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Abstract
In this paper we are concerned with the calculation of the Haezendonck-Goovaerts

risk measure, which is defined via a convex Young function and a parameter q ∈ (0, 1)
representing the confidence level. We mainly focus on the case in which the risk variable
follows a distribution function from a max-domain of attraction. For this case, we
restrict the Young function to be a power function and we derive exact asymptotics for
the Haezendonck-Goovaerts risk measure as q ↑ 1. As a subsidiary, we also consider
the case with an exponentially distributed risk variable and a general Young function,
and we obtain an analytical expression for the Haezendonck-Goovaerts risk measure.
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1 Introduction

Throughout the paper, let X be a real-valued random variable, representing a risk variable

in loss-profit style, with a distribution function F = 1 − F on R = (−∞,∞). Let ϕ(·) be
a non-negative and convex function on [0,∞) with ϕ(0) = 0, ϕ(1) = 1 and ϕ(∞) = ∞.
This function is called a normalized Young function, which, due to the convexity of ϕ(·), is
continuous and strictly increasing. Recall that the Orlicz space associated with the Young

function ϕ(·) is defined as

Lϕ = {X : E [ϕ(cX)] <∞ for some c > 0}
∗Corresponding author: Fan Yang; E-mail: fan-yang-2@uiowa.edu; Cell: 319-471-0811; Fax: 319-335-3017
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and the Orlicz heart as

Lϕ0 = {X : E [ϕ(cX)] <∞ for all c > 0} .

It is easy to see that Lϕ and Lϕ0 coincide with each other if lim supx↑∞ ϕ(2x)/ϕ(x) <∞; see
also page 77 of Rao and Ren (1991).

For a Young function ϕ(·) and a risk variable X ∈ Lϕ0 , let Hq[X, x] be the unique solution

h to the equation

E

[
ϕ

(
(X − x)+

h

)]
= 1− q, q ∈ (0, 1), (1.1)

if F (x) > 0 and let Hq[X, x] = 0 otherwise, where and throughout the paper, denote by

Y+ = Y 1(Y≥0) = Y ∨ 0 the positive part of a random variable Y and by 1A the indicator

of an event A. The existence and uniqueness of the solution h to equation (1.1) for the

case F (x) > 0 can be seen from the fact that the left-hand side of (1.1) is a continuous and

strictly decreasing function of h > 0 with limits +∞ as h ↓ 0 and 0 as h ↑ ∞. For q ∈ (0, 1),

the Haezendonck-Goovaerts risk measure for X is defined as

Hq[X] = inf
x∈R

(x+Hq[X, x]) . (1.2)

This risk measure was first introduced by Haezendonck and Goovaerts (1982) and was

named as the Haezendonck risk measure by Goovaerts et al. (2004). Based on a recent

conversation with Bellini and Rosazza Gianin during the 15th International Congress on

Insurance: Mathematics and Economics in Trieste, we think that it is more proper to call it

the Haezendonck-Goovaerts risk measure in order to acknowledge the contribution of both

authors in their seminal paper Haezendonck and Goovaerts (1982). This risk measure has

recently been studied by Bellini and Rosazza Gianin (2008a, 2008b, 2011), Nam et al. (2011),

Krätschmer and Zähle (2011), Goovaerts et al. (2011) and Ahn and Shyamalkumar (2011).

We have followed the style of Bellini and Rosazza Gianin (2008a, 2008b) to define this risk

measure. As pointed out by Bellini and Rosazza Gianin (2008a, 2011), the Haezendonck-

Goovaerts risk measure Hq[X] is a law invariant and coherent risk measure. We remark that,

due to its very definition, an analytic expression for Hq[X] is not possible in general.

The simplest, yet interesting, special case is when ϕ(t) = t for t ≥ 0. In this case,

Hq[X] = inf
x∈R

(
x+

E
[
(X − x)+

]
1− q

)
= F←(q) +

E[(X − F←(q))+]

1− q , (1.3)

where, and throughout the paper, F←(q) = inf{x ∈ R : F (x) ≥ q} denotes the inverse
function of F , also called the quantile of F or the Value at Risk ofX. Thus, the Haezendonck-

Goovaerts risk measure is reduced to CTEq [X], the well-known Conditional Tail Expectation

of X.
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The parameter q in the definition of the Haezendonck-Goovaerts risk measure vaguely

represents a confidence level. This is demonstrated by the special case above corresponding

to ϕ(t) = t for t ≥ 0. In the post financial crisis era, risk managers become more and more

concerned with the tail area of risks due to the excessive prudence of nowadays regulatory

framework.

The majority of this paper focuses on the asymptotic behavior of Hq[X] as q ↑ 1. For a

risk variable X with a distribution function F on R, denote by x̂ = F←(1) ≤ ∞ its upper

endpoint and by p̂ = Pr(X = x̂) the probability assigned to the upper endpoint. Note that

p̂ = 0 holds automatically if x̂ = ∞ or if F is continuous at x̂. Theorem 3.1 of Goovaerts

et al. (2004) shows that F←(q) ≤ Hq[X] ≤ x̂. Thus, if 0 < p̂ ≤ 1, then Hq[X] = x̂ for all

1− p̂ < q < 1, while if p̂ = 0, then

lim
q↑1

Hq[X] = x̂.

We only need to consider the latter case with p̂ = 0. When x̂ =∞ we shall establish exact

asymptotics for Hq[X] diverging to ∞ as q ↑ 1, while when x̂ < ∞ we shall establish exact

asymptotics for x̂−Hq[X] decaying to 0 as q ↑ 1. Hence, the notion of extreme value theory

becomes relevant.

