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On the absolute ruin problem in a Sparre Andersen risk model with constant interest

Introduction

We extend the Compound Poisson ruin model:

The surplus process is U(t) = u + ct −
∑N(t)

j=1 Yj where

u is the initial capital
ct stands for the premiums assumed to arrive continuously
over time
S(t) =

∑N(t)
j=1 Yj is the aggregate-claims process, which is a

compound Poisson process with rate β > 0 and i.i.d. claim
amounts {Y1,Y2, . . . } with c.d.f. F(y) and p.d.f. f (y), y > 0

A positive relative security loading θ is charged
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Introduction

Single threshold models

Sample path:
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Introduction

Multiple threshold models

Changing premium rates or earning dividends:

The insurer’s surplus at time t satisfies

dU(t) =


c1dt − dS(t), b0 ≤ U(t) < b1
...
cndt − dS(t), bn−1 ≤ U(t) < bn

cn+1dt − dS(t), bn ≤ U(t)
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Introduction

Multi-threshold Compound Poisson Surplus Process with Interest

Multi-threshold Compound Poisson Surplus Process
with Interest

The insurer’s surplus at time t satisfies

dU(t) =



c0dt + r0U(t)dt − dS(t), b−1 = −c0/r0 < U(t) < b0
c1dt + r1U(t)dt − dS(t), b0 ≤ U(t) < b1
...
cndt + rnU(t)dt − dS(t), bn−1 ≤ U(t) < bn

cn+1dt + rn+1U(t)dt − dS(t), bn ≤ U(t)
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On the absolute ruin problem in a Sparre Andersen risk model with constant interest

Introduction

Motivation and problem description

Motivation:

Ruin models incorporating multiple thresholds allow the
insurer to change the premium rate charged depending on
the current surplus level.
In addition, interest might be earned on the liquid reserves.
Conversely, if the surplus drops below zero, the amount of
the deficit might be borrowed under a known in advance
interest rate.
It seem to be realistic to consider models which allow more
flexibility upon claims, beyond the Poisson case. We
consider a Markovian Arrival Process (MAP) with an
underlying continuous time Markov chain with m states
(later restricted to a renewal process).
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Markovian Arrival Processes (MAP)

The Gerber-Shiu function for MAP(m) processes
featuring interest

The MAP(α,D0,D1) model incorporating interest
Imagine a CTMC controlling arrivals and claims amounts.

Let J = {1, 2, . . . ,m} the underlying CTMC,
α the initial probability vector,
D0 = (dij)i,j=1,...,m = matrix of transitions with no claims,
D1 = (Dij)i,j=1,...,m = matrix of transitions at the instant of a
claim.
Remark: (D0 + D1)× 1 = 0, i.e.,

dii = −(
∑
j 6=i

dij +
m∑

j=1
Dij).
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Markovian Arrival Processes (MAP)

The (vector) Gerber-Shiu function
Φ(u) = (Φ1(u), . . . ,Φm(u)), where

Φi(u) = E[e−δτw(U(τ−), |U(τ)|)I(τ <∞)|U(0)

= u, J(0) = i],

τ = inf
{

t ≥ 0|U(t) ≤ − c
r

}
Suppose the claim size Xij depends on both, previous state
i and subsequent state j. Let Bij() and bij() be its cdf and
pdf, respectively.
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Markovian Arrival Processes (MAP)

Φi(u) = (1 + diidt)e−δdtΦi(uerdt + cs̄(r)
dt

)

+
∑
j6=i

dijdte−δdtΦj(uerdt + cs̄(r)
dt

)

+

m∑
j=1

Dijdte−δdt


uerdt+c̄s(r)

dt
+c/r∫

0

Φj(uerdt + cs̄(r)
dt
− x)dBij(x)

+

∞∫
uerdt+c̄s(r)

dt
+c/r

w(uerdt + cs̄(r)
dt
, x− uerdt − cs̄(r)

dt
)dBij(x)

+ o(dt)
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Markovian Arrival Processes (MAP)

