Man Hong WONG¹

Shuzhong ZHANG²

Aug 3, 2011

¹ASA, FRM, The Chinese University of Hong Kong ²University of Minnesota

Semidefinite Programming

(SDP) inf
$$C \bullet X$$

s.t. $A_i \bullet X \le b_i \quad \forall i = 1, \cdots, n$
 $X \ge 0$

- whole matrix X is a variable
- X ≥ 0 means X is a semidefinite matrix (all eigenvalues of X are nonnegative)
- applications in engineering and finance
- any problem arriving at this form can be solved efficiently!

Semidefinite Programming

(SDP) inf
$$C \bullet X$$

s.t. $A_i \bullet X \le b_i \quad \forall i = 1, \cdots, n$
 $X \ge 0$

where $A \bullet B := tr(A^T B)$

• whole matrix X is a variable

- X ≥ 0 means X is a semidefinite matrix (all eigenvalues of X are nonnegative)
- applications in engineering and finance
- any problem arriving at this form can be solved efficiently!

Semidefinite Programming

(SDP) inf
$$C \bullet X$$

s.t. $A_i \bullet X \le b_i \quad \forall i = 1, \cdots, n$
 $X \ge 0$

- whole matrix X is a variable
- X ≥ 0 means X is a semidefinite matrix (all eigenvalues of X are nonnegative)
- applications in engineering and finance
- any problem arriving at this form can be solved efficiently!

Semidefinite Programming

(SDP) inf
$$C \bullet X$$

s.t. $A_i \bullet X \le b_i \quad \forall i = 1, \cdots, n$
 $X \ge 0$

- whole matrix X is a variable
- X ≥ 0 means X is a semidefinite matrix (all eigenvalues of X are nonnegative)
- applications in engineering and finance
- any problem arriving at this form can be solved efficiently!

Semidefinite Programming

(SDP) inf
$$C \bullet X$$

s.t. $A_i \bullet X \le b_i \quad \forall i = 1, \cdots, n$
 $X \ge 0$

- whole matrix X is a variable
- X ≥ 0 means X is a semidefinite matrix (all eigenvalues of X are nonnegative)
- applications in engineering and finance
- any problem arriving at this form can be solved efficiently!

Moment Bounds Problem

$? \leq \mathbb{E}[\psi(x)] \leq ?$

- when distribution is not known
- difficult to estimate the distribution, e.g. extreme events
- only some realizations of x exist → moments can be estimated
- efficiently find the numerical bounds?
- ۲

Moment Bounds Problem

$? \leq \mathbb{E}[\psi(x)] \leq ?$

when distribution is not known

- difficult to estimate the distribution, e.g. extreme events
- only some realizations of x exist → moments can be estimated
- efficiently find the numerical bounds?

۲

Moment Bounds Problem

$? \leq \mathbb{E}[\psi(x)] \leq ?$

- when distribution is not known
- difficult to estimate the distribution, e.g. extreme events
- only some realizations of x exist → moments can be estimated
- efficiently find the numerical bounds?

Moment Bounds Problem

$? \leq \mathbb{E}[\psi(x)] \leq ?$

- when distribution is not known
- difficult to estimate the distribution, e.g. extreme events
- only some realizations of x exist \rightarrow moments can be estimated
- efficiently find the numerical bounds?

Moment Bounds Problem

$? \leq \mathbb{E}[\psi(x)] \leq ?$

- when distribution is not known
- difficult to estimate the distribution, e.g. extreme events
- only some realizations of x exist \rightarrow moments can be estimated
- efficiently find the numerical bounds?

Moment Bounds Problem

$? \leq \mathbb{E}[\psi(x)] \leq ?$

- when distribution is not known
- difficult to estimate the distribution, e.g. extreme events
- only some realizations of x exist \rightarrow moments can be estimated
- efficiently find the numerical bounds?
- ۲

Moment Bounds Problem

- analytical form: ψ(x) is (piecewise) linear:
 Scarf (1958), Jansen et al (1986), Lo (1987), Cox (1991)
- numerical ways with semidefinite programming (SDP): Bertsimas & Popescu (2000), Popescu (2005), Cox et al (2008), He et al (2010)
- $\psi(x)$ is nonlinear:
 - analytical: not likely
 - numerical way: Nesterov (1997)→ Bertsimas & Popescu (2005) → We extend to (piecewise) fractional polynomials

Moment Bounds Problem

- analytical form: ψ(x) is (piecewise) linear:
 Scarf (1958), Jansen et al (1986), Lo (1987), Cox (1991)
- numerical ways with semidefinite programming (SDP): Bertsimas & Popescu (2000), Popescu (2005), Cox et al (2008), He et al (2010)
- $\psi(x)$ is nonlinear:
 - analytical: not likely
 - numerical way: Nesterov (1997)→ Bertsimas & Popescu (2005) → We extend to (piecewise) fractional polynomials

