

Article from:

ARCH 2014.1 Proceedings

July 31-August 3, 2013

Risk Analysis of Catastrophe Bonds from the Perspective of Investors

Thomas Nowak

Bundeswehr University, Munich Department of Insurance Economics Chair Prof. Dr. Thomas Hartung

Actuarial Research Conference Philadelphia 2013

Scientific Assessment of Catastrophe Bonds

• Scientific assessment of catastrophe bonds as investments:

- New asset class; "Pure Play" in insurance risk
- Almost no correlation with ordinary asset classes
 - \rightarrow Possibility to shift portfolios' efficient frontier upwards
- Special risk-return-characteristic
 - High returns for investors despite being "zero-beta" assets
 - Outperformance of Treasury bills and equally rated corporate bonds

"The historical evidence suggests the addition of cat exposures to investment portfolios is equivalent to a free lunch for investors and insurance consumers alike." Froot et al. (1995)

Warren Buffett Predicted in his 1997 Chairman's Letter:

"Catastrophe bonds may well live up to their name!"

- The word "bond" is an Orwellian misnomer.
- Truly outsized risks will exist in these contracts if they are not properly priced. Mispricing may remain undiscovered for a very long time.
- Risk assessment of natural catastrophes is fuzzy.
- $\rightarrow\,$ Goal of Presentation: Investors have to be aware of risks and characteristics of catastrophe bonds

Traditional Risk Securitization Structure

Risks of Cat Bonds

< ∃→

Risk Securitization Structure after Lehman Brothers (†)

Fix Payment

Event-Dependent Payment

Image: A matrix

∃ → < ∃ →</p>

- Highly tailored investment products
- Classical insurer risks connected with holding catastrophe bonds:
 - Acceptance of a fix premium upfront for the coverage of an uncertain loss amount later
 - \rightarrow Investors bear underwriting risk
 - Investment of premium and principal
 - \rightarrow Investors bear investment risk (market, credit, liquidation value risk)
- Investment risk by embedded options (e.g. optional extension periods, call options)
- Investment risk by overestimating outperformance and underestimating correlation

- The underwriting risk of catastrophe bond investors consists of the uncertainty whether the calculated premium is enough to cover the upcoming claims expenditures.
- Investors' underwriting risk is specified by
 - errors in the risk assessment before investing,
 - changes in the risk's behaviour,
 - and the random character of insurance events during the holding period

in the context of low frequency-high severity risks.

Insuring Low Frequency-High Severity Risks

- High uncertainty (epistemic and aleatory) in the assessment and prognosis of catastrophe risks
 - \rightarrow Caution with the results of catastrophe models
 - \rightarrow Possible risk assessment in favor of cedents
- Appearing misestimations may cause price adjustments
- Excess-of-loss contracts as instruments to transfer the risk of high random deviations
- ⇒ In summary, catastrophe bond investors carry the risk of a pure accidental, catastrophic, and difficult to assess reinsurance claim. This exceeds their premium by far and happens coincidentally in their holding period.

- Briys et al. (1998):
 - Standard deviation as inadequate risk measure for highly-skewed return distributions
 - Past performance of highly-non stationary investments as inappropriate estimator for the future one
 - Catastrophe bonds have a relatively high interest rate sensitivity
- Blum et al. (2002) argue that the joint distribution of insurance and financial risks is unlikely to be elliptical
 - \rightarrow Linear correlation coefficient is inappropriate to model dependency. Underestimates dependency in extreme scenarios
 - \rightarrow Classical portfolio theory is generally not suitable to justify the usefulness of ILSs for investors

- Diekmann (2011) shows a significant correlation between catastrophe bond returns, consumption rates, and traditional asset classes
 → diversification effect present but limited
 - \rightarrow catastrophes could bring investors to their subsistence level
- Gürtler et al. (2012) discover a positive dependency between coporate credit spreads and catastrophe bond premiums. This dependency rises significantly in extreme market conditions.
- \rightarrow Assumptions about outperformance and diversifying effect ("zero-beta" asset) have to be interpreted with care.

• The classical risk reserve process $(U(t))_{t\geq 0}$ is defined as

$$U(t)=u+ct-\sum_{i=1}^{N(t)}X_i, \ t\geq 0,$$

where $u \ge 0$ stands for the initial capital of an insurance company, c > 0 for its premium income rate, and $\sum_{i=1}^{N(t)} X_i$, as a compound Poisson process, for the insurer's random aggregate claim amount of the single claims $X_1 + \cdots + X_{N(t)}$ up to time t.

- Redefining $(U(t))_{t\geq 0}$ as wealth process for catastrophe bond investors
- Subexponential distributions (e.g. log-normal and Pareto) for modeling heavy-tailed risks

Characteristics of Investors' Wealth Process

- Assume the claims X_i to be subexponentially distributed. Then the wealth process of catastrophe bond investors has following characteristics:
 - Comparable high probability for a total loss
 - Total loss by one extreme event
 - Extreme events happen "out of the blue"

- Individually tailored investments
- High underwriting risk and uncertainty in the correct premium
- Investment risks and interest rate sensitivity
- Highly-skewed return distribution
- Key for successfully long-term investing is the ability to estimate fair premiums

- Barrieu, P. / Albertini, L. eds. (2009): The Handbook of Insurance-Linked Securities, Chichester.
- Blum, P. / Dias, A. / Embrechts, P. (2002): The ART of Dependence Modelling: The Latest Advances in Correlation Analysis, in: Lane, M. (ed.): Alternative Risk Strategies, London, pp. 339-356.
- Buffett, Warren (1998): 1997 Chairman's Letter, Berkshire Hathaway Inc. 1997 Annual Report, Omaha.
- Briys, E. / Bellalah, M. / Mai, H. M. / de Varenne, F. (1998): Options, Futures and Exotic Derivatives: Theory, Application and Practice, Chichester et al.
- Cummins, J. D. (2008): CAT Bonds and Other Risk-Linked Securities: State of the Market and Recent Developments, in: Risk Management and Insurance Review, Vol. 11, No. 1, pp. 23-47.

A B A A B A

- - I - - II

- Dieckmann, S. (2011): A Consumption-Based Evaluation of the Cat Bond Market, Working Paper, Version August 2011.
- Embrechts, P. / Klüppelberg, C. / Mikosch, T. (1997): Modelling Extremal Events: for Insurance and Finance, Berlin et al.
- Froot, K. A. / Murphy, B. S. / Stern, A. B. / Usher, S. E. (1995): The Emerging Asset Class: Insurance Risk, in: Viewpoint, Vol. 24, No. 3, pp. 19-28.
- Gürtler, M. / Hibbeln, M. / Winkelvos, C. (2012): The Impact of the Financial Crisis and Natural Catastrophes on CAT Bonds, Working Paper, Version August 2012.
- Mikosch, T. (2009): Non-Life Insurance Mathematics: An Introduction with the Poisson Process, 2nd edition, Berlin et al.

A B A A B A

→ ∃ →