We shall assume that the risk variable X follows a distribution function F from the max-

domain of attraction of an extreme value distribution function. Due to the complexity of

the problem, we shall only consider a power Young function, ϕ(t) = tk for k ≥ 1. We prove

the following:

• If F is from the Fréchet max-domain of attraction, then Hq[X] ∼ c1F
←(q);

• If F is from the Gumbel max-domain of attraction, thenHq[X] ∼ F←(1−c2q) provided

x̂ =∞ or x̂−Hq[X] ∼ (x̂− F←(1− c2q)) provided x̂ <∞;

• If F is from the Weibull max-domain of attraction, then x̂−Hq[X] ∼ c3 (x̂− F←(q)).

In these assertions, the notation ∼ means that the quotient of both sides tends to 1 as q ↑ 1

and the coeffi cients c1, c2 and c3 are explicitly given.

As a subsidiary, we also consider the case with an exponentially distributed risk variable

X and a general Young function ϕ(·). For this case, we obtain an analytical expression for
the Haezendonck-Goovaerts risk measure Hq[X].

However, at this stage we cannot extend the study to the case of both a generally dis-

tributed risk variable X and a general Young function ϕ(·).
The rest of this paper consists of six sections. In Section 2 we establish a general result for

the Haezendonck-Goovaerts risk measure with a power Young function. This result forms the
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theoretical basis of our asymptotic analysis. Then after preparing some preliminaries on max-

domains of attraction and regular/rapid variation in Section 3, we derive exact asymptotic

formulas for the Haezendonck-Goovaerts risk measure with a power Young function for the

Fréchet, Gumbel and Weibull cases in Sections 4, 5 and 6, respectively. For each case,

numerical studies are also carried out to examine the accuracies of the asymptotic formulas.

In Section 7 we consider the case of an exponentially distributed risk variable and a general

Young function.

2 General discussions with a power Young function

Let X be a risk variable distributed by F with an upper endpoint x̂ ≤ ∞. Assume a power
Young function, ϕ(t) = tk for some k ≥ 1. For this case, the Orlicz space and Orlicz heart

coincide with each other, both equal to
{
X : E[Xk

+] <∞
}
.

As we mentioned before, if k = 1, then the Haezendonck-Goovaerts risk measure for X

is equal to CTEq [X] given by (1.3). Thus, we only consider k > 1 in the following theorem

in which we analyze the Haezendonck-Goovaerts risk measure for a general risk variable X:

Theorem 2.1 Let the Young function be ϕ(t) = tk for some k > 1 and let X be a risk

variable with E[Xk
+] < ∞, x̂ ≤ ∞ and Pr(X = x̂) = 0. Then the Haezendonck-Goovaerts

risk measure for X is equal to

Hq[X] = x+

(
E
[
(X − x)k+

]
1− q

)1/k

, q ∈ (0, 1), (2.1)

where x = x(q) ∈ (−∞, x̂) is the unique solution to the equation(
E
[
(X − x)k−1

+

])k(
E
[
(X − x)k+

])k−1
= 1− q. (2.2)

The proof of Theorem 2.1 relies on the following elementary result:

Lemma 2.1 Consider the function g(x) = E
[
(X − x)k+

]
for x ∈ R, where k ≥ 1 is a

constant and X is a random variable with E[Xk
+] <∞.

(a) If k > 1, then g(x) is continuously differentiable with

d

dx
g(x) = −kE

[
(X − x)k−1

+

]
, x ∈ R; (2.3)

(b) If k = 1, then d
dx
g+(x) = −F (x) and d

dx
g−(x) = −F (x− 0) for each x ∈ R.
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Proof. Our derivation for d
dx
g+(x) below is good for both k > 1 and k = 1. Observe that

d

dx
g+(x) = lim

∆x↓0

E
[
(X − (x+ ∆x))k+

]
− E

[
(X − x)k+

]
∆x

= lim
∆x↓0

E

[
−(X − x)k

∆x
1(x<X≤x+∆x) +

(X − (x+ ∆x))k − (X − x)k

∆x
1(X>x+∆x)

]
= lim

∆x↓0
E [I1(∆x) + I2(∆x)] . (2.4)

Clearly,

|I1(∆x)| ≤ (∆x)k−11(x<X≤x+∆x).

Moreover, there is some ξ between X − (x+ ∆x) and X − x such that

I2(∆x) = −kξk−11(X>x+∆x).

These estimates for I1(∆x) and I2(∆x) enable us to apply the dominated convergence the-

orem to interchange the order of the limit and expectation in (2.4). Hence,

d

dx
g+(x) = E

[
lim
∆x↓0

I1(∆x) + lim
∆x↓0

I2(∆x)

]
= −kE

[
(X − x)k−1

+

]
.

When k = 1, this gives d
dx
g+(x) = −F (x).

For d
dx
g−(x), we need to distinguish the cases k > 1 and k = 1. For k > 1, going along

the same lines as above we obtain

d

dx
g−(x) = −kE

[
(X − x)k−1

+

]
.

For k = 1, we have

d

dx
g−(x) = lim

∆x↑0

E
[
(X − (x+ ∆x))+

]
− E [(X − x)+]

∆x

= lim
∆x↑0

E

[
X − (x+ ∆x)

∆x
1(x+∆x<X<x) − 1(X≥x)

]
.

Clearly, the first term after the expectation, denoted by I3(∆x), satisfies

|I3(∆x)| ≤ 1(x+∆x<X<x).

Hence, by the dominated convergence theorem,

d

dx
g−(x) = E

[
lim
∆x↑0

I3(∆x)− 1(X≥x)

]
= −F (x− 0).

Finally, for k > 1, the expression for d
dx
g(x) given by (2.3) is obviously continuous in

x ∈ R. This ends the proof of Lemma 2.1.
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Proof of Theorem 2.1. For ϕ(t) = tk, it follows straightforwardly from (1.1) that

Hq[X, x] =

(
E
[
(X − x)k+

]
1− q

)1/k

.

By virtue of Minkowski’s inequality, one can easily verify that Hq[X, ·] is convex over R and
is strictly convex over (−∞, x̂); see also Proposition 3 of Bellini and Rosazza Gianin (2011).

