

Article from:

ARCH 2014.1 Proceedings

July 31-August 3, 2013

Pricing Risk through Simulation: Revisiting Tilley Bundling and Least Squares Monte Carlo Methods

Paramites: barres term Remarch Co-Authora: folial barrel: Sirpas Sarbol back, intensigal intensir [8] Makes or was a second of the contract of the c

Street, Street Telephone Indiana Will, I Miles, E. South Edgest, I S Market, 1961.

Regulatory Environment
Government and judicial context
Physical Environment
Economic and Social Environment
Industry and Business Environment
Sheperd (2006)

Professionalism

Fu et al (2001) consider 3 approaches

Simulation Models for Derivatives with early exercise features

"Monte Carlo simulation can only be used for European-style options." (Hull, 1993 as cited by Fu et al, 2001)

"The goal of this paper is to dispel the prevailing belief that American style options cannot be valued efficiently in a simulation model." (Tilley, 1993)

Development of Monte Carlo techniques

Longstaff and Shwartz develop a simple least-squares approach. (Longstaff and Shwartz, 2001)

"Monte Carlo simulation is well suited to valuing path-dependent options ..." (Hull, 2012)

Fu et al (2001) consider 3 approaches \leftarrow

mimic backwards induction algorithm

parametrize early exercise curve

mimic backwards induction algorithm

parametrize early exercise curve

finding efficient upper and lower bounds

Now

Risk Metrics
This presentation: Expected Positive Exposure,
Potential Future Exposure through Tilley
Bundling and LSM

- Basel II/III Defines EPE, PFE
- Technological progress
- Convergence of financial institutions: risk still there when in the money

2890192

Euro-Call

So = K = 100

Volatility = 20%

Drift = 6%

No dividends

1 year

PFE, EPE?

$$\int_0^{e^{0.06}pFE_{0.99}+100} \frac{1}{x\sigma\sqrt{2\pi}} exp \left[-\frac{\left(lc \right)}{c} \right]$$

$$EPE = e^{-0.06} \left(\frac{\int_{100}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} exp}{\int_{100}^{\infty} \frac{1}{x\sigma\sqrt{2\pi}} exp} \right)$$

PFE = 65.0075

EPE = 18.9229

$$\int_{0}^{e^{0.06}PFE_{0.99}+100} \frac{1}{x\sigma\sqrt{2\pi}} exp \left[-\frac{\left(log(x) - log(100) - \left(\mu - \frac{\sigma^{2}}{2}\right)\right)^{2}}{2\sigma^{2}} \right] dx = 0.99$$

$$EPE = e^{-0.06} \left[\frac{\int_{100}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} exp \left[-\frac{\left(log(x) - log(100) - \left(\mu - \frac{\sigma^2}{2}\right)\right)^2}{2\sigma^2} \right] dx}{\int_{100}^{\infty} \frac{1}{x\sigma\sqrt{2\pi}} exp \left[-\frac{\left(log(x) - log(100) - \left(\mu - \frac{\sigma^2}{2}\right)\right)^2}{2\sigma^2} \right] dx} - 100 \right]$$

PFE = 65.0075EPE = 18.9229

MINIMUM SPEED

Metrics for a European Option ending at time t

SPEED LIMIT

So = K = 100 Volatility = 40% Drift = 6% No dividends 5 year 50 exercise times/ year

$$F_{2}(x, t, a) = \int_{0}^{a} \frac{\exp\left[-\frac{\left(\log(x) - \log(5_{0}) - \left(u - \frac{a^{2}}{T}\right) \frac{t}{20}\right)^{2}}{x\sigma\sqrt{\pi} \frac{t}{15}}\right]}{x\sigma\sqrt{\pi} \frac{t}{25}} dx$$

$$F_{3}(x, t, a) = \int_{0}^{a} \frac{\exp\left[-\frac{\left(\log(x) - \log(5_{0}) - \left(u - \frac{a^{2}}{T}\right) \frac{t}{20}\right)^{2}}{\sigma\sqrt{\pi} \frac{t}{25}}\right]}{\sigma\sqrt{\pi} \frac{t}{25}} dx$$

$$\sum_{t=k}^{50} F_{2}(x, t, 100 - PFE_{0.99}e^{0.0012t}) = 0.01(51 - k)$$

$$EPE_{k^{h} time} = \frac{\sum_{t=k}^{50} e^{-0.0012t}F_{2}(x, t, 100) \left(100 - \frac{F_{3}(x, t, 100)}{F_{2}(x, t, 100)}\right)}{(51 - k)\sum_{t=k}^{50} F_{2}(x, t, 100)}$$

So = K = 100 Volatility = 40% Drift = 6% No dividends 5 year 50 exercise times/ year

$$exp\left[-\frac{\left(\log(x)-\log(S_0)-\left(\mu-\frac{\sigma^2}{2}\right)\frac{t}{50}\right)^2}{\sigma^2\frac{t}{25}}\right] dx$$

$$F_{2}(x, t, a) = \int_{0}^{a} \frac{exp\left[-\frac{\left(log(x) - log(S_{0}) - \left(\mu - \frac{\sigma^{2}}{2}\right)\frac{t}{50}\right)^{2}}{\sigma^{2}\frac{t}{25}}\right]}{x\sigma\sqrt{\pi\frac{t}{25}}} dx$$

$$F_{3}(x, t, a) = \int_{0}^{a} \frac{exp\left[-\frac{\left(log(x) - log(S_{0}) - \left(\mu - \frac{\sigma^{2}}{2}\right)\frac{t}{50}\right)^{2}}{\sigma^{2}\frac{t}{25}}\right]}{\sigma\sqrt{\pi \frac{t}{25}}} dx$$

$$\sum\nolimits_{t=k}^{50} F_2(x,t,100-PFE_{0.99}e^{0.0012t}) = 0.01(51-k)$$

$$\mathsf{EPE}_{\mathsf{k}^{\mathsf{th}}\,\mathsf{time}} = \frac{\sum_{t=k}^{50} e^{-0.0012t} F_2(x,t,100) \left(100 - \frac{F_3(x,t,100)}{F_2(x,t,100)}\right)}{(51-k)\sum_{t=k}^{50} F_2(x,t,100)}$$

t = t-1

Calculate EPE, and PFE, of FV, and discount by the

LEAST SQUARES METHOD

Obtain e^{-dtr} \mathbb{P}_{t+1} For these paths $\mathbf{s_{25}}$ e^{-0.0012} $\mathbf{FV_{26}}$ 98.12 17.45 54.38 31.21 69.27 33.47 80.24 22.91

if PV_t > EPV_t then PV_t = PV_t else PV_t = $\frac{d\ell\Gamma}{2}$ PV_{22} $\frac{PV_{22}}{98.12}$ $\frac{PV_{22}}{1.88}$ $\frac{PV_{22}}{1.100}$ $\frac{PV_{23}}{1.812.745}$ $\frac{PV_{24}}{1.812.745}$ $\frac{PV_{25}}{1.813.81}$ $\frac{PV_{25}}{1.000}$ $\frac{PV_{25}}{1.813.81}$ $\frac{PV_{25}}{1.000}$ $\frac{PV_{25}}{1.813.81}$ $\frac{PV_{25}}{1.000}$ $\frac{PV_{25}}{$

S₂₅

98.12

Find paths that are in-the-money at time t

Obtain e^{-dtr}FV_{t+1} for these paths

S ₂₅	e ^{-0.0012} FV ₂₆
98.12	17.45
54.38	31.21
69.27	33.47
80.24	22.91
83.09	28.66

Builda regression function to determine

if PV_t > EFV_t then FV_t = PV_t else FV_t=e^{dtr}FV_{t+1}

end

S ₂₅	PV ₂₅	EFV ₂₅
98.12	1.88	11.10
144.72	0.00	31.39
131.41	0.00	16.51
113.38	0.00	8.72
54.38	45.62	45.49

PV ₂₅	FV ₂₅
1.88	17.45
0.00	31.21
0.00	33.47
0.00	22.91
45.62	45.62

S ₂₅	PV ₂₅	EFV ₂₅
98.12	1.88	11.10
144.72	0.00	31.39
131.41	0.00	16.51
113.38	0.00	8.72
54.38	45.62	45.49

PV ₂₅	FV ₂₅	
1.88	17.45	
0.00	31.21	
0.00	33.47	
0.00	22.91	
45.62	45.62	

[+

Calculate EPE and PFE_t of FV_t and discount by +dtr

Calculate EPE, and PFE, of FV, and Jiscount by

t=t-1

Calculate EPE and PFE of Z*PV discounted to PV Order Stin descending (ascending) order of value for a put (call) option

Divide into bundles with equal paths. Ideally # of Bundles = # of paths 250 bundles of 400 paths

Find the earliest exercise point past t for each path Z-matrix with at most one 1 for each path

Tilley Bundling

 $H_t =$ Bundle mean
of $e^{-dt} FV_t$

then FV = H; then the state of the state of

Find Sharp Boundary 92,508th Value if $PV_t > H_t$ then $X_t = I$ else $X_t = O$ end Order S_t in descending (ascending) order of value for a put (call) option

Divide into bundles with equal paths. Ideally # of Bundles = # of paths 250 bundles of 400 paths $H_t =$ Bundle mean
of $e^{-dtr}FV_t$

H₂₅range: 0.0316 to 56.6057

if PV_t > H_t then X = ese X_t = 0 end

Fine Sharp Boundary 92,508th Value

if $PV_t < PV_{sharp}$ then $FV_t = H_t$ else $FV_t = PV_t$

Rank	PV ₂₅	FV ₂₅
92505	33.6128	33.6198
92506	33.6160	33.6198
92507	33.6184	33.6198
92508	33.6222	33.6222
92509	33.6236	33.6236
92510	33.6250	33.6250

Find the earliest exercise point past t for each Path Z-matrix with at most one 1 for each path

Calculate EPE and PFE of Z*PV discounted to PV

Future Work: Hybrids:

Piecewise Regression
Logistic Regression
Multi-Dimensional Sorting
Tilley (K-NN)

Presenter:

Dominic Cortis

Research Co-Authors:

Rickard Branvall, Citigroup (London)
Juxi Li, University of Leicester (UK)

References:

n)

Hull, J.C. (1993). Options, Futures, and Other Derivative Securities (2nd edition). Prentice Hall.

Hull, J.C. (2012). Options, Futures, and Other Derivative Securities (8th edition). Prentice Hall.

Fu, M. C., Scott, B. L., Dilip, M. B, Su, Y, Rongwen, W. (2001). Pricing American Options: A Comparison of Monte Carlo Simulation Approaches. Journal of Computational Finance, 4(3), 39-88.

Longstaff, F.A. and Schwartz, E.S. (2001). Valuing American Options by Simulation: A Simple Least-Squares Approach. The Review of Financial Studies, 14(1), 113-148.

Tilley, J. (1993). Valuing American Options in a Path Simulation Model. Transactions of the Society of Actuaries, 45, 83-104.

Sheperd, J. (2006). The Context of Actuarial Work. In Bellis, C., Lyon, R. Klugman, S. & Shepherd, J. (Eds.) Understanding Actuarial Management: The Actuarial Control Cycle. The Institute of Actuaries of Australia.