

Article from:

ARCH 2014.1 Proceedings

July 31-August 3, 2013

Calibration of a Regime-Switching Interest Rate Model

James Bridgeman Zepeng Xie Songchen Zhang Xuezhe Zhang
University of Connecticut

Actuarial Research Conference - Temple University

August 2, 2013

Context for the Model

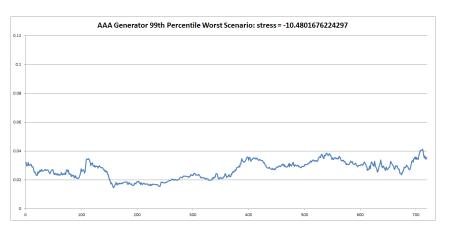
- Long-