Computing Tight Bounds for Insurance Payments with Nonlinear Risk

Man Hong WONG1 \hspace{1cm} Shuzhong ZHANG2

Aug 3, 2011

1ASA, FRM, The Chinese University of Hong Kong
2University of Minnesota
Semidefinite Programming

\[(SDP) \quad \inf \quad C \bullet X \]
\[\text{s.t.} \quad A_i \bullet X \leq b_i \quad \forall i = 1, \ldots, n \]
\[X \succeq 0 \]

where \(A \bullet B := tr(A^TB)\)

- whole matrix \(X\) is a variable
- \(X \succeq 0\) means \(X\) is a semidefinite matrix (all eigenvalues of \(X\) are nonnegative)
- applications in engineering and finance
- any problem arriving at this form can be solved efficiently!
Semidefinite Programming

\[(SDP) \quad \inf \quad C \bullet X \]
\[\text{s.t. } A_i \bullet X \leq b_i \quad \forall i = 1, \ldots, n \]
\[X \succeq 0\]

where \(A \bullet B := tr(A^TB)\)

- whole matrix \(X\) is a variable
- \(X \succeq 0\) means \(X\) is a semidefinite matrix (all eigenvalues of \(X\) are nonnegative)
- applications in engineering and finance
- any problem arriving at this form can be solved efficiently!
Semidefinite Programming

\[
(SDP) \quad \inf \quad C \bullet X \\
\text{s.t. } A_i \bullet X \leq b_i \quad \forall i = 1, \ldots, n \\
X \succeq 0
\]

where \(A \bullet B \) := \(\text{tr}(A^T B) \)

- whole matrix \(X \) is a variable
- \(X \succeq 0 \) means \(X \) is a semidefinite matrix (all eigenvalues of \(X \) are nonnegative)
- applications in engineering and finance
- any problem arriving at this form can be solved efficiently!
Semidefinite Programming

\[(SDP) \quad \text{inf} \quad C \bullet X \]
\[
\text{s.t.} \quad A_i \bullet X \leq b_i \quad \forall i = 1, \cdots, n \\
X \succeq 0
\]

where \(A \bullet B := tr(A^T B)\)

- whole matrix \(X\) is a variable
- \(X \succeq 0\) means \(X\) is a semidefinite matrix (all eigenvalues of \(X\) are nonnegative)
- applications in engineering and finance
- any problem arriving at this form can be solved efficiently!
Semidefinite Programming

\[(SDP) \quad \inf \quad C \cdot X \]
\[\text{s.t. } A_i \cdot X \leq b_i \quad \forall i = 1, \cdots, n \]
\[X \succeq 0\]

where \(A \cdot B := tr(A^T B)\)

- whole matrix \(X\) is a variable
- \(X \succeq 0\) means \(X\) is a semidefinite matrix (all eigenvalues of \(X\) are nonnegative)
- applications in engineering and finance
- any problem arriving at this form can be solved efficiently!
Computing Tight Bounds for Insurance Payments with Nonlinear Risk

Motivation

\[\gamma \leq \mathbb{E}[\psi(x)] \leq \gamma \]

- when distribution is not known
- difficult to estimate the distribution, e.g. extreme events
- only some realizations of \(x \) exist \(\rightarrow \) moments can be estimated
- efficiently find the numerical bounds?

\[\sup_{x \sim (m_1, \ldots, m_n)} \mathbb{E}[\psi(x)] \]
Motivation

\[? \leq \mathbb{E}[\psi(x)] \leq ? \]

- when distribution is not known
- difficult to estimate the distribution, e.g. extreme events
- only some realizations of \(x \) exist \(\rightarrow \) moments can be estimated
- efficiently find the numerical bounds?

\[\sup_{x \sim (m_1, \ldots, m_n)} \mathbb{E}[\psi(x)] \]
Motivation

\[? \leq \mathbb{E}[\psi(x)] \leq ? \]

- when distribution is not known
- difficult to estimate the distribution, e.g. extreme events
- only some realizations of \(x \) exist \Rightarrow moments can be estimated
- efficiently find the numerical bounds?

\[\sup_{x \sim (m_1, \ldots, m_n)} \mathbb{E}[\psi(x)] \]
Motivation

\[? \leq \mathbb{E}[\psi(x)] \leq ? \]

- when distribution is not known
- difficult to estimate the distribution, e.g. extreme events
- only some realizations of \(x \) exist \(\rightarrow \) moments can be estimated
- efficiently find the numerical bounds?

