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Classical Optimal Reinsurance Problem

Statement of the Optimization Problem

inf I∈D ρ(I (X )) subject to π(R(X )) = p.

R(X ) – ceded risk, I (X ) = X − R(X ) – retained risk;

Find a strategy to minimize the retained risk I (X ).

Ingredients of Optimization Problem

π – the premium principle for reinsurance;

ρ – risk measure as optimization criterion;

D – admissible strategy class.
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Traditional risk measure: ρ(X ) = E [u(X )]

u(x) is a convex function. For example

u(x) = x2 – minimize variance;

u(x) = eγx – maximize utility of insurer’s wealth:

u(x) = (x − E [X ])2+ – minimize semi-variance.

Mean-Variance Premium Principle: E [X ] = g(π(X ),DX )

Expected value premium: π(X ) = (1 + θ)E [X ];

Variance premium: π(X ) = E [X ] + βVarX ;

Standard deviation premium: π(X ) = E [X ] + βDX .
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Solutions to Classical Optimizaition Problems

Target – minimizing variance.

Pure variance premium: quota reinsurance – R(x) = α x

Expectation premium: stop loss reinsurance - R(x) = (x −d)+

Mean-Variance premium: change loss reinsurance –
R(x) = α (x − d)+.

Reference: Borch 1969, Kaluszka 2001.

Generalization of Classical Model

Different premium principles, risk measures;

Consider multiple risk instead of one-dimensional risk.



Outline Background Model Introduction Bivariate Case Multivariate Case Premium Constraint Conclusion

Motivation

A Practical Problem

Consider an auto insurance policy covering two source of loss:
vehicle damage and personal injury. Usually, different types of loss
have to be reinsured separately.
—How to make an optimal reinsurance arrangement?

Modeling

The risk is modeled by (X1,X2), X1,X2 ≥ 0.

The reinsurance strategy (I1, I2) is applied, i.e.
For each Xi , the insurer retains Ii (Xi ).

Objective: Minimize the total retained risk I1(X1) + I2(X2).
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Notations

Statement of the Optimization Problem

inf
(I1,I2)∈D

E [u(I1(X1) + I2(X2))] subject to E [(I1(X1) + I2(X2))] = p.

Expectation premium principle
Convex risk measure: ρ(X ) = E [u(X )] with convex u.

Admissible Strategy Classes

D =

{
(I1, I2)

∣∣∣∣ Ii (x) is non-decreasing in x ≥ 0 satisfying
0 ≤ Ii (x) ≤ x for i = 1, 2.

}
;

Dp =
{

(I1, I2) ∈ D |E [(I1(X1) + I2(X2))] = p};
Dp

sl =
{

(I d1 , I d2) ∈ Dp | I di (x) = x ∧ di , i = 1, 2
}

Dp - global strategy class; Dp
sl - (bivariate) stop-loss strategy class.
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Comments on the Bivariate Model

Individualized Strategy vs Global Strategy

Global strategy I (X1,X2) = I (X1 + X2) −→ classical problem;

Individualized Strategy I (X1,X2) = I1(X1) + I2(X2).

Independent Case

Heerwaarden et al (1989) has shown that: if X1 and X2 are
independent, the optimal strategy has the stop loss form, i.e.
(I1(x1), I2(x2)) = (x1 ∧ d1, x2 ∧ d2).

Ideas to Solve the Problem

Under certain dependence structure,

Show the optimality of bivariate stop loss strategy;

Find out optimal solution among the stop loss strategy.
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Dependence Structure

Definition: Stochastically Increasing

X is stochastically increasing in Y , denoted as X ↑SI Y , if
P{X > x |Y = y1} ≤ P{X > x |Y = y2}, for any x , y1 ≤ y2;
or equivalently, if X |{Y = y1} ≤st X |{Y = y2} for any y1 ≤ y2.

Examples

Independent or comonotonic random variables;

Common shock: X1 = Y1 × Z ,X2 = Y2 × Z .

Random variables linked by typical copulas: such as
Gaussian/Gumbel/Clayton copula with coefficient restriction.
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Optimization — Dp vs Dp
sl

Theorem 1 - Equivalence of Minimization in Dp and Dp
sl

If X1 ↑SI X2 and X2 ↑SI X1, then for any (I1, I2) ∈ Dp, there exists
(I d1 , I d2) ∈ Dp

sl such that

E [u(I d1(X1) + I d2(X2)) ≤ E [u(I1(X1) + I2(X2))],

for any convex function u(x).