Using a change of variable and denoting

Aij(u) =

∞∫
u+c/r

w(u, x− u)dBij(x),

we find

(c + ur)Φ
′
i(u) = δΦi(u)−

m∑
j=1

dijΦj(u)

−
m∑

j=1

Dij

 u+c/r∫
0

Φj(u− x)dBij(x) + Aij(u)

 (1)

REMARK: In the Poisson case dij = −λ, Dij = λ and the
latter system is reduced to one equation identical to the
one in the classical model with interest.
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Markovian Arrival Processes (MAP)

Initial and boundary conditions
Lemma 1
For a MAP of order n risk process with general claim amounts
Bij(x),

lim
u→−c/r

Φ(u) = C−1a, (2)

where

C = δIn − D0, ai =

n∑
j=1

DijAij(−c/r). (3)
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Markovian Arrival Processes (MAP)

We make the natural assumption that the Gerber-Shiu
functions vanish at infinity, i.e.,

lim
u→∞

Φi(u) = 0, i = 1, 2, . . . , n.

Lemma 2
The kth derivative of the Gerber-Shiu function satisfies

lim
u→∞

Φ
(k)
i (u) = 0, i = 1, 2, . . . , n, k = 1, 2, . . . .

13 / 32
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Markovian Arrival Processes (MAP)

Changing premium rates and earning interest on
invested capital

Under the multi-layer model, the G-S equations derived for
each layer are structurally the same (only the force of interest,
the premium rates and initial/boundary conditions being
different among the layers).
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Generalized Erlang interclaim times with Matrix Exponential claims

Erlang interclaims with ME claims

D0 =


−λ1 λ1 0 . . . 0

0 −λ2 λ2 . . . 0
· · · · · · · · · · · · · · ·
0 0 0 . . . −λn

 ,

D1 =


0 0 0 . . . 0
0 0 0 . . . 0
· · · · · · · · · · · · · · ·
λn 0 0 . . . 0

.



Assume also that claim sizes are ME distributed:

b̃ij(s) = b̃(s) =
p1sm−1 + p2sm−2 + · · · pm

q0sm + q1sm−1 · · · qm
, q0 = 1. (4)
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Generalized Erlang interclaim times with Matrix Exponential claims

Consequently,

b(m)(·) + q1b(m−1)(·) + · · · qmb(·) = 0, (5)

and
(c + ru)Φ

′
1(u) = (δ + λ1)Φ1(u)− λ1Φ2(u),

(c + ru)Φ
′
2(u) = (δ + λ2)Φ2(u)− λ2Φ3(u),

...
(c + ru)Φ

′
n(u) = (δ + λn)Φn(u)− λn[NΦ1(u)− A(u)].

(6)
If claim sizes satisfy (5) then,

m∑
j=0

qj N(m−j)
Φ1

(u) =

m−1∑
j=0

ξj Φ
(m−1−j)
1 (u), (7)

where ξj =
j∑

k=0
qj−kf (k)(0).
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Generalized Erlang interclaim times with Matrix Exponential claims

For penalty functions that depend only on the deficit, i.e.,
w(x, y) = w(y), we arrive at

n∏
i=1

δ + λi

λi

 m∑
j=0

qm−j D(j)
u

( n∏
i=1

(
1− c + ru

δ + λi
Du

))
Φ1(u)

=

m−1∑
j=0

ξm−1−j D(j)
u

Φ1(u), where D(0)
u = 1. (8)

Let x = c + ru and Φ1(u) = z(x).
We seek the solutions of the form

z(x) = z(x, α) =

∞∑
k=0

ak xk+α,

with ak = ak(α) and a0 = 1.
17 / 32
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Generalized Erlang interclaim times with Matrix Exponential claims

Finally, we obtain

m−1∑
l=0


m∑

j=m−l

rj [Kqm−j γj−(m−l)(α)

−ξm−j−1]aj−(m−l)[α+ j− (m− l)](j)
}

xα−(m−l)

+

∞∑
k=0


m∑

j=0

rj [Kqm−j γj+k(α)− ξm−j−1]aj+k[α+ j + k](j)

 xα+k = 0.