\[\sup_{x \sim (m_1, \ldots, m_n)} \mathbb{E}[\psi(x)] \]
Motivation

\[\hat{\mathbb{E}}[\psi(x)] \leq \mathbb{E}[\psi(x)] \leq \hat{\mathbb{E}}[\psi(x)] \]

- When distribution is not known
- Difficult to estimate the distribution, e.g., extreme events
- Only some realizations of \(x \) exist \(\rightarrow \) moments can be estimated
- Efficiently find the numerical bounds?

\[\sup_{x \sim (m_1, \ldots, m_n)} \mathbb{E}[\psi(x)] \]
Motivation

\[\psi(x) \leq \mathbb{E}[\psi(x)] \leq ? \]

- when distribution is not known
- difficult to estimate the distribution, e.g. extreme events
- only some realizations of \(x \) exist \(\rightarrow \) moments can be estimated
- efficiently find the numerical bounds?

\[
\sup_{x \sim (m_1, \ldots, m_n)} \mathbb{E}[\psi(x)]
\]
Brief Review

- analytical form: $\psi(x)$ is (piecewise) linear:
- numerical ways with semidefinite programming (SDP):
- $\psi(x)$ is nonlinear:
 - analytical: not likely
Brief Review

- analytical form: $\psi(x)$ is (piecewise) linear:

- numerical ways with semidefinite programming (SDP):

- $\psi(x)$ is nonlinear:
 - analytical: not likely
 - numerical way: Nesterov (1997) \rightarrow Bertsimas & Popescu (2005) \rightarrow We extend to (piecewise) fractional polynomials
Brief Review

- **analytical form:** $\psi(x)$ is (piecewise) linear:

- **numerical ways with semidefinite programming (SDP):**

- **$\psi(x)$ is nonlinear:**
 - analytical: not likely
 - numerical way: Nesterov (1997) \rightarrow Bertsimas & Popescu (2005) \rightarrow We extend to (piecewise) fractional polynomials
Brief Review

- analytical form: $\psi(x)$ is (piecewise) linear:
- numerical ways with semidefinite programming (SDP):
- $\psi(x)$ is nonlinear:
 - analytical: not likely
 - numerical way: Nesterov (1997) \rightarrow Bertsimas & Popescu (2005) \rightarrow We extend to (piecewise) fractional polynomials
Brief Review

- analytical form: $\psi(x)$ is (piecewise) linear:

- numerical ways with semidefinite programming (SDP):

- $\psi(x)$ is nonlinear:
 - analytical: not likely
Brief Review

- **analytical form**: $\psi(x)$ is (piecewise) linear:

- **numerical ways with semidefinite programming (SDP)**:

- **$\psi(x)$ is nonlinear**:

 - analytical: not likely

An example on mortgage payment

Recall

\[P = A \left(\frac{1}{1 + r} + \cdots + \frac{1}{(1 + r)^t} \right) = A \frac{(1 + r)^t - 1}{r(1 + r)^t} \]

\[f_{P,t}(r) \coloneqq A = \frac{Pr(1 + r)^t}{(1 + r)^t - 1} \]

- How worst can \(\mathbb{E}(f_{P,t}(r)) \) be? \(\rightarrow \) \(\sup \mathbb{E}[f_{P,t}(r)] \)?
- bound for stop-loss insurance? \(\rightarrow \) \(\sup \mathbb{E}[(f_{P,t}(r) - h)_+] \)
- binary option bound? \(\rightarrow \) \(\sup \mathbb{P}[f_{P,t}(r) \geq h] = \sup \mathbb{E}[1_{f_{P,t}(r) \geq h}] \)
An example on mortgage payment

Recall

\[P = A \left(\frac{1}{1+r} + \cdots + \frac{1}{(1+r)^t} \right) = A \frac{(1+r)^t - 1}{r(1+r)^t} \]

\[f_{P,t}(r) := A = \frac{Pr(1+r)^t}{(1+r)^t - 1} \]

- How worst can \(\mathbb{E}(f_{P,t}(r)) \) be? \(\rightarrow \) \(\sup \mathbb{E}[f_{P,t}(r)] \)?
- bound for stop-loss insurance? \(\rightarrow \) \(\sup \mathbb{E}[(f_{P,t}(r) - h)_+] \)
- binary option bound? \(\rightarrow \) \(\sup \mathbb{P}[f_{P,t}(r) \geq h] = \sup \mathbb{E}[1_{f_{P,t}(r) \geq h}] \)
An example on mortgage payment