Write

g∗(x) = x+

(
E
[
(X − x)k+

]
1− q

)1/k

, x ∈ R,

so that Hq[X] = infx∈R g
∗(x). The function g∗(·) inherits the convexity of Hq[X, ·] and g∗(x)

diverges to +∞ as x → ±∞. Hence, its overall infimum is attainable. To obtain this

infimum, we naturally consider the equation d
dx
g∗(x) = 0. By Lemma 2.1(a),

d

dx
g∗(x) = 1−

(
E
[
(X − x)k+

])(1/k)−1
E
[
(X − x)k−1

+

]
(1− q)1/k

. (2.5)

Thus, the equation d
dx
g∗(x) = 0 is equivalent to (2.2).

For every q ∈ (0, 1), the existence of a solution x ∈ (−∞, x̂) to (2.2) can be verified as

follows. The left-hand side of (2.2) is a continuous function of x ∈ R. As x ↓ −∞, applying
the dominated convergence theorem to both the numerator and denominator yields that

(
E
[
(X − x)k−1

+

])k(
E
[
(X − x)k+

])k−1
=

(
E
[

(X−x)k−1+

(−x)k−1

])k
(

E
[

(X−x)k+
(−x)k

])k−1
→ 1;

while as x ↑ x̂, applying Hölder’s inequality to the numerator yields that(
E
[
(X − x)k−1

+

])k(
E
[
(X − x)k+

])k−1
=

(
E
[
(X − x)k−1

+ 1(X>x)

])k(
E
[
(X − x)k+

])k−1

≤
(
E
[
(X − x)k+

])k−1
E
[
1(X>x)

](
E
[
(X − x)k+

])k−1

= F (x)→ 0. (2.6)

Moreover, the uniqueness of the solution to equation (2.2), or, equivalently, to the equation
d

dx
g∗(x) = 0, is ensured by the strict convexity of the function g∗(·) on (−∞, x̂). This ends

the proof of Theorem 2.1.

When proceeding our asymptotic analysis we shall need the following lemma too:

Lemma 2.2 Consider equation (2.2) in which k ≥ 1 is a constant, X is a random variable

with E[Xk
+] < ∞, x̂ ≤ ∞ and Pr(X = x̂) = 0, and q ∈ (0, 1), x ∈ (−∞, x̂) are two

deterministic variables. Then q ↑ 1 if and only if x ↑ x̂.
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Proof. For k = 1, equation (2.2) is simplified to F (x) = 1 − q. Thus, the equivalence of
q ↑ 1 and x ↑ x̂ is obvious.
Now consider k > 1 only. The derivation in (2.6) shows that the left-hand side of (2.2) is

bounded by F (x). Thus, 1− q ≤ F (x), from which we easily infer that x ↑ x̂ implies q ↑ 1.

Conversely, the proof of Theorem 2.1 shows that the function g∗(·) is strictly convex over
(−∞, x̂). Thus, d

dx
g∗(x) given by (2.5) is strictly increasing in x ∈ (−∞, x̂), or, equivalently,

the left-hand side of (2.2) is strictly decreasing in x ∈ (−∞, x̂). Thus, q ↑ 1 must lead to

x ↑ x̂.

3 Max-domains of attraction and regular variation

In this section we highlight some basic concepts in extreme value theory. Monographs on

extreme value theory in the context of insurance and finance are Resnick (1987, 2007),

Embrechts et al. (1997), McNeil et al. (2005) and Malevergne and Sornette (2006), among

others. In this paper we follow the main methodology of Hashorva et al. (2010) and Asimit

et al. (2011), who studied some insurance problems using extreme value theory.

A distribution function F on R is said to belong to the max-domain of attraction of an
extreme value distribution function G, written as F ∈ MDA(G), if

lim
n→∞

sup
x∈R
|F n (cnx+ dn)−G(x)| = 0

holds for some norming constants cn > 0 and dn ∈ R, n ∈ N = {0, 1, . . .}. By the classical
Fisher-Tippett theorem (see Fisher and Tippett (1928) and Gnedenko (1943)), only three

choices for G are possible, namely the Fréchet, Gumbel and Weibull distributions, which

we denote by Φγ, Λ and Ψγ, respectively, with γ > 0 indexing members of the Fréchet and

Weibull max-domains of attraction.

The Fréchet distribution function is given by Φγ(x) = exp {−x−γ} for x > 0. A distrib-

ution function F belongs to MDA(Φγ) if and only if its upper endpoint x̂ is infinite and the

relation

lim
x↑∞

F (xy)

F (x)
= y−γ, y > 0, (3.1)

holds; see Theorem 3.3.7 of Embrechts et al. (1997).

The standard Gumbel distribution function is given by Λ(x) = exp {−e−x} for x ∈ R. A
distribution function F with an upper endpoint x̂ ≤ ∞ belongs to MDA(Λ) if and only if

the relation

lim
x↑x̂

F (x+ ya(x))

F (x)
= e−y, y ∈ R, (3.2)

holds for some positive auxiliary function a(·) on (−∞, x̂). Recall that a(·) is unique up to
asymptotic equivalence and a commonly-used choice for a(x) is the mean excess function,
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a(x) = E [X − x|X > x] for x < x̂. Recall also that{
a(x) = o(x), if x̂ =∞,
a(x) = o(x̂− x), if x̂ <∞. (3.3)

See Resnick (1987) and Embrechts et al. (1997) for more details. The following representa-

tion theorem is useful; see Balkema and de Haan (1972), Proposition 1.4 of Resnick (1987)

or relation (3.35) of Embrechts et al. (1997). For F ∈ MDA(Λ) with x̂ ≤ ∞, there is some
x0 < x̂ such that

F (x) = b(x) exp

{
−
∫ x

x0

1

a(y)
dy

}
, x0 < x < x̂, (3.4)

where a(·) is an auxiliary function, chosen to be positive and absolutely continuous with
limx↑x̂

d
dx
a(x) = 0, and b(·) is a positive measurable function with limx↑x̂ b(x) = b > 0.