Since a0 = 1 and r 6= 0, coefficient of x−m+α is zero if and only if
Kγ0(α) (α)(m) = 0, which yields(

n∏
i=1

(
1− rα

δ + λi

))
α (α− 1) . . . (α− m + 1) = 0.
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Generalized Erlang interclaim times with Matrix Exponential claims

Generalized Erlang(2) arrivals with exponential claim amounts

Generalized Erlang(2) arrivals with exponential claims
For Gen.Erlang(2)IATs

D0 =

[
−λ1 λ1

0 −λ2

]
, D1 =

[
0 0
λ2 0

]
Gerber-Shiu equations:

(c + ru)Φ
′
1(u) = (δ + λ1)Φ1(u)− λ1Φ2(u)

(c + ru)Φ
′
2(u) = (δ + λ2)Φ2(u)− λ2NΦ1(u)− λA21(u).
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On the absolute ruin problem in a Sparre Andersen risk model with constant interest

Generalized Erlang interclaim times with Matrix Exponential claims

Probability of ruin for Generalized Erlang(2) arrivals with exponential claim amounts

Probability of ruin for Gen.Erlang(2) arrivals with exp. claims

The probability of ruin ψ(u) is obtained from Φ(u) with
δ = 0, w(x1, x2) ≡ 1.

Initial condition becomes:

ψ1(−c/r) = ψ2(−c/r) = 1.

Changes of variables:

c + ru = x, ψ1(u) = ζ(x).
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ζ ′′′(x) + [βr + (3− λ1r − λ2r)x−1]ζ ′′(x)

+[βr(1− λ1r − λ2r)x−1 + (1− λ1r − λ2r + λ1rλ2r)x−2]ζ ′(x) = 0.

Let y(x) = ζ ′(x). Then
Since ζ(0) = ψ1(−c/r) = 1 :

ψ1(u) = ζ(c + ru) = 1 +

∫ c+ru

0
y(x)dx.
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Suppose λ1 ≥ λ2.

Let :
y(x) = xλ1r−1ω(x), ω̃(x) = eβrxω(x), βrx = t, ω̃(x) = ω̄(t)

tω̄′′(t) + (1 + λ1r − λ2r − t)ω′(t)− (1 + λ1r)ω̄(t) = 0,

“degenerate hypergeometric equation“.

y(x) = κ1xλ1r−1e−βrxM(1 + λ1r, 1 + λ1r − λ2r;βrx)

+κ2xλ1r−1e−βrxU(1 + λ1r, 1 + λ1r − λ2r; +βrx),
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M(a, b; x) = 1 +

∞∑
n=1

[
[a](n)

n![b](n)

]
xn,

[a](n) = a(a + 1) . . . (a + n− 1),

U(a, b; x) =
π

sinπb

{
M(a, b; x)

Γ(1 + a− b)Γ(b)
− x1−b M(1 + a− b, 2− b; x)

Γ(a)Γ(2− b)

}
,

for b non-integer.
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For b integer,

U(a, n + 1; x) =
(−1)n+1

n!Γ(a− n)
{M(a, n + 1; x) ln(x)

+

∞∑
l=0

[a](l)

[n + 1](l)
[ς(a + l)− ς(1 + l)− ς(1 + n + l)]

xl

l!

}

+
(n− 1)!

Γ(a)
x−nM(a− n, 1− n, x)n,

for n = 0, 1, 2, . . . , where the subscript n on the last M(�)
function denotes the partial sum of the first n terms. This term

is to be interpreted as zero when n = 0 and ς(a) = Γ
′
(a)

Γ(a) . Also,

ς(1) = −γ, ς(n) = −γ +

n−1∑
k=1

k−1,

and γ = 0.5772... is the Euler constant. 24 / 32
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When x approaches infinity (Abramowitz and Stegun)

xλ1r−1M(1 + λ1r, 1 + λ1r − λ2r;βrx) =∞,

xλ1r−1e−βrxU(1 + λ1r, 1 + λ1r − λ2r,+βrx) = 0.