Recall

$$P = A \left(\frac{1}{1 + r} + \cdots + \frac{1}{(1 + r)^t} \right) = A \frac{(1 + r)^t - 1}{r(1 + r)^t}$$

$$f_{P,t}(r) := A = \frac{Pr(1 + r)^t}{(1 + r)^t - 1}$$

- How worst can $\mathbb{E}(f_{P,t}(r))$ be? $\rightarrow \sup \mathbb{E}[f_{P,t}(r)]$?
- Bound for stop-loss insurance? $\rightarrow \sup \mathbb{E}[(f_{P,t}(r) - h)_+]$
- Binary option bound? $\rightarrow \sup \mathbb{P}[f_{P,t}(r) \geq h] = \sup \mathbb{E}[1_{f_{P,t}(r) \geq h}]$
An example on mortgage payment

Recall

\[P = A \left(\frac{1}{1 + r} + \cdots + \frac{1}{(1 + r)^t} \right) = A \frac{(1 + r)^t - 1}{r(1 + r)^t} \]

\[f_{P,t}(r) := A = \frac{Pr(1 + r)^t}{(1 + r)^t - 1} \]

- How worst can \(\mathbb{E}(f_{P,t}(r)) \) be? \(\rightarrow \) \(\sup \mathbb{E}[f_{P,t}(r)] \)
- bound for stop-loss insurance? \(\rightarrow \) \(\sup \mathbb{E}[(f_{P,t}(r) - h)_+] \)
- binary option bound? \(\rightarrow \) \(\sup \mathbb{P}[f_{P,t}(r) \geq h] = \sup \mathbb{E}[1_{f_{P,t}(r) \geq h}] \)
An example on mortgage payment

Recall

\[P = A \left(\frac{1}{1 + r} + \cdots + \frac{1}{(1 + r)^t} \right) = A \frac{(1 + r)^t - 1}{r(1 + r)^t} \]

\[f_{P,t}(r) := A = \frac{Pr(1 + r)^t}{(1 + r)^t - 1} \]

- How worst can \(\mathbb{E}(f_{P,t}(r)) \) be? \(\rightarrow \) sup \(\mathbb{E}[f_{P,t}(r)] \)?
- bound for stop-loss insurance? \(\rightarrow \) sup \(\mathbb{E}[(f_{P,t}(r) - h)_+] \)
- binary option bound? \(\rightarrow \) sup \(\mathbb{P}[f_{P,t}(r) \geq h] = \sup \mathbb{E}[1_{f_{P,t}(r) \geq h}] \)
An example on mortgage payment

Recall

\[P = A \left(\frac{1}{1 + r} + \cdots + \frac{1}{(1 + r)^t} \right) = A \frac{(1 + r)^t - 1}{r(1 + r)^t} \]

\[f_{P,t}(r) := A = \frac{Pr(1 + r)^t}{(1 + r)^t - 1} \]

- How worst can \(\mathbb{E}(f_{P,t}(r)) \) be? \(\rightarrow \) \(\sup \mathbb{E}[f_{P,t}(r)] \)?
- bound for stop-loss insurance? \(\rightarrow \) \(\sup \mathbb{E}[(f_{P,t}(r) - h)_+] \)
- binary option bound? \(\rightarrow \) \(\sup \mathbb{P}[f_{P,t}(r) \geq h] = \sup \mathbb{E}[1_{f_{P,t}(r) \geq h}] \)
An example on mortgage payment

Recall

\[P = A \left(\frac{1}{1+r} + \cdots + \frac{1}{(1+r)^t} \right) = A \frac{(1+r)^t - 1}{r(1+r)^t} \]

\[f_{P,t}(r) := A = \frac{Pr(1+r)^t}{(1+r)^t - 1} \]

- How worst can \(\mathbb{E}(f_{P,t}(r)) \) be? \(\rightarrow \sup \mathbb{E}[f_{P,t}(r)] \)?
- bound for stop-loss insurance? \(\rightarrow \sup \mathbb{E}[(f_{P,t}(r) - h)_+] \)
- binary option bound? \(\rightarrow \sup \mathbb{P}[f_{P,t}(r) \geq h] = \sup \mathbb{E}[1_{f_{P,t}(r) \geq h}] \)
Experiential Scenario

- loan $1000, 20 periodic payments in return
- floating rate (assume latest 2.5%, so $f_{1000,20}(0.025) = 51.32$.)
- 12-month Hong Kong Dollar Interest Rate (take 5 years, 10 years and 20 years samples)