Moment Bounds Problem

- analytical form: ψ(x) is (piecewise) linear:
 Scarf (1958), Jansen et al (1986), Lo (1987), Cox (1991)
- numerical ways with semidefinite programming (SDP): Bertsimas & Popescu (2000), Popescu (2005), Cox et al (2008), He et al (2010)
- $\psi(x)$ is nonlinear:
 - analytical: not likely
 - numerical way: Nesterov (1997)→ Bertsimas & Popescu (2005) → We extend to (piecewise) fractional polynomials

Moment Bounds Problem

- analytical form: ψ(x) is (piecewise) linear:
 Scarf (1958), Jansen et al (1986), Lo (1987), Cox (1991)
- numerical ways with semidefinite programming (SDP): Bertsimas & Popescu (2000), Popescu (2005), Cox et al (2008), He et al (2010)
- $\psi(x)$ is nonlinear:
 - analytical: not likely
 - numerical way: Nesterov (1997)→ Bertsimas & Popescu (2005) → We extend to (piecewise) fractional polynomials

Moment Bounds Problem

- analytical form: ψ(x) is (piecewise) linear:
 Scarf (1958), Jansen et al (1986), Lo (1987), Cox (1991)
- numerical ways with semidefinite programming (SDP): Bertsimas & Popescu (2000), Popescu (2005), Cox et al (2008), He et al (2010)
- $\psi(x)$ is nonlinear:
 - analytical: not likely
 - numerical way: Nesterov (1997)→ Bertsimas & Popescu (2005) → We extend to (piecewise) fractional polynomials

Moment Bounds Problem

- analytical form: ψ(x) is (piecewise) linear:
 Scarf (1958), Jansen et al (1986), Lo (1987), Cox (1991)
- numerical ways with semidefinite programming (SDP): Bertsimas & Popescu (2000), Popescu (2005), Cox et al (2008), He et al (2010)
- $\psi(x)$ is nonlinear:
 - analytical: not likely
 - numerical way: Nesterov (1997)→ Bertsimas & Popescu (2005) → We extend to (piecewise) fractional polynomials

Moment Bounds Problem

An example on mortgage payment

$$P = A\left(\frac{1}{1+r} + \dots + \frac{1}{(1+r)^t}\right) = A\frac{(1+r)^t - 1}{r(1+r)^t}$$
$$f_{P,t}(r) := A = \frac{Pr(1+r)^t}{(1+r)^t - 1}$$

- How worst can $\mathbb{E}(f_{P,t}(r))$ be? $\rightarrow \sup \mathbb{E}[f_{P,t}(r)]$?
- bound for stop-loss insurance? $\rightarrow \sup \mathbb{E}[(f_{P,t}(r) h)_+]$
- binary option bound? $\rightarrow \sup \mathbb{P}[f_{P,t}(r) \ge h] = \sup \mathbb{E}[\mathbf{1}_{f_{P,t}(r) \ge h}]$

Moment Bounds Problem

An example on mortgage payment

$$P = A\left(\frac{1}{1+r} + \dots + \frac{1}{(1+r)^t}\right) = A\frac{(1+r)^t - 1}{r(1+r)^t}$$
$$f_{P,t}(r) := A = \frac{Pr(1+r)^t}{(1+r)^t - 1}$$

- How worst can $\mathbb{E}(f_{P,t}(r))$ be? $\rightarrow \sup \mathbb{E}[f_{P,t}(r)]$?
- bound for stop-loss insurance? $\rightarrow \sup \mathbb{E}[(f_{P,t}(r) h)_+]$
- binary option bound? $\rightarrow \sup \mathbb{P}[f_{P,t}(r) \ge h] = \sup \mathbb{E}[\mathbf{1}_{f_{P,t}(r) \ge h}]$

Moment Bounds Problem

An example on mortgage payment

$$P = A\left(\frac{1}{1+r} + \dots + \frac{1}{(1+r)^t}\right) = A\frac{(1+r)^t - 1}{r(1+r)^t}$$
$$f_{P,t}(r) := A = \frac{Pr(1+r)^t}{(1+r)^t - 1}$$

- How worst can $\mathbb{E}(f_{P,t}(r))$ be? $\rightarrow \sup \mathbb{E}[f_{P,t}(r)]$?
- bound for stop-loss insurance? $\rightarrow \sup \mathbb{E}[(f_{P,t}(r) h)_+]$
- binary option bound? $\rightarrow \sup \mathbb{P}[f_{P,t}(r) \ge h] = \sup \mathbb{E}[\mathbb{1}_{f_{P,t}(r) \ge h}]$

