On the Haezendonck-Goovaerts Risk Measure for Extreme Risks ^[1]

Fan Yang

Applied Mathematical and Computational Sciences, University of Iowa

August 13, 2011 The 46th Actuarial Research Conference University of Connecticut

¹Based on a joint work with Qihe Tang

Fan Yang (University of Iowa)

Haezendonck-Goovaerts Risk Measure

・ロト ・同ト ・ヨト ・ヨト

Outline

- 1. Introduction
- 2. Max-domains of attraction
- 3. Main results
 - The Fréchet case
 - The Weibull case
 - The Gumbel case
- 4. Conclusion and future work

・ロン ・四 と ・ ヨ と ・ ヨ と

臣

Definitions Some preparations

Definitions

Let X be a real-valued random variable, representing a risk variable in loss-profit style, with a distribution function F on \mathbb{R} .

A function $\varphi(\cdot) : \mathbb{R}_+ \mapsto \mathbb{R}_+$ is called a normalized Young function if it is continuous and strictly increasing with $\varphi(0) = 0$, $\varphi(1) = 1$ and $\varphi(\infty) = \infty$.

For $q \in (0, 1)$, the Haezendonck-Goovaerts risk measure for X is defined as

$$H_q[X] = \inf_{x \in \mathbb{R}} \left(x + H_q[X, x] \right), \tag{1}$$

where $H_q[X, x]$ is the unique solution of the equation

$$\mathbb{E}\left[\varphi\left(\frac{(X-x)_{+}}{H_{q}[X,x]}\right)\right] = 1 - q \tag{2}$$

if $\overline{F}(x) > 0$ and let $H_q[X, x] = 0$ otherwise.

Definitions Some preparations

A short literature review

- First introduced by Haezendonck and Goovaerts (1982)
- Named as the Haezendonck risk measure by Goovaerts, Kaas, Dhaene and Tang (2004)
- We think that it is more proper to call it the Haezendonck-Goovaerts risk measure.
- Recently studied by Bellini and Rosazza Gianin (2008a, 2008b) and Krätschmer and Zähle (2011).
- Usually, the Young function φ(·) is assumed to be convex so that the Haezendonck-Goovaerts risk measure H_q[X] is a law invariant coherent risk measure.

・ロン ・四 と ・ ヨ と ・ ヨ と

Definitions Some preparations

A special case

The special case is $\varphi(t) = t$ for $t \in \mathbb{R}_+$. Then

$$H_q[X] = \inf_{x \in \mathbb{R}} \left(x + \frac{\mathbb{E}\left[(X - x)_+ \right]}{1 - q} \right) = \frac{1}{1 - q} \int_q^1 F^{\leftarrow}(p) \mathrm{d}p$$

and, thus, the Haezendonck-Goovaerts risk measure is reduced to the well-known Conditional Tail Expectation risk measure.

For a proper distribution function F and for $p \in [0, 1]$,

$$F^{\leftarrow}(p) = \inf\{x \in \mathbb{R} : F(x) \ge p\}$$

denotes the inverse function of F, also called the quantile of F or the Value at Risk of X at level p.

Definitions Some preparations

Remarks

The parameter q in the definition of the Haezendonck-Goovaerts risk measure vaguely represents the confidence/risk aversion level.

We shall focus on the asymptotic behavior of $H_q[X]$ as $q \uparrow 1$.

Let $\hat{\mathbf{x}} = \sup\{x \in \mathbb{R} : F(x) < 1\} \le \infty$ be the upper endpoint of X and $\hat{p} = \Pr(X = \hat{x})$. We only consider $\hat{p} = 0$. In this case,

$$\lim_{q\uparrow 1}H_q[X]=\hat{x}.$$

When x̂ = ∞ we shall establish exact asymptotics for H_q[X] diverging to ∞ as q ↑ 1;

• When $\hat{x} < \infty$ we shall establish exact asymptotics for $\hat{x} - H_q[X]$ decaying to 0 as $q \uparrow 1$.

Definitions Some preparations

A power Young function

Due to the complexity of the problem, we shall only consider a power Young function

 $\varphi(t) = t^k, \qquad k \ge 1.$

This ensures the convexity of the Young function $\varphi(\cdot)$ and, hence, the coherence of the Haezendonck-Goovaerts risk measure.

Since $H_q[X] = CTE_q[X]$ when k = 1 while $CTE_q[X]$ has been extensively investigated, we shall consider k > 1 only.