Application in Dynamic Model

Consider a compound Poisson model:

U(I1,I2)(t) = u + p t −
∑N(t)

i=1 (I1(X1,i ) + I2(X2,i )),

where (X1,i ,X2,i ) ∼i .i .d . (X1,X2). Denote by φ(I1,I2)(u) the ruin
probability of the surplus process U(I1,I2)(t), then there exists
(d1, d2) ∈ Dp

sl such that φ(d1,d2)(u) ≤ φ(I1,I2)(u).
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The Premium Constraint

The Curve Determined by Premium Constraint

L =

{
(d1, d2)

∣∣∣∣ ∫ d1

0
F 1(x)dx +

∫ d2

0
F 2(x)dx = p, d1, d2 ≥ 0

}

Properties of the Curve L

On L, d2 = L(d1) is a one-to-one mapping;

L(d1) a convex function, with ∂d2
∂d1

= −F 1(d1)

F 2(d2)
;

Denote the endpoints of L by (d1, d2) and (d2, d1).
For simplicity, assume d1 = d2 =∞.
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Graph of L-Curve

Figure: L-Curve and solution area
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Two Optimization Problems

Problem Description

inf
(d1,d2)∈Dsl

Var [I d1(X1) + I d2(X2)] (1)

inf
(d1,d2)∈Dsl

E [exp{s (I d1(X1) + I d2(X2))}], s ∈ R . (2)

Explicit Solutions

The solutions to (1) and (2) exist and are determined by:{
E [(X2 − d2)−|X1 > d1] = E [(X1 − d1)−|X2 > d2]∫ d1
0 F 1(x)dx +

∫ d2
0 F 2(x)dx = p.{

E [exp{s (X2 − d2)−}|X1 > d1] = E [exp{s (X1 − d1)−}|X2 > d2]∫ d1
0 F 1(x)dx +

∫ d2
0 F 2(x)dx = p.
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Multivariate Dependence Structure

Definition: Positive Dependent through Stochastic Ordering

Random vector X is said to be stochastically increasing in random
variable Y , denoted as X ↑SI Y , if X|Y = y1 ≤st X|Y = y2 for any
y1 ≤ y2;
Random vector X is said to be positive dependent through
stochastic ordering (PDS), if (Xi , i 6= j) ↑SI Xj for all
j = 1, 2, · · · , n.

Examples of Stochastically Increasing

If X is linked by one of the following copulas, then X is PDS:

The multivariate independence/comonotonicity copula;

The multivariate Gaussian copula with nonnegative correlation
matrix.
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Optimality of Stop Loss Strategy

Multivariate Strategy Classes

M =

{
I

∣∣∣∣ Ii (x) is non-decreasing in x ≥ 0 satisfying
0 ≤ Ii (x) ≤ x for i = 1, 2, · · · , n

}
,

Mp =

{
I ∈M

∣∣∣∣∣
n∑

i=1

E [Ii (Xi )] = p

}
;Mp

sl = {I ∈Mp|Ii (x) = x ∧ di} .

Theorem 2 - Generalization of Theorem 1

If X is PDS, then for any convex function u(x),

inf
I∈Mp

sl

E

[
u

(
n∑

i=1

Ii (Xi )

)]
= inf

I∈Mp
E

[
u

(
n∑

i=1

Ii (Xi )

)]
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Unbinding Constraint and Admissible Strategy Class

Binding and Unbinding Constraints

Assume expected value premium principle:{
Binding: π (

∑n
i=1 Ii (Xi )) = p2 ⇐⇒ E [

∑n
i=1 Ii (Xi )] = p,

Unbinding: π (
∑n

i=1 Ii (Xi )) ≤ p2 ⇐⇒ E [
∑n

i=1 Ii (Xi )] ≥ p.

Admissible Strategy Classes

M≥p =

{
I ∈M

∣∣∣∣∣
n∑

i=1

E [Ii (Xi )] ≥ p

}
;M≥psl = {I ∈Mp|Ii (x) = x ∧ di} .

Clearly, Mp ⊂M≥p and Mp
sl ⊂M

≥p
sl
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Equivalence of Binding and Unbinding Constraints

Proposition 3 - Optimization in M≥p vs Mp
sl

If X is PDS, then for any increasing convex function u(x),

inf
I∈Mp

sl

E

[
u

(
n∑

i=1

Ii (Xi )

)]
= inf

I∈M≥p
E

[
u

(
n∑

i=1

Ii (Xi )

)]

Intuition

The insurer tend to exhaust all the premium budget to cede as
much risk as possible. As an extreme case, assume the premium
budget is sufficiently large, the insurer would choose to cede all the
risk to the reinsurer and completely avoid the risk.
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Release the Premium Constraint

Two Larger Strategy Classes - M≥p and M≥psl

M≥p =

{
I ∈M

∣∣∣∣∣
n∑

i=1

E [Ii (Xi )] ≥ p

}
,

M≥psl =
{
I ∈M≥p |Ii (x) = x ∧ di

}
.

Interpretation: there is a budget limit for reinsurance premium.

Proposition 3 - Optimization in M≥p

If X is PDS, then for any increasing convex function u(x),

inf
I∈Mp

sl

E

[
u

(
n∑

i=1

Ii (Xi )

)]
= inf

I∈M≥p
E

[
u

(
n∑

i=1

Ii (Xi )

)]
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Conclusive Remarks

Conclusion

Under PDS dependence, optimal reinsurance strategy is
multivariate stop loss form;

Explicit solutions could be derived in certain bivariate model;

Binding and unbinding constraints are equivalent.

Future Work

Continue studying the multivariate model.

Consider more general premium principles.
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Thank You !
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