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Definitions

Let X be a real-valued random variable, representing a risk variable
in loss-profit style, with a distribution function F on R.

A function ¢(-) : R4 — R is called a normalized Young function
if it is continuous and strictly increasing with ¢(0) =0, ¢(1) =1
and ¢(o0) = 0.

For g € (0,1), the Haezendonck-Goovaerts risk measure for X is

defined as
Ha[X] = inf (x + Hy[X, <] 1)

where Hg[X, x] is the unique solution of the equation
(X —x),
E A= =1 2
(o ’ )

if F(x) >0 and let Hy[X, x] = 0 otherwise.
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A short literature review

@ First introduced by Haezendonck and Goovaerts (1982)

@ Named as the Haezendonck risk measure by Goovaerts, Kaas,
Dhaene and Tang (2004)

@ We think that it is more proper to call it the
Haezendonck-Goovaerts risk measure.

@ Recently studied by Bellini and Rosazza Gianin (2008a,
2008b) and Kratschmer and Zahle (2011).

@ Usually, the Young function ¢(+) is assumed to be convex so
that the Haezendonck-Goovaerts risk measure Hg[X] is a law
invariant coherent risk measure.
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A special case

The special case is ¢(t) =t for t € Ry. Then

and, thus, the Haezendonck-Goovaerts risk measure is reduced to
the well-known Conditional Tail Expectation risk measure.

For a proper distribution function F and for p € [0, 1],
F=(p) =inf{x e R: F(x) > p}

denotes the inverse function of F, also called the quantile of F or
the Value at Risk of X at level p.
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Remarks

The parameter g in the definition of the Haezendonck-Goovaerts
risk measure vaguely represents the confidence/risk aversion level.

We shall focus on the asymptotic behavior of Hy[X] as g 1 1.

Let X =sup{x € R: F(x) < 1} < oo be the upper endpoint of X
and p = Pr(X = X). We only consider p = 0. In this case,

lim Hy[X] = X.
im Ho[X]

@ When X = 0o we shall establish exact asymptotics for Hq[X]
diverging to co as g 1 1;

@ When X < oo we shall establish exact asymptotics for
X — Hg[X] decaying to 0 as g T 1.
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A power Young function

Due to the complexity of the problem, we shall only consider a
power Young function

This ensures the convexity of the Young function ¢(+) and, hence,
the coherence of the Haezendonck-Goovaerts risk measure.

Since Hy[X] =CTEq [X] when k = 1 while CTE, [X] has been
extensively investigated, we shall consider k > 1 only.
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Definition and Fisher-Tippett theorem

A distribution function F on R is said to belong to the max-domain
of attraction of an extreme value distribution function G if

lim sup |F" (cpx +ds) — G(x)| =0

n—o0o x€R

holds for some norming constants ¢, > 0 and d, € R, n € N.

By the classical Fisher-Tippett theorem (see Fisher and Tippett
(1928) and Gnedenko (1943)), only three choices for G are
possible, namely the Fréchet, Weibull and Gumbel distributions.
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Three cases

The Fréchet distribution function is given by ®,(x) = exp {—x""}
for x > 0. A distribution function F belongs to MDA(®,) if and
only if

lim — =yl y > 0.
A typical example is Pareto distribution.

The Weibull distribution function is given by W, (x) = exp {—[x|"}
for x < 0. A distribution function F belongs to MDA(WV,) if and
only if X < co and

. F(x—xy)
|Im _ = 77 > O.
20 Fr—x) 7
Almost all continuous distributions with bounded supports belong

to MDA(V.,).
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Three cases (Cont.)

The standard Gumbel distribution function is given by
A(x) = exp {—e >} for x € R. A distribution function F with a
right endpoint X belongs to MDA(A) if and only if

F(x + ya(x))

im =e¢ 7, e R,
A% F(x) Y

for some auxiliary function a(-) : (=00, %) — Ry. A
commonly-used choice of a(-) is the mean excess function,

a(x) =E[X —x|X >x] forx<x%.

Almost all rapidly varying distributions belong to MDA(A).
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Main result for the Fréchet case

Theorem 1. Let o(t) = tX for t > 0 for some k > 1 and let
F € MDA(®,) for some v > k > 1. Then, as g 11,

)k/,y,1

Hqg[X] ~ =K

k(k=1)/~ (B (7 — k, k))l/’y Fe(q) (3)
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Numerical results

Assume that F is the Pareto distribution with parameters a > 0

and 6 > 0:
9 o
F(X):1<X+0> , X€R+.

We numerically compute the exact value of Hg[X]. We compute
the asymptotic value of Hg[X] according to Theorem 1.
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The Fréchet case
The Weibull case
The Gumbel case

Main results

Graph 1. « =15and 1.6, k=1.1 and 6 = 1.
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The Fréchet case
The Weibull case
The Gumbel case

Main results

Graph 2. k=1.1and 1.2, « =1.6 and 6§ = 1.
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Main result for the Weibull case

Theorem 2. Let o(t) = t* for t > 0 for some k > 1 and let
F € MDA(W,) with v >0 and 0 < X < co. Then, as g 1 1,

~ jk—1 1/~
*=HlXI~ (B(7+1,k)(7+k)k> (= F{a).
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Numerical results

Assume that F is the Beta distribution with parameters a > 0 and
b > 0:
Xa—l(]_ o X)b—l

f(x) = Bab)

0<x<1.
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Main results

Graph 3. k=3 and 6, a=2and b=
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The Fréchet case
The Weibull case
The Gumbel case

Main results

Graph 4. b=6and 10, k=3 and a =2
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Main result for the Gumbel case

Theorem 3. Let o(t) = t* for t > 0 for some k > 1 and let
F € MDA(A) with an auxiliary function a(-) and an upper
endpoint 0 < X < oco. Then, as g 11,

(i) when % = co we have

Hy[X] ~ F* (1 _ ’F:k;(l _ q)> :

(ii) when X < oo we have

%~ HyX] ~ % — F¢ (1— kk_1(1—q)).

Fan Yang (University of lowa) Haezendonck-Goovaerts Risk Measure



Main results

Numerical result

Graph 5. F = Lognormal (u = 2,0 = 0.5), k
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Conclusion and future work

We have done the following:

o for the Fréchet case, Hy[X] ~ c1F<(q)
o for the Weibull case, X — Hy[X] ~ &2 (X — F*(q))

o for the Gumbel case,
Hq[X] ~ F(1 — c3q), when X = oo,
X —Hg[X] ~ (% — F7(1 - cq)), when X < o0.

Future work:

e Extend to a general Young function ¢(+);
@ Derive second-order asymptotics to improve the accuracy.

Thank you!
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