<table>
<thead>
<tr>
<th>period</th>
<th>μ</th>
<th>σ</th>
<th>$\sup \mathbb{E}[f_{1000,20}(r)]$</th>
<th>$\sup \mathbb{E}[f_{1000,20}(r)] / f_{1000,20}(0.025) - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year</td>
<td>1.45%</td>
<td>1.25%</td>
<td>58.2117</td>
<td>13%</td>
</tr>
<tr>
<td>10-year</td>
<td>1.27%</td>
<td>1.21%</td>
<td>57.0003</td>
<td>11%</td>
</tr>
<tr>
<td>20-year</td>
<td>3.60%</td>
<td>2.50%</td>
<td>71.9524</td>
<td>40%</td>
</tr>
</tbody>
</table>
Experiential Scenario

- loan $1000, 20 periodic payments in return
- floating rate (assume latest 2.5%, so $f_{1000,20}(0.025) = 51.32)
- 12-month Hong Kong Dollar Interest Rate (take 5 years, 10 years and 20 years samples)

<table>
<thead>
<tr>
<th>period</th>
<th>μ</th>
<th>σ</th>
<th>$\sup \mathbb{E}[f_{1000,20}(r)]$</th>
<th>$\frac{\sup \mathbb{E}[f_{1000,20}(r)]}{f_{1000,20}(0.025)} - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year</td>
<td>1.45%</td>
<td>1.25%</td>
<td>58.2117</td>
<td>13%</td>
</tr>
<tr>
<td>10-year</td>
<td>1.27%</td>
<td>1.21%</td>
<td>57.0003</td>
<td>11%</td>
</tr>
<tr>
<td>20-year</td>
<td>3.60%</td>
<td>2.50%</td>
<td>71.9524</td>
<td>40%</td>
</tr>
</tbody>
</table>
Experiential Scenario

- loan $1000, 20 periodic payments in return
- floating rate (assume latest 2.5%, so $f_{1000,20}(0.025) = 51.32$)
- 12-month Hong Kong Dollar Interest Rate (take 5 years, 10 years and 20 years samples)

<table>
<thead>
<tr>
<th>period</th>
<th>μ</th>
<th>σ</th>
<th>sup $\mathbb{E}[f_{1000,20}(r)]$</th>
<th>sup $\mathbb{E}[f_{1000,20}(r)] - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year</td>
<td>1.45%</td>
<td>1.25%</td>
<td>58.2117</td>
<td>13%</td>
</tr>
<tr>
<td>10-year</td>
<td>1.27%</td>
<td>1.21%</td>
<td>57.0003</td>
<td>11%</td>
</tr>
<tr>
<td>20-year</td>
<td>3.60%</td>
<td>2.50%</td>
<td>71.9524</td>
<td>40%</td>
</tr>
</tbody>
</table>
Experiential Scenario

- loan $1000, 20 periodic payments in return
- floating rate (assume latest 2.5%, so $f_{1000,20}(0.025) = 51.32.$)
- 12-month Hong Kong Dollar Interest Rate (take 5 years, 10 years and 20 years samples)

<table>
<thead>
<tr>
<th>period</th>
<th>μ</th>
<th>σ</th>
<th>$\sup \mathbb{E}[f_{1000,20}(r)]$</th>
<th>(\frac{\sup \mathbb{E}[f_{1000,20}(r)]}{f_{1000,20}(0.025)} - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year</td>
<td>1.45%</td>
<td>1.25%</td>
<td>58.2117</td>
<td>13%</td>
</tr>
<tr>
<td>10-year</td>
<td>1.27%</td>
<td>1.21%</td>
<td>57.0003</td>
<td>11%</td>
</tr>
<tr>
<td>20-year</td>
<td>3.60%</td>
<td>2.50%</td>
<td>71.9524</td>
<td>40%</td>
</tr>
</tbody>
</table>
Experiential Scenario (con’d)