Moment Bounds Problem

An example on mortgage payment

$$P = A\left(\frac{1}{1+r} + \dots + \frac{1}{(1+r)^t}\right) = A\frac{(1+r)^t - 1}{r(1+r)^t}$$
$$f_{P,t}(r) := A = \frac{Pr(1+r)^t}{(1+r)^t - 1}$$

- How worst can $\mathbb{E}(f_{P,t}(r))$ be? $\rightarrow \sup \mathbb{E}[f_{P,t}(r)]$?
- bound for stop-loss insurance? $\rightarrow \sup \mathbb{E}[(f_{P,l}(r) h)_+]$
- binary option bound? $\rightarrow \sup \mathbb{P}[f_{P,t}(r) \ge h] = \sup \mathbb{E}[\mathbf{1}_{f_{P,t}(r) \ge h}]$

Moment Bounds Problem

An example on mortgage payment

$$P = A\left(\frac{1}{1+r} + \dots + \frac{1}{(1+r)^t}\right) = A\frac{(1+r)^t - 1}{r(1+r)^t}$$
$$f_{P,t}(r) := A = \frac{Pr(1+r)^t}{(1+r)^t - 1}$$

- How worst can $\mathbb{E}(f_{P,t}(r))$ be? $\rightarrow \sup \mathbb{E}[f_{P,t}(r)]$?
- bound for stop-loss insurance? $\rightarrow \sup \mathbb{E}[(f_{P,t}(r) h)_+]$
- binary option bound? $\rightarrow \sup \mathbb{P}[f_{P,t}(r) \ge h] = \sup \mathbb{E}[\mathbf{1}_{f_{P,t}(r) \ge h}]$

Moment Bounds Problem

An example on mortgage payment

$$P = A\left(\frac{1}{1+r} + \dots + \frac{1}{(1+r)^t}\right) = A\frac{(1+r)^t - 1}{r(1+r)^t}$$
$$f_{P,t}(r) := A = \frac{Pr(1+r)^t}{(1+r)^t - 1}$$

- How worst can $\mathbb{E}(f_{P,t}(r))$ be? $\rightarrow \sup \mathbb{E}[f_{P,t}(r)]$?
- bound for stop-loss insurance? $\rightarrow \sup \mathbb{E}[(f_{P,t}(r) h)_+]$
- binary option bound? $\rightarrow \sup \mathbb{P}[f_{P,t}(r) \ge h] = \sup \mathbb{E}[\mathbf{1}_{f_{P,t}(r) \ge h}]$

Moment Bounds Problem

An example on mortgage payment

$$P = A\left(\frac{1}{1+r} + \dots + \frac{1}{(1+r)^t}\right) = A\frac{(1+r)^t - 1}{r(1+r)^t}$$
$$f_{P,t}(r) := A = \frac{Pr(1+r)^t}{(1+r)^t - 1}$$

- How worst can $\mathbb{E}(f_{P,t}(r))$ be? $\rightarrow \sup \mathbb{E}[f_{P,t}(r)]$?
- bound for stop-loss insurance? $\rightarrow \sup \mathbb{E}[(f_{P,t}(r) h)_+]$
- binary option bound? $\rightarrow \sup \mathbb{P}[f_{P,t}(r) \ge h] = \sup \mathbb{E}[\mathbf{1}_{f_{P,t}(r) \ge h}]$

Experiential Scenario

• Ioan \$1000, 20 periodic payments in return

- floating rate (assume latest 2.5%, so $f_{1000,20}(0.025) =$ \$51.32.)
- 12-month Hong Kong Dollar Interest Rate (take 5 years, 10 years and 20 years samples)

period	μ	σ	$\sup \mathbb{E}[f_{1000,20}(r)]$	$\frac{\sup \mathbb{E}[f_{1000,20}(r)]}{f_{1000,20}(0.025)} - 1$
5-year	1.45%	1.25%	\$58.2117	13%
10-year	1.27%	1.21%	\$57.0003	11%
20-year	3.60%	2.50%	\$71.9524	40%

Experiential Scenario

- Ioan \$1000, 20 periodic payments in return
- floating rate (assume latest 2.5%, so $f_{1000,20}(0.025) = 51.32 .)
- 12-month Hong Kong Dollar Interest Rate (take 5 years, 10 years and 20 years samples)

period	μ	σ	$\sup \mathbb{E}[f_{1000,20}(r)]$	$\frac{\sup \mathbb{E}[f_{1000,20}(r)]}{f_{1000,20}(0.025)} - 1$
5-year	1.45%	1.25%	\$58.2117	13%
10-year	1.27%	1.21%	\$57.0003	11%
20-year	3.60%	2.50%	\$71.9524	40%