The Weibull distribution function is given by Ψγ(x) = exp {− |x|γ} for x ≤ 0. A distrib-

ution function F belongs to MDA(Ψγ) if and only if its upper endpoint x̂ is finite and

lim
x↓0

F (x̂− xy)

F (x̂− x)
= yγ, y > 0; (3.5)

see Theorem 3.3.12 of Embrechts et al. (1997).

The following elementary result might be known somewhere but we cannot suitably

address a reference:

Lemma 3.1 Let F on R belong to the max-domain of attraction of a non-degenerate distri-
bution function. Then

(a) F (x− 0) ∼ F (x) as x ↑ x̂;
(b) F (F←(q)) ∼ 1− q as q ↑ 1.

Proof. (a) The result for the Gumbel case is known in Corollary 1.6 of Resnick (1987). The
result for the Fréchet and Weibull cases easily follows from the equivalent conditions (3.1)

and (3.5), respectively.

(b) This follows from the two-sided inequality F (F←(q)) ≤ 1 − q ≤ F (F←(q) − 0) and

the result in (a).

It is often convenient and useful to restate the equivalent conditions for the max-domains

of attraction in terms of regular or rapid variation. A positive measurable function r(·) is
said to be regularly varying at x0 = ±0 or ±∞ with a regularity index α ∈ (−∞,∞),

denoted by r(·) ∈ Rα(x0), if

lim
x→x0

r(xy)

r(x)
= yα, y > 0.
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The class R0(x0) consists of functions slowly varying at x0. Moreover, a positive measurable

function r(·) is said to be rapidly varying at x0 = ±0 or ±∞, denoted by r(·) ∈ R∞(x0) or

1/r(·) ∈ R−∞(x0), if

lim
x→x0

r(xy)

r(x)
=

{
∞, for y > 1,
0, for 0 < y < 1.

Relation (3.1) shows that F ∈ MDA(Φγ) if and only if F (·) ∈ R−γ(+∞), while relation (3.5)

shows that F ∈ MDA(Ψγ) if and only if F (x̂−·) ∈ Rγ(+0). Furthermore, for F ∈ MDA(Λ),

it easily follows from relations (3.2) and (3.3) that F (·) ∈ R−∞(+∞) provided x̂ = ∞ or

F (x̂− ·) ∈ R∞(+0) provided x̂ <∞.
Recall Potter’s bounds as summarized by Theorem 1.5.6 of Bingham et al. (1987):

Lemma 3.2 Let r(·) be a function regularly varying at x0 = +0 or +∞ with index α ∈
(−∞,∞). It holds for arbitrary 0 < ε < 1 and all x, y suffi ciently close to x0 that

(1− ε)
((y

x

)α+ε

∧
(y
x

)α−ε)
≤ r(y)

r(x)
≤ (1 + ε)

((y
x

)α+ε

∨
(y
x

)α−ε)
.

The following lemma is motivated by Proposition 1.1 of Davis and Resnick (1988):

Lemma 3.3 Let F ∈ MDA(Λ) with the representation given by (3.4). Then, for arbitrary

0 < ε < 1, there is some x0 < x̂ such that, for all x0 < x < x̂ and all y ≥ 0,

F (x+ ya(x))

F (x)
≤ (1 + ε)(1 + εy)−1/ε.

Proof. Since limx↑x̂
d

dx
a(x) = 0, there is some x0 < x̂ such that the inequality

a(x+ za(x))− a(x) ≤ εza(x)

holds for all x0 < x < x̂ and all z ≥ 0. It follows that

a(x)

a(x+ za(x))
≥ 1

1 + εz
.

Hence, for all x0 < x < x̂ and all y ≥ 0,

F (x+ ya(x))

F (x)
=
b(x+ ya(x))

b(x)
exp

{
−
∫ x+ya(x)

x

1

a(z)
dz

}

=
b(x+ ya(x))

b(x)
exp

{
−
∫ y

0

a(x)

a(x+ za(x))
dz

}
≤ (1 + ε) exp

{
−
∫ y

0

1

1 + εz
dz

}
= (1 + ε)(1 + εy)−1/ε.

This proves Lemma 3.3.
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4 The Fréchet case with a power Young function

Our asymptotic analysis in the next three sections is based on Theorem 2.1. In this section

we consider the Fréchet case. As usual, denote by B(·, ·) the beta function, namely,

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx, a, b > 0.

Theorem 4.1 Let ϕ(t) = tk for some k ≥ 1 and let F ∈ MDA(Φγ) for some γ > k. Then,

as q ↑ 1,

Hq[X] ∼ γ (γ − k)(k/γ)−1

k(k−1)/γ
(B (γ − k, k))1/γ F←(q). (4.1)

We first prepare an elementary result:

Lemma 4.1 If F ∈ MDA(Φγ) for some γ > 0, then it holds for all 0 < k < γ that

lim
x↑∞

E
[
(X − x)k+

]
xkF (x)

= kB(γ − k, k). (4.2)

Proof. Since F (·) ∈ R−γ(+∞), by Lemma 3.2, for arbitrary 0 < ε < γ − k, there is some
x0 > 0 such that, for all x > x0 and all y ≥ 0,

(1− ε)
(
x+ y

x

)−γ−ε
≤ F (x+ y)

F (x)
≤ (1 + ε)

(
x+ y

x

)−γ+ε

.

By the second inequality above, it holds for all x > x0 that

E
[
(X − x)k+

]
F (x)

=

∫ ∞
0

F (x+ y)

F (x)
dyk

≤ (1 + ε)

∫ ∞
0

(
x+ y

x

)−γ+ε

dyk

= (1 + ε)xk
∫ ∞

0

(z + 1)−γ+εdzk.