(日) (同) (E) (E) (E)

Definition and Fisher-Tippett theorem Three cases

Definition and Fisher-Tippett theorem

A distribution function F on \mathbb{R} is said to belong to the max-domain of attraction of an extreme value distribution function G if

$$\lim_{n\to\infty}\sup_{x\in\mathbb{R}}|F^n(c_nx+d_n)-G(x)|=0$$

holds for some norming constants $c_n > 0$ and $d_n \in \mathbb{R}$, $n \in \mathbb{N}$.

By the classical Fisher-Tippett theorem (see Fisher and Tippett (1928) and Gnedenko (1943)), only three choices for G are possible, namely the Fréchet, Weibull and Gumbel distributions.

Definition and Fisher-Tippett theorem Three cases

Three cases

The Fréchet distribution function is given by $\Phi_{\gamma}(x) = \exp\{-x^{-\gamma}\}$ for x > 0. A distribution function F belongs to $\text{MDA}(\Phi_{\gamma})$ if and only if

$$\lim_{x\to\infty}\frac{\overline{F}(xy)}{\overline{F}(x)}=y^{-\gamma},\qquad y>0.$$

A typical example is Pareto distribution.

The Weibull distribution function is given by $\Psi_{\gamma}(x) = \exp\{-|x|^{\gamma}\}$ for $x \leq 0$. A distribution function F belongs to $\text{MDA}(\Psi_{\gamma})$ if and only if $\hat{x} < \infty$ and

$$\lim_{x\downarrow 0} \frac{\overline{F}(\hat{x}-xy)}{\overline{F}(\hat{x}-x)} = y^{\gamma}, \qquad y>0.$$

Almost all continuous distributions with bounded supports belong to $MDA(\Psi_{\gamma})$.

Definition and Fisher-Tippett theorem Three cases

Three cases (Cont.)

The standard Gumbel distribution function is given by $\Lambda(x) = \exp\{-e^{-x}\}$ for $x \in \mathbb{R}$. A distribution function F with a right endpoint \hat{x} belongs to MDA(Λ) if and only if

$$\lim_{x\uparrow\hat{x}}\frac{\overline{F}(x+ya(x))}{\overline{F}(x)}=\mathrm{e}^{-y},\qquad y\in\mathbb{R},$$

for some auxiliary function $a(\cdot) : (-\infty, \hat{x}) \mapsto \mathbb{R}_+$. A commonly-used choice of $a(\cdot)$ is the mean excess function,

$$a(x) = \mathbb{E}\left[X - x | X > x\right]$$
 for $x < \hat{x}$.

Almost all rapidly varying distributions belong to $MDA(\Lambda)$.

The Fréchet case The Weibull case The Gumbel case

Main result for the Fréchet case

Theorem 1. Let $\varphi(t) = t^k$ for $t \ge 0$ for some k > 1 and let $F \in \text{MDA}(\Phi_{\gamma})$ for some $\gamma > k > 1$. Then, as $q \uparrow 1$,

$$H_q[X] \sim \frac{\gamma \left(\gamma - k\right)^{k/\gamma - 1}}{k^{(k-1)/\gamma}} \left(B\left(\gamma - k, k\right)\right)^{1/\gamma} F^{\leftarrow}(q).$$
(3)

・ロン ・四 と ・ ヨ と ・ ヨ と

The Fréchet case The Weibull case The Gumbel case

Numerical results

Assume that F is the Pareto distribution with parameters $\alpha > 0$ and $\theta > 0$:

$$F(x) = 1 - \left(rac{ heta}{x+ heta}
ight)^lpha, \qquad x \in \mathbb{R}_+.$$

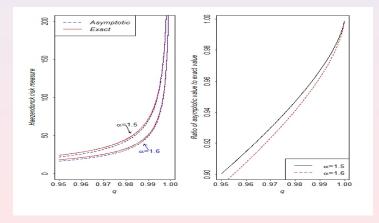
We numerically compute the exact value of $H_q[X]$. We compute the asymptotic value of $H_q[X]$ according to Theorem 1.

・ロン ・回 と ・ ヨン ・ ヨン

The Fréchet case The Weibull case The Gumbel case

Graph 1

Graph 1. $\alpha = 1.5$ and 1.6, k = 1.1 and $\theta = 1$.

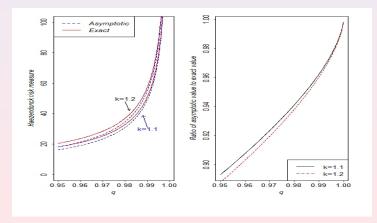


・ロン ・回 と ・ ヨン ・ ヨン

The Fréchet case The Weibull case The Gumbel case

Graph 2

Graph 2. k = 1.1 and 1.2, $\alpha = 1.6$ and $\theta = 1$.