25 / 32



On the absolute ruin problem in a Sparre Andersen risk model with constant interest

Generalized Erlang interclaim times with Matrix Exponential claims

Probability of ruin for Generalized Erlang(2) arrivals with exponential claim amounts

limx→∞ y(x) = limu→∞ ψ
′
1(u) = 0, so κ1 = 0.

Therefore,
y(x) = κ2xλ1r−1e−βrxU(1 + λ1r, 1 + λ1r − λ2r; +βrx), which
yields

ζ(x) = 1 + κ2

x∫
0

vλ1r−1e−βrvU(1 + λ1r, 1 + λ1r − λ2r;βrv)dv.

Recall that limu→∞ ψ1(u) = 0.
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Finally,

κ2 =
1

∞∫
0

vλ1r−1e−βrvU(1 + λ1r, 1 + λ1r − λ2r;βrv)dv

and

ψ1(u) = 1−

ru+c∫
0

vλ1r−1e−βrvU(1 + λ1r, 1 + λ1r − λ2r;βrv)dv

∞∫
0

vλ1r−1e−βrvU(1 + λ1r, 1 + λ1r − λ2r;βrv)dv
.

(9)
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Examples. Numerical results
We consider Example 6.1. from Gerber and Yang (2007)
(Exp interclaims) versus our results for (Gen)Erlang(2)
interclaims.
We assume the interclaims are gen-Erlang (2), with param.
λ1 and λ2 under three different scenarios, summarized in
the following table.
The claim size is exponential β = 0.5 and the premium rate
c = 2.
We assume that the interest rate is constant at r = 0.1.
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Table: Absolute ruin probabilities

u λ1 = 1, λ2 = 0.5 λ1 = λ2 = 1 λ1 = λ2 = 2 Exp(1)
50 1.6259× 10−14 6.4067× 10−13 6.4575× 10−9 1.821× 10−7

10 0.0103× 10−3 0.1658× 10−3 0.0396 0.0698
5 0.0121× 10−2 0.1539× 10−2 0.1514 0.2014
1 0.0844× 10−2 0.8405× 10−2 0.3552 0.3971
0 0.0013 0.0126 0.4238 0.4579
−1 0.0021 0.0188 0.4975 0.5218
−5 0.0137 0.0847 0.7939 0.7764
−10 0.1150 0.3934 0.9835 0.9681
−20 1 1 1 1
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Observations
In all scenarios, as the initial surplus decreases the
absolute ruin probability increases.
Comparing the first three columns, it is clear that the most
risky case is the third one, where the process waits less in
average for a claim to appear.
Comparing the last two columns, the latter Erlang(2) and
the exponential case are different, although they have the
same mean 1.

For positive values of the initial surplus, the Erlang case is
less likely to lead to ruin than the exponential. However, for
sufficient negative values of the surplus, the reverse
situation happens.
Credible explanation...
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Conclusions and possible extensions
We presented a unifying approach for the determination of
the G-S function related to absolute ruin in a single layer
Sparre Andersen risk model in the presence of a constant
interest rate.

These results can be easily extended to the multi-layer
case, since the equations are structurally the same.
It seems that one can use the same methodology by
replacing the Generalized Erlang(n) interclams by a
Triangular Phase-type distribution as considered in
O’Cinneide (1993).

We remark that it is very challenging to obtain closed-form
solutions for the absolute ruin probability if we move away
from the exponential assumption for claim sizes, or if we
assume a higher order generalized Erlang interclaim time
distributioin. However, one can use out methodology to
obtain numerical results for any ME claim sizes.

31 / 32



On the absolute ruin problem in a Sparre Andersen risk model with constant interest

Generalized Erlang interclaim times with Matrix Exponential claims

Probability of ruin for Generalized Erlang(2) arrivals with exponential claim amounts

Thank You!
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