By the arbitrariness of ε, it follows that

lim sup
x↑∞

E
[
(X − x)k+

]
xkF (x)

≤
∫ ∞

0

(z + 1)−γdzk.

In the same way we can establish the corresponding inequality for the lower limit. In addition,

using the change of variables u = (z + 1)−1 we have∫ ∞
0

(z + 1)−γdzk = k

∫ 1

0

uγ−k−1 (1− u)k−1 du = kB(γ − k, k).

Thus, relation (4.2) holds.
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Proof of Theorem 4.1. Recall Lemma 2.2, which shows that q ↑ 1 if and only if x ↑ x̂.
In the proof below we shall tacitly use this equivalence.

We distinguish the cases k = 1 and k > 1. For k = 1, applying Lemmas 4.1 and 3.1(b)

to relation (1.3) we have

Hq[X] ∼ F←(q) +
F←(q)

γ − 1

F (F←(q))

1− q ∼ γ

γ − 1
F←(q).

This proves relation (4.1) for k = 1.

Now turn to the case k > 1. Starting from Theorem 2.1 we need to approximate the

optimal value of x that solves equation (2.2). By Lemma 4.1,

1− q =

(
E
[
(X − x)k−1

+

])k(
E
[
(X − x)k+

])k−1

∼ ((k − 1)B(γ − k + 1, k − 1))k

(kB(γ − k, k))k−1
F (x)

=
(γ − k)kB(γ − k, k)

kk−1
F (x),

or, equivalently,

F (x) ∼ kk−1

(γ − k)kB(γ − k, k)
(1− q). (4.3)

By Proposition 0.8(V) of Resnick (1987), it is easy to verify that F (·) ∈ R−γ(+∞) if and

only if F←(1− ·) ∈ R−1/γ(+0). It follows from (4.3) that

x = F←
(

1− (1 + o(1))kk−1

(γ − k)kB(γ − k, k)
(1− q)

)
∼
(

(γ − k)kB(γ − k, k)

kk−1

)1/γ

F←(q). (4.4)

Now, substituting (4.2), (4.3) and (4.4) into (2.1) yields that

Hq[X] = x+

(
E
[
(X − x)k+

]
1− q

)1/k

∼ x+

(
kB(γ − k, k)

1− q · xkF (x)

)1/k

∼ x+

(
kB(γ − k, k)

1− q · kk−1

(γ − k)kB(γ − k, k)
(1− q)

)1/k

x

=
γ

γ − kx

∼ γ (γ − k)(k/γ)−1

k(k−1)/γ
(B (γ − k, k))1/γ F←(q).

This proves relation (4.1) for k > 1.
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Let us use R to numerically examine the accuracy of the asymptotic relation (4.1). As-

sume that F is a Pareto distribution given by

F (x) = 1−
(

θ

x+ θ

)α
, x, α, θ > 0.

Thus, F ∈ MDA(Φγ) with γ = α. We use uniroot to find the root x to (2.2) and then

compute (2.1) to get the exact value of the Haezendonck-Goovaerts risk measure Hq[X].

Moreover, we compute the asymptotic formula given by (4.1).

In both graphs below, we compare the asymptotic estimate to the exact value on the left

and show their ratio on the right. For Graph 4.1, we set k = 1.1 and 1.2, α = 1.6, and θ = 1.

Apparently, the ratio converges to 1 as q ↑ 1. We also find that the accuracy improves as k

decreases.

Graph 4.1 is inserted here.

Similarly, for Graph 4.2, we set k = 1.1, α = 1.5 and 1.6, and θ = 1. We find that the

ratio converges to 1 as q ↑ 1 and that the accuracy improves gradually as α decreases.

Graph 4.2 is inserted here.

5 The Gumbel case with a power Young function

Now we consider the Gumbel case. Note that, for a random variable X distributed by

F ∈ MDA(Λ), the requirement E
[
Xk

+

]
< ∞ for all k ≥ 1 holds automatically since either

F ∈ R−∞(+∞) or x̂ <∞. As usual, denote by Γ(·) the gamma function, namely,

Γ(a) =

∫ ∞
0

xa−1e−xdx, a > 0.

Theorem 5.1 Let ϕ(t) = tk for some k ≥ 1 and let F ∈ MDA(Λ) with an upper endpoint

0 < x̂ ≤ ∞. Then, as q ↑ 1,

(i) when x̂ =∞ we have

Hq[X] ∼ F←
(

1− kk

Γ(k + 1)
(1− q)

)
; (5.1)

(ii) when x̂ <∞ we have

x̂−Hq[X] ∼ x̂− F←
(

1− kk

Γ(k + 1)
(1− q)

)
. (5.2)

To prove Theorem 5.1, we first prepare an elementary result:
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Lemma 5.1 If F ∈ MDA(Λ) with an upper endpoint 0 < x̂ ≤ ∞, then it holds for all k > 0

that

lim
x↑x̂

E
[
(X − x)k+

]
ak(x)F (x)

= Γ(k + 1), (5.3)

where a(·) is the auxiliary function appearing in the representation given by (3.4).

Proof. When x̂ =∞, we have

E
[
(X − x)k+

]
=

∫ ∞
0

F (x+ y)dyk

= ak(x)F (x)

∫ ∞
0

F (x+ za(x))

F (x)
dzk

∼ ak(x)F (x)

∫ ∞
0

e−zdzk,

where in the last step we applied the dominated convergence theorem justified by Lemma

3.3. Similarly, when x̂ <∞, recalling (3.3) we have

E
[
(X − x)k+

]
=

∫ x̂−x

0

F (x+ y)dyk

= ak(x)F (x)

∫ (x̂−x)/a(x)

0

F (x+ za(x))

F (x)
dzk

∼ ak(x)F (x)

∫ ∞
0

e−zdzk.

Thus, for both cases, relation (5.3) holds.