Experiential Scenario

- Ioan \$1000, 20 periodic payments in return
- floating rate (assume latest 2.5%, so $f_{1000,20}(0.025) = 51.32 .)
- 12-month Hong Kong Dollar Interest Rate (take 5 years, 10 years and 20 years samples)

period	μ	σ	$\sup \mathbb{E}[f_{1000,20}(r)]$	$\frac{\sup \mathbb{E}[f_{1000,20}(r)]}{f_{1000,20}(0.025)} - 1$
5-year	1.45%	1.25%	\$58.2117	13%
10-year	1.27%	1.21%	\$57.0003	11%
20-year	3.60%	2.50%	\$71.9524	40%

Experiential Scenario

- Ioan \$1000, 20 periodic payments in return
- floating rate (assume latest 2.5%, so $f_{1000,20}(0.025) = 51.32 .)
- 12-month Hong Kong Dollar Interest Rate (take 5 years, 10 years and 20 years samples)

period	μ	σ	$\sup \mathbb{E}[f_{1000,20}(r)]$	$\frac{\sup \mathbb{E}[f_{1000,20}(r)]}{f_{1000,20}(0.025)} - 1$
5-year	1.45%	1.25%	\$58.2117	13%
10-year	1.27%	1.21%	\$57.0003	11%
20-year	3.60%	2.50%	\$71.9524	40%

LJust an demonstration

Experiential Scenario (con'd)

• consider a threshold *h* in terms of quantifying σ above μ

period	$\mu + \sigma$	eqv. h	$\sup \mathbb{E}[f_{1000,20}(r) - h]_+$	$\sup \mathbb{P}(f_{1000,20}(r) \ge h)$
5-year	2.09%	\$61.6892	\$2.3786	0.6938
10-year	1.93%	\$60.7444	\$2.3082	0.6580
20-year	4.07%	\$74.0386	\$7.1618	0.8845
period	$\mu + 2\sigma$	eqv. h^2	$\sup \mathbb{E}[f_{1000,20}(r) - h]_+$	$\sup \mathbb{P}(f_{1000,20}(r) \ge h)$
5-year	3.23%	\$68.6531	\$1.3078	0.3303
10-year	3.05%	\$67.5268	\$1.2222	0.3161
20-year	5.91%	\$86.5486	\$4.1012	0.5394

 ${}^{1}h = f_{1000,20}(\mu + \sigma)$ ${}^{2}h = f_{1000,20}(\mu + 2\sigma)$

LJust an demonstration

Experiential Scenario (con'd)

• consider a threshold h in terms of quantifying σ above μ

period	$\mu + \sigma$	eqv. h ¹	$\sup \mathbb{E}[f_{1000,20}(r) - h]_+$	$\sup \mathbb{P}(f_{1000,20}(r) \ge h)$
5-year	2.09%	\$61.6892	\$2.3786	0.6938
10-year	1.93%	\$60.7444	\$2.3082	0.6580
20-year	4.07%	\$74.0386	\$7.1618	0.8845
period	$\mu + 2\sigma$	eqv. h ²	$\sup \mathbb{E}[f_{1000,20}(r) - h]_+$	$\sup \mathbb{P}(f_{1000,20}(r) \ge h)$
5-year	3.23%	\$68.6531	\$1.3078	0.3303
10-year	3.05%	\$67.5268	\$1.2222	0.3161
20-year	5.91%	\$86.5486	\$4.1012	0.5394

$${}^{1}h = f_{1000,20}(\mu + \sigma)$$

 ${}^{2}h = f_{1000,20}(\mu + 2\sigma)$

LJust an demonstration

Nonlinear $\psi(x)$ application

• interest rate (in a broad sense)

- mortgage payments
 → x is mortgage rate
- annuity life insurance
 → x is discounted rate
- bond options $\rightarrow x$ is bond yield
- ... may be more!

LJust an demonstration

- interest rate (in a broad sense)
- mortgage payments
 → x is mortgage rate
- annuity life insurance
 → x is discounted rate
- bond options $\rightarrow x$ is bond yield
- ... may be more!

LJust an demonstration

- interest rate (in a broad sense)
- mortgage payments
 → x is mortgage rate
- annuity life insurance
 → x is discounted rate
- bond options $\rightarrow x$ is bond yield
- ... may be more!

Just an demonstration

- interest rate (in a broad sense)
- mortgage payments
 → x is mortgage rate
- annuity life insurance
 → x is discounted rate
- bond options $\rightarrow x$ is bond yield
- ... may be more!

Just an demonstration

- interest rate (in a broad sense)
- mortgage payments
 → x is mortgage rate
- annuity life insurance
 → x is discounted rate
- bond options
 - $\rightarrow x$ is bond yield
- ... may be more!

Q&A

Thank you!