- consider a threshold h in terms of quantifying σ above μ

<table>
<thead>
<tr>
<th>period</th>
<th>$\mu + \sigma$</th>
<th>eqv. h^1</th>
<th>$\sup \mathbb{E}[f_{1000,20}(r) - h]_+$</th>
<th>$\sup \mathbb{P}(f_{1000,20}(r) \geq h)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year</td>
<td>2.09%</td>
<td>61.6892</td>
<td>2.3786</td>
<td>0.6938</td>
</tr>
<tr>
<td>10-year</td>
<td>1.93%</td>
<td>60.7444</td>
<td>2.3082</td>
<td>0.6580</td>
</tr>
<tr>
<td>20-year</td>
<td>4.07%</td>
<td>74.0386</td>
<td>7.1618</td>
<td>0.8845</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>period</th>
<th>$\mu + 2\sigma$</th>
<th>eqv. h^2</th>
<th>$\sup \mathbb{E}[f_{1000,20}(r) - h]_+$</th>
<th>$\sup \mathbb{P}(f_{1000,20}(r) \geq h)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year</td>
<td>3.23%</td>
<td>68.6531</td>
<td>1.3078</td>
<td>0.3303</td>
</tr>
<tr>
<td>10-year</td>
<td>3.05%</td>
<td>67.5268</td>
<td>1.2222</td>
<td>0.3161</td>
</tr>
<tr>
<td>20-year</td>
<td>5.91%</td>
<td>86.5486</td>
<td>4.1012</td>
<td>0.5394</td>
</tr>
</tbody>
</table>

$^1 h = f_{1000,20}(\mu + \sigma)$
$^2 h = f_{1000,20}(\mu + 2\sigma)$
Experiential Scenario (con’d)

- consider a threshold h in terms of quantifying σ above μ

<table>
<thead>
<tr>
<th>period</th>
<th>$\mu + \sigma$</th>
<th>eqv. h^1</th>
<th>$\sup \mathbb{E}[f_{1000,20}(r) - h]_+$</th>
<th>$\sup \mathbb{P}(f_{1000,20}(r) \geq h)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year</td>
<td>2.09%</td>
<td>61.6892</td>
<td>2.3786</td>
<td>0.6938</td>
</tr>
<tr>
<td>10-year</td>
<td>1.93%</td>
<td>60.7444</td>
<td>2.3082</td>
<td>0.6580</td>
</tr>
<tr>
<td>20-year</td>
<td>4.07%</td>
<td>74.0386</td>
<td>7.1618</td>
<td>0.8845</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>period</th>
<th>$\mu + 2\sigma$</th>
<th>eqv. h^2</th>
<th>$\sup \mathbb{E}[f_{1000,20}(r) - h]_+$</th>
<th>$\sup \mathbb{P}(f_{1000,20}(r) \geq h)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year</td>
<td>3.23%</td>
<td>68.6531</td>
<td>1.3078</td>
<td>0.3303</td>
</tr>
<tr>
<td>10-year</td>
<td>3.05%</td>
<td>67.5268</td>
<td>1.2222</td>
<td>0.3161</td>
</tr>
<tr>
<td>20-year</td>
<td>5.91%</td>
<td>86.5486</td>
<td>4.1012</td>
<td>0.5394</td>
</tr>
</tbody>
</table>

$h = f_{1000,20}(\mu + \sigma)$

$^1 h = f_{1000,20}(\mu + \sigma)$

$^2 h = f_{1000,20}(\mu + 2\sigma)$
Nonlinear $\psi(x)$ application

- interest rate (in a broad sense)
 - mortgage payments
 - x is mortgage rate
 - annuity life insurance
 - x is discounted rate
- bond options
 - x is bond yield
- ... may be more!
Nonlinear $\psi(x)$ application

- interest rate (in a broad sense)
- mortgage payments
 $\rightarrow x$ is mortgage rate
- annuity life insurance
 $\rightarrow x$ is discounted rate
- bond options
 $\rightarrow x$ is bond yield
- ... may be more!
Nonlinear $\psi(x)$ application

- interest rate (in a broad sense)
- mortgage payments
 $\rightarrow x$ is mortgage rate
- annuity life insurance
 $\rightarrow x$ is discounted rate
- bond options
 $\rightarrow x$ is bond yield
- ... may be more!
Nonlinear $\psi(x)$ application

- interest rate (in a broad sense)
- mortgage payments
 $\rightarrow x$ is mortgage rate
- annuity life insurance
 $\rightarrow x$ is discounted rate
- bond options
 $\rightarrow x$ is bond yield
- ... may be more!
Nonlinear $\psi(x)$ application

- interest rate (in a broad sense)
- mortgage payments
 $\rightarrow x$ is mortgage rate
- annuity life insurance
 $\rightarrow x$ is discounted rate
- bond options
 $\rightarrow x$ is bond yield
- ... may be more!
Before the end...

Q&A
Thank you!