Proof of Theorem 5.1. In the proof below, we shall tacitly use the equivalence of q ↑ 1

and x ↑ x̂, as shown by Lemma 2.2. The auxiliary function a(·) appearing below corresponds
to the one in the representation given by (3.4).

(i) We distinguish the cases k = 1 and k > 1. For k = 1, applying Lemma 5.1 to relation

(1.3) and then applying Lemma 3.1 and relation (3.3), we have

Hq[X] ∼ F←(q) + a(F←(q))
F (F←(q))

1− q ∼ F←(q).

This proves relation (5.1) for k = 1.

For k > 1, applying Lemma 5.1 to relation (2.2) leads to

1− q =

(
E
[
(X − x)k−1

+

])k(
E
[
(X − x)k+

])k−1
∼

(
Γ(k)ak−1(x)F (x)

)k(
Γ(k + 1)ak(x)F (x)

)k−1
=

Γ(k + 1)

kk
F (x). (5.4)

Then, substituting (5.3) and (5.4) to (2.1) yields that

Hq[X]− x =

(
E
[
(X − x)k+

]
1− q

)1/k

∼ ka(x), (5.5)
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which implies that Hq[X] ∼ x. By Proposition 0.8(V) of Resnick (1987), F (·) ∈ R−∞(+∞)

implies F←(1− ·) ∈ R0(+0). By this and (5.4) we have

x = F←
(

1− (1 + o(1))
kk

Γ(k + 1)
(1− q)

)
∼ F←

(
1− kk

Γ(k + 1)
(1− q)

)
. (5.6)

This leads to relation (5.1) for k > 1.

(ii) As before, we still distinguish the cases k = 1 and k > 1. For k = 1, applying Lemma

5.1 to relation (1.3) and then applying Lemma 3.1 and relation (3.3), we have

x̂−Hq[X] = (x̂− F←(q))− E[(X − F←(q))+]

1− q

∼ (x̂− F←(q))− a(F←(q))
F (F←(q))

1− q
∼ x̂− F←(q).

This proves relation (5.2) for k = 1.

Next consider k > 1. For this case the relations in (5.4) still hold. Then, substituting

(5.3) and (5.4) to (2.1) yields that

(x̂−Hq[X])− (x̂− x) = −
(

E
[
(X − x)k+

]
1− q

)1/k

∼ −ka(x), (5.7)

which implies that x̂−Hq[X] ∼ x̂− x. By Proposition 0.8(V) of Resnick (1987), F (x̂− ·) ∈
R∞(+0) implies x̂− F←(1− ·) ∈ R0(+0). By this and (5.4) we have

x̂− x = x̂−F←
(

1− (1 + o(1))
kk

Γ(k + 1)
(1− q)

)
∼ x̂−F←

(
1− kk

Γ(k + 1)
(1− q)

)
. (5.8)

This proves relation (5.2) for k > 1.

In the proof above, the asymptotics for x given by relation (5.6) can actually be changed to

x ∼ F← (1− c(1− q)) for any c > 0 because F←(1−·) ∈ R0(+0). Similarly, the asymptotics

for x̂ − x given by relation (5.8) can be changed to x̂ − x ∼ x̂ − F← (1− c(1− q)) for any
c > 0. However, the most rational choice for c in both places should be c = kk/Γ(k + 1).

We would like to point out that relations (5.5) and (5.7) give second-order asymptotics

for Hq[X]. They become more powerful than (5.1) and (5.2) provided that it is possible to

get the exact value of x solving (2.2) or a good approximation for x.

Recall that a distribution function F belongs to the class L(λ) for some λ > 0 if x̂ =∞
and

lim
x↑∞

F (x+ y)

F (x)
= e−λy, y ∈ R. (5.9)

The class L(λ) contains many well-known light-tailed distributions such as the exponential,

gamma and inverse Gaussian distributions. Relation (5.9) directly shows that F ∈ MDA(Λ)

with a(·) ≡ 1/λ. Thus, by (5.5) we arrive at the following:

14



Corollary 5.1 Let ϕ(t) = tk for some k > 1 and let F ∈ L(λ) for some λ > 0. Then

lim
q↑1

(Hq[X]− x) =
k

λ
,

where x is determined by (2.2) and satisfies x ∼ F←
(

1− (1− q) kk

Γ(k+1)

)
.

Finally, we use R to numerically examine the accuracy of the asymptotics given by (5.5).

Assume that F is a lognormal distribution given by

F (x) = Φ

(
lnx− µ

σ

)
, x > 0,−∞ < µ <∞, σ > 0,

where Φ(·) denotes the standard normal distribution function. Note that

a(x) =
Φ(σ−1(lnx− µ))σx

φ(σ−1(lnx− µ))
,

where φ is the standard normal density function; see, e.g. page 150 of Embrechts et al.

(1997).

For Graph 5.1, we set k = 1.5 and 2, µ = 2, and σ = 0.5. We compare the asymptotic

estimate x + ka(x) given by (5.5) to the exact value of Hq[X] on the left and show their

ratio on the right. Apparently, the ratio converges to 1 as q ↑ 1. We find that the accuracy

is particularly good when σ is smaller than 1.

Graph 5.1 is inserted here.

6 The Weibull case with a power Young function

In the last section of asymptotic analysis we consider the Weibull case. For this case the

requirement E
[
Xk

+

]
<∞ for all k ≥ 1 holds automatically since x̂ <∞.

