28.

[3] Albrecher, H.; Renaud, J.-F.; Zhou, X. A Lévy insurance risk process with tax. J. Appl.
Probab. 45 (2008), no. 2, 363—375.

9
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