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Computing Tight Bounds for Insurance Payments with Nonlinear Risk

Preliminaries of SDP

Semidefinite Programming

(SDP) inf C • X

s.t. Ai • X ≤ bi ∀i = 1, · · · , n

X � 0

where A • B := tr(ATB)

whole matrix X is a variable

X � 0 means X is a semidefinite matrix (all eigenvalues of X
are nonnegative)

applications in engineering and finance

any problem arriving at this form can be solved efficiently!
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Moment Bounds Problem

Motivation

? ≤ E[ψ(x)] ≤?

when distribution is not known

difficult to estimate the distribution, e.g. extreme events

only some realizations of x exist→ moments can be estimated

efficiently find the numerical bounds?

sup
x∼(m1,··· ,mn)

E[ψ(x)]
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Moment Bounds Problem

Brief Review

analytical form: ψ(x) is (piecewise) linear:
Scarf (1958), Jansen et al (1986), Lo (1987), Cox (1991)

numerical ways with semidefinite programming (SDP):
Bertsimas & Popescu (2000), Popescu (2005), Cox et al
(2008), He et al (2010)
ψ(x) is nonlinear:

analytical: not likely
numerical way: Nesterov (1997)→ Bertsimas & Popescu
(2005)→We extend to (piecewise) fractional polynomials
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Moment Bounds Problem

An example on mortgage payment

Recall

P = A
(

1
1 + r

+ · · · +
1

(1 + r)t

)
= A

(1 + r)t − 1
r(1 + r)t

fP,t(r) := A =
Pr(1 + r)t

(1 + r)t − 1

How worst can E(fP,t(r)) be? → supE[fP,t(r)]?

bound for stop-loss insurance? → supE[(fP,t(r) − h)+]

binary option bound? → supP[fP,t(r) ≥ h] = supE[1fP,t(r)≥h]
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Just an demonstration

Experiential Scenario

loan $1000, 20 periodic payments in return

floating rate (assume latest 2.5%, so f1000,20(0.025) = $51.32.)

12-month Hong Kong Dollar Interest Rate (take 5 years, 10
years and 20 years samples)

period µ σ supE[f1000,20(r)] supE[f1000,20(r)]
f1000,20(0.025) − 1

5-year 1.45% 1.25% $58.2117 13%
10-year 1.27% 1.21% $57.0003 11%
20-year 3.60% 2.50% $71.9524 40%
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Just an demonstration

Experiential Scenario (con’d)

consider a threshold h in terms of quantifying σ above µ

period µ + σ eqv. h1 supE[f1000,20(r) − h]+ supP(f1000,20(r) ≥ h)
5-year 2.09% $61.6892 $2.3786 0.6938
10-year 1.93% $60.7444 $2.3082 0.6580
20-year 4.07% $74.0386 $7.1618 0.8845

period µ + 2σ eqv. h2 supE[f1000,20(r) − h]+ supP(f1000,20(r) ≥ h)
5-year 3.23% $68.6531 $1.3078 0.3303
10-year 3.05% $67.5268 $1.2222 0.3161
20-year 5.91% $86.5486 $4.1012 0.5394

1h = f1000,20(µ + σ)
2h = f1000,20(µ + 2σ)
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Just an demonstration

Nonlinear ψ(x) application

interest rate (in a broad sense)

mortgage payments
→ x is mortgage rate

annuity life insurance
→ x is discounted rate

bond options
→ x is bond yield

... may be more!
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Before the end...

Q&A
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The end

Thank you!
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