Theorem 6.1 Let ϕ(t) = tk for some k ≥ 1 and let F ∈ MDA(Ψγ) with γ > 0 and

0 < x̂ <∞. Then, as q ↑ 1,

x̂−Hq[X] ∼ γ

γ + k

(
kk−1

B (γ + 1, k) (γ + k)k

)1/γ

(x̂− F←(q)) . (6.1)

We first prepare an elementary result:

Lemma 6.1 If F ∈ MDA(Ψγ) with γ > 0 and 0 < x̂ <∞, then it holds for all k > 0 that

lim
x↑x̂

E
[
(X − x)k+

]
(x̂− x)k F (x)

= kB (γ + 1, k) . (6.2)
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Proof. Similarly as in the proof of Lemma 5.1, for x < x̂,

E
[
(X − x)k+

]
=

∫ x̂−x

0

F (x+ y)dyk = F (x)

∫ x̂−x

0

F (x̂− (x̂− x− y))

F (x̂− (x̂− x))
dyk. (6.3)

Since F (x̂− ·) ∈ Rγ(+0), by Lemma 3.2, for arbitrary 0 < ε < 1, there is some x0 < x̂ such

that, for all x0 < x < x̂ and all 0 < y < x̂− x,

(1− ε)
(
x̂− x− y
x̂− x

)γ+ε

≤ F (x̂− (x̂− x− y))

F (x̂− (x̂− x))
≤ (1 + ε)

(
x̂− x− y
x̂− x

)γ−ε
.

Applying the second inequality above to (6.3), it holds for all x0 < x < x̂ that

E
[
(X − x)k+

]
≤ (1 + ε)F (x)

∫ x̂−x

0

(
x̂− x− y
x̂− x

)γ−ε
dyk

= (1 + ε)F (x) (x̂− x)k
∫ 1

0

(1− z)γ−ε dzk.

By the arbitrariness of ε, it follows that

lim sup
x↑x̂

E
[
(X − x)k+

]
(x̂− x)k F (x)

≤
∫ 1

0

(1− z)γ dzk.

A corresponding lower bound can be obtained similarly. Thus, relation (6.2) holds.

Proof of Theorem 6.1. In the proof below, we shall tacitly use the equivalence of q ↑ 1

and x ↑ x̂, as shown by Lemma 2.2.
We distinguish the cases k = 1 and k > 1. For k = 1, starting from relation (1.3) and

then applying Lemmas 6.1 and 3.1, we have

x̂−Hq[X] = (x̂− F←(q))− E[(X − F←(q))+]

1− q

∼ (x̂− F←(q))− 1

γ + 1
(x̂− F←(q))

F (F←(q))

1− q
∼ γ

γ + 1
(x̂− F←(q)).

This proves relation (6.1) for k = 1.

Now consider k > 1. Applying Lemma 6.1 to relation (2.2), we have

1− q =

(
E
[
(X − x)k−1

+

])k(
E
[
(X − x)k+

])k−1

∼

(
(k − 1)B (γ + 1, k − 1) (x̂− x)k−1 F (x)

)k
(
kB (γ + 1, k) (x̂− x)k F (x)

)k−1

= B (γ + 1, k)
(γ + k)k

kk−1
F (x). (6.4)
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Substituting (6.2) and (6.4) into (2.1) yields that

Hq[X]− x =

(
E
[
(X − x)k+

]
1− q

)1/k

∼ k

γ + k
(x̂− x) . (6.5)

By Proposition 0.8(V) of Resnick (1987), F (x̂− ·) ∈ Rγ(+0) implies x̂ − F←(1 − ·) ∈
R1/γ(+0). Thus, after rewriting (6.4) as

F (x̂− (x̂− x)) ∼ (1− q) kk−1

B (γ + 1, k) (γ + k)k
,

we see that

x̂− x = x̂− F←
(

1− (1 + o(1)) kk−1

B (γ + 1, k) (γ + k)k
(1− q)

)

∼
(

kk−1

B (γ + 1, k) (γ + k)k

)1/γ

(x̂− F←(q)) . (6.6)

Finally, by (6.5) and (6.6),

x̂−Hq[X] = (x̂− x)− (Hq[X]− x)

∼ γ

γ + k
(x̂− x)

∼ γ

γ + k

(
kk−1

B (γ + 1, k) (γ + k)k

)1/γ

(x̂− F←(q)) .

This proves relation (6.1) for k > 1.

Similarly as before, we use R to numerically examine the accuracy of relation (6.1).

Assume that F is a beta distribution with probability density function given by

f(x) =
xa−1(1− x)b−1

B(a, b)
, 0 < x < 1, a, b > 0.

Thus, F ∈ MDA(Ψγ) with γ = b. We compare the asymptotic estimate for x̂−Hq[X] given

by relation (6.1) to its exact value on the left and show their ratio on the right.

For Graph 6.1, we set k = 3 and 6, a = 2, and b = 6. Apparently, the ratio converges to

1 as q ↑ 1. We also find that the varying value of k does not affect much the convergence

rate.

Graph 6.1 is inserted here.

For Graph 6.2, we set k = 3, a = 2 and b = 6 or 10. The same as before, the ratio

converges to 1 as q ↑ 1. We also find that the accuracy slightly improves as b increases.

Graph 6.2 is inserted here.
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7 The exponential case with a general Young function

In this section we consider the case in which the risk variable X is exponentially distributed

and the Young function is general. We seek an analytical expression for the Haezendonck-

Goovaerts risk measure.

Theorem 7.1 Let ϕ(·) be a general Young function such that
∫∞

0
e−stdϕ(t) <∞ for all s > 0

and let X follow an exponential distribution function with rate λ > 0, namely, F (x) = e−λx

for x ≥ 0. Then

Hq[X] =
1

λ
ln

∫∞
0

e−λhtdϕ(t)

1− q + h, q ∈ (0, 1), (7.1)

where h ∈ (0,∞) is the unique solution to the equation∫ ∞
0

e−λhtdϕ(t) =

∫ ∞
0

te−λhtdϕ(t). (7.2)

The condition on the Young function ϕ(·) ensures that the exponential risk variable X
belongs to the Orlicz heart of ϕ(·). It is interesting to notice that the solution h to equation
(7.2) is invariant with both q and x.

In order to prove Theorem 7.1, we first prepare an elementary result below:

Lemma 7.1 Let ϕ(·) be a general Young function such that
∫∞

0
e−stdϕ(t) <∞ for all s > 0.

Then

lim
s↓0

∫∞
0
te−stdϕ(t)∫∞

0
e−stdϕ(t)

=∞ and lim
s↑∞

∫∞
0
te−stdϕ(t)∫∞

0
e−stdϕ(t)

= 0. (7.3)

Proof. With arbitrary M > 0 we derive∫∞
0
te−stdϕ(t)∫∞

0
e−stdϕ(t)

≥
∫∞
M
te−stdϕ(t)∫M

0
e−stdϕ(t) +

∫∞
M

e−stdϕ(t)

≥
M
∫∞
M

e−stdϕ(t)

ϕ(M) +
∫∞
M

e−stdϕ(t)

=
M

ϕ(M)∫∞
M e−stdϕ(t)

+ 1
→M, as s ↓ 0,

where the last step is due to the monotone convergence theorem and ϕ(∞) = ∞. Hence,
the first relation in (7.3) holds by the arbitrariness of M .

Notice that, with arbitrary 0 < ε < 1,∫∞
ε
te−stdϕ(t)∫ ε

0
te−stdϕ(t)

≤
∫∞
ε
te−stdϕ(t)∫ ε

ε/2
te−stdϕ(t)

≤
∫∞
ε
te−stdϕ(t)

ε
2
e−sε

(
ϕ(ε)− ϕ

(
ε
2

)) → 0, as s ↑ ∞.

Similarly,

lim
s↑∞

∫∞
ε

e−stdϕ(t)∫ ε
0

e−stdϕ(t)
= 0.
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It follows that

lim sup
s↑∞

∫∞
0
te−stdϕ(t)∫∞

0
e−stdϕ(t)

= lim sup
s↑∞

∫ ε
0
te−stdϕ(t)∫ ε

0
e−stdϕ(t)

≤ ε.

Hence, the second relation in (7.3) holds by the arbitrariness of ε.

Proof of Theorem 7.1. First of all, let us modify the definition of the Haezendonck-

Goovaerts risk measure in the following way. We think of x in (1.1) as x = xq[X, h], a

function of h and q, and introduce g∗(h) = x+ h. Then we can rewrite (1.2) as

Hq[X] = inf
0<h<∞

g∗(h). (7.4)

Our idea is to find the optimal value of h at which the infimum in (7.4) is attained. Relation

(1.1) is rewritten as
∫∞

0
e−λhtdϕ(t) = (1− q) eλx, which implies that

x =
1

λ
ln

∫∞
0

e−λhtdϕ(t)

1− q . (7.5)

Under the condition on ϕ(·), it is easy to see that
∫∞

0
e−λhtdϕ(t) is infinitely differentiable

with respect to h ∈ (0,∞). By (7.5),

dx

dh
= −

∫∞
0
te−λhtdϕ(t)∫∞

0
e−λhtdϕ(t)

.

Furthermore, by Hölder’s inequality,

d2x

dh2
= λ

∫∞
0
t2e−λhtdϕ(t)

∫∞
0

e−λhtdϕ(t)−
(∫∞

0
te−λhtdϕ(t)

)2(∫∞
0

e−λhtdϕ(t)
)2 > 0,

where the strict inequality is due to the non-degeneracy of the Young function ϕ(·). This
means that the function x = xq[X, h] and, hence, the function g∗(h) = x + h are strictly

convex over h ∈ (0,∞). Thus, the infimum in (7.4) is attained at h such that

d

dh
g∗(h) = −

∫∞
0
te−λhtdϕ(t)∫∞

0
e−λhtdϕ(t)

+ 1 = 0 (7.6)

provided that this last equation admits a solution. Equations (7.6) and (7.2) are equivalent.

The existence of a solution h ∈ (0,∞) to equation (7.6) is justified by Lemma 7.1, while

the uniqueness of the solution h to equation (7.6) results from the strict convexity of the

function g∗(·) over (0,∞). Finally, substituting this optimal value h and the expression for

x given by (7.1) into (7.4), we obtain the desired expression for Hq[X] in (7.1).

By Theorem 7.1, the calculation of Hq[X] is reduced to solving equation (7.2). For

a general Young function ϕ(·), it is not possible to solve this equation analytically. We
consider the following special cases:
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(i) Let ϕ(t) = tk for some k ≥ 1. Then equation (7.2) has a unique positive solution

h = k/λ. Thus,

Hq[X] =
1

λ
ln

Γ(k + 1)

(1− q)kk +
k

λ
,

which is consistent with Corollary 5.1.

(ii) Let ϕ(t) =
∑n

k=1 akt
k for some n ∈ N and some real-valued coeffi cients a1, . . . , an

fulfilling a certain condition such that ϕ(·) is a normalized Young function. Then equation
(7.2) becomes

a1(λh)n +

n−1∑
k=1

((k + 1)ak+1 − kak) Γ(k + 1)(λh)n−k − nanΓ(n+ 1) = 0. (7.7)

We can always numerically solve this polynomial equation (7.7) in R. For example, let

ϕ(t) = (2t5 + 3t4 − 2t3 + 3t2 + t)/7, q = 0.95 and λ = 1. Equation (7.7) becomes

h5 + 5h4 − 24h3 + 108h2 − 48h− 1200 = 0.

We use polyroot to find its unique positive solution h = 3.349538. Plugging it in (7.1) gives

Hq[X] = 4.4558760.
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Graph 4.1  Young function with k=1.1 and 1.2, and Pareto distribution with α=1.6 and θ=1
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Graph 4.2  Young function with k=1.1, and Pareto distribution with α=1.5 and 1.6 and θ=1
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Graph 5.1  Young function with k=1.5 and 2, and lognormal distribution with µ=2 and σ=0.5
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Graph 6.1  Young function with k=3 and 6, and beta distribution with a=2 and b=6
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Graph 6.2  Young function with k=3, and beta distribution with a=2 and b=6 and 10
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