・ロン ・回 と ・ ヨ と ・ ヨ と …

The Fréchet case The Weibull case The Gumbel case

Main result for the Weibull case

Theorem 2. Let $\varphi(t) = t^k$ for $t \ge 0$ for some k > 1 and let $F \in \text{MDA}(\Psi_{\gamma})$ with $\gamma > 0$ and $0 < \hat{x} < \infty$. Then, as $q \uparrow 1$,

$$\hat{x} - H_q[X] \sim \frac{\gamma}{\gamma + k} \left(\frac{k^{k-1}}{B(\gamma + 1, k)(\gamma + k)^k} \right)^{1/\gamma} (\hat{x} - F^{\leftarrow}(q)).$$

(ロ) (同) (E) (E) (E)

The Fréchet case The Weibull case The Gumbel case

Numerical results

Assume that *F* is the Beta distribution with parameters a > 0 and b > 0:

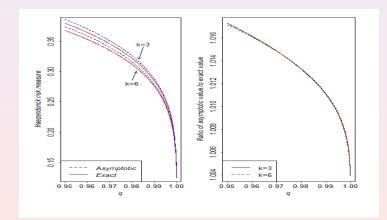
$$f(x) = rac{x^{a-1}(1-x)^{b-1}}{B(a,b)}, \qquad 0 < x < 1.$$

(日) (四) (E) (E) (E)

The Fréchet case The Weibull case The Gumbel case

Graph 3

Graph 3. k = 3 and 6, a = 2 and b = 6

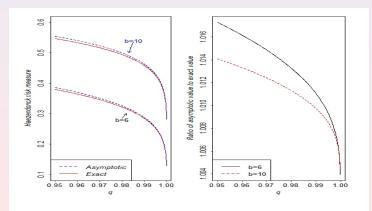


・ロト ・回ト ・ヨト ・ヨト

The Fréchet case The Weibull case The Gumbel case

Graph 4

Graph 4. b = 6 and 10, k = 3 and a = 2



・ロン ・回 と ・ ヨ と ・ ヨ と …

The Fréchet case The Weibull case The Gumbel case

Main result for the Gumbel case

Theorem 3. Let $\varphi(t) = t^k$ for $t \ge 0$ for some k > 1 and let $F \in \text{MDA}(\Lambda)$ with an auxiliary function $a(\cdot)$ and an upper endpoint $0 < \hat{x} \le \infty$. Then, as $q \uparrow 1$, (i) when $\hat{x} = \infty$ we have

$$H_q[X] \sim F^{\leftarrow} \left(1 - rac{k^{k-1}}{\Gamma(k)}(1-q)\right);$$

(ii) when $\hat{x} < \infty$ we have

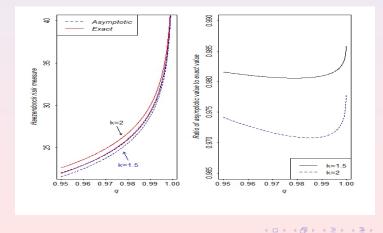
$$\hat{x} - H_q[X] \sim \hat{x} - F^{\leftarrow} \left(1 - \frac{k^{k-1}}{\Gamma(k)}(1-q)\right).$$

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・ ・

The Fréchet case The Weibull case The Gumbel case

Numerical result

Graph 5. F = Lognormal (μ = 2, σ = 0.5), k = 1.5 and 2.



Conclusion and future work

We have done the following:

- for the Fréchet case, $H_q[X] \sim {\it c_1} F^{\leftarrow}(q)$
- for the Weibull case, $\hat{x} H_q[X] \sim {\it c_2} \left(\hat{x} {\it F}^{\leftarrow}(q)
 ight)$

• for the Gumbel case,

$$\begin{cases}
H_q[X] \sim F^{\leftarrow}(1 - c_3 q), & \text{when } \hat{x} = \infty, \\
\hat{x} - H_q[X] \sim (\hat{x} - F^{\leftarrow}(1 - c_3 q)), & \text{when } \hat{x} < \infty.
\end{cases}$$

Future work:

- Extend to a general Young function $\varphi(\cdot)$;
- Derive second-order asymptotics to improve the accuracy.

Thank you!

・ロン ・回 と ・ 回 と ・ 回 と