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Heston Model

Introduced by Heston (1993)

Better at describing the high peaks and heavy tails of the
empirical distribution of log-returns

Stock index price dynamics under the physical measure given
by

dSt = µStdt +
√
vtStdZ

(1)
t ,

dvt = κ′(θ′ − vt)dt + σ
√
vtdZ

(2)
t ,

where µ, κ′, θ′, σ are constants and 〈dZ (1)
t dZ

(2)
t 〉 = ρ dt.

Market price of volatility risk is given by λ

Risk-neutral parameters κ = κ′ + λ and θ = κ′θ′

κ′+λ
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Price of a European call option under the Heston Model

Price of a European call option given by

CH(xt , vt , τ) = Ke−rτ (extP1(xt , vt , τ)− P0(xt , vt , τ))

where xt = log( e
r(T−t)St

K ), τ = T − t and

Pj(xt , vt , τ) =
1

2
+

1

π

∫ ∞
0

Re

(
exp(iuxt + Cj(u, τ)θ + Dj(u, τ)vt)

iu

)
du,

for j = 0, 1, with Cj(u, τ) and Dj(u, τ) functions of u, τ , κ, θ, σ
and ρ.
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Equity-Linked Products

Insurance policies that offer participation in financial market
while protecting the initial investment

May offer other types of benefits

Two main categories:

Variable Annuities
Equity-Indexed Annuities (EIAs)
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Review of Literature

First studied under the Black-Scholes model by Brennan and
Schwartz (1976) and Boyle and Schwartz (1977)

Hardy (2003) discusses product design and pricing techniques

Tiong (2000) and Lee (2003) present closed-form expressions
for the price of the financial guarantees embedded in EIAs

Lin and Tan (2003) prices EIAs under stochastic interest rate
models

Lin et al. (2009) uses a regime-switching model to value EIAs
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Equity-Indexed Annuities

First sold in 1995 by Keyport Life

Premium invested for 5 to 15 years

Guaranteed return on initial investment

Additional return based on the performance of a stock index

Additional return may be reduced or capped

Actual return of the EIA depends on its design
(point-to-point, annual reset, ...)
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Point-to-Point EIA

Payoff based on the value of the index at inception and at
maturity of the contract

Participation rate α in additional return, 0 < α ≤ 1

Participation rate % in guaranteed return g , 0 < % ≤ 1

Payoff:

BPTP(ST ,T ) = max

(
1 + α

(
ST
S0
− 1

)
, %(1 + g)T

)
(1)
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Pricing Point-to-Point EIAs

Let K = %(1 + g)T and L = S0

(
K−1+α

α

)
.

Re-write (1) as:

BPTP(ST ,T ) = K +
α

S0
max(ST − L, 0).

Under the no-arbitrage assumption, we have that

Pt(St , τ) = Ke−rτ +
α

S0
C (St , L, τ),

where Pt(St , τ) is the price at time t of the point-to-point EIA of
maturity T and C (St , L,T ) is the price at time t of a European
call option of strike L and maturity T .
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The Greeks

∆: Sensitivity to changes in the price of the underlying

Γ: Sensitivity of the delta to changes in the price of the
underlying

V: Sensitivity to changes in the volatility

For the European call option in the Heston model:

∆H
C ,t = P1 +

∂P1

∂xt
− e−xt

∂P0

∂xt

ΓH
C ,t =

1

St

[(
∂P1

∂xt
− ∂2P1

∂x2
t

)
− e−xt

(
∂2P0

∂x2
t

− ∂P0

∂xt

)]
VH
C ,t = Ke−rτ

(
ext
∂P1

∂vt
− ∂P0

∂vt

)
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Delta Hedging

Protects the insurer against small changes in index prices.

Based on following replicating portfolio

H∆
t = ∆P,tSt + ξt ,

with ξt is an amount invested in a risk-free asset.

ξt chosen so that H∆
t = Pt(St , τ).

Strategy is self-financing when applied in continuous time.
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Gamma Hedging

Improves the delta hedging strategy when it is applied in
discrete time

Based on following replicating portfolio

HΓ
t = αΓ

1,tC (St , L, τ̄) + αΓ
2,tSt + ξt ,

with ξt is an amount invested in a risk-free asset and

αΓ
1,t =

ΓP,t

ΓC ,t

αΓ
2,t = ∆P,t − αΓ

1,t∆C ,t .

To hedge EIAs, use calls with the longest maturity possible.
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Vega Hedging

Protects the insurer against small changes in both index prices
and volatility.

Based on following replicating portfolio

HVt = αV1,tC (St , L, τ̄) + αV2,tSt + ξt ,

with ξt is an amount invested in a risk-free asset and

αV1,t =
VP,t
VC ,t

αV2,t = ∆P,t − αV1,t∆C ,t .

To hedge EIAs, use calls with the longest maturity possible.
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Hedging Errors

Due to the discretization of the hedging process

Occur when rebalancing the replicating portfolio

Hedging error at time t defined by

HEt = Pt(St , τ)− Ht−

Total discounted hedging error given by

PV (HE ) =
mT∑
i=1

e
−ir
m HEi

if rebalancing occurs m times a year at equal time intervals.

Used to assess the performance of the hedging strategy.
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Assumptions

10-year maturity point-to-point EIA with g = 0 and % = 1.

Participation rate α chosen so that the price of the EIA is 1.

Risk-free rate r = 0.02.

Black-Scholes parameters: µBS = 0.0636 and σBS = 0.19.

Heston parameters: κ = 5.1793, θ = 0.0178, σ = 0.1309,
v0 = 0.0286, ρ = −0.7025.

Index prices follow Heston model with different volatility risk
premia λ.
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Black-Scholes Delta Hedging
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Figure: Present values of hedging errors resulting from a Black-Scholes
delta hedging strategy for different values of λ, α = 0.5723
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Black-Scholes Gamma Hedging

Present value of hedging errors

F
re

qu
en

cy

−0.035 −0.030 −0.025

0
20

00
40

00
60

00
80

00
10

00
0

Esp:  −3.0601 %
Std:  0.2485 %
VaR:  −2.6202 %
CTE:  −2.5120 %

(a) λ = −1

Present value of hedging errors

F
re

qu
en

cy

−0.035 −0.030 −0.025 −0.020

0
10

00
20

00
30

00
40

00
50

00
60

00

Esp:  −2.9470 %
Std:  0.2860 %
VaR:  −2.4514 %
CTE:  −2.3474 %

(b) λ = 0

Present value of hedging errors

F
re

qu
en

cy

−0.05 −0.04 −0.03 −0.02 −0.01

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Esp:  −2.8256 %
Std:  0.3523 %
VaR:  −2.1826 %
CTE:  −2.0656 %

(c) λ = 2.62

Figure: Present values of hedging errors resulting from a Black-Scholes
gamma hedging strategy for different values of λ, α = 0.5723
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Heston Delta Hedging
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Figure: Present values of hedging errors resulting from a Heston delta
hedging strategy for different values of λ, α = 0.6961
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Heston Gamma Hedging
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Figure: Present values of hedging errors resulting from a Heston gamma
hedging strategy for different values of λ, α = 0.6961
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Assumptions
Black-Scholes Hedging Strategies
Heston Hedging Strategies

Heston Vega Hedging
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Figure: Present values of hedging errors resulting from a Heston gamma
hedging strategy for different values of λ, α = 0.6961
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Conclusion

Stochastic volatility and volatility risk premium should be
considered when hedging EIAs

Future work:

Modify constant risk-free rate assumption
Analyze the effect of stochastic volatility on other designs
Consider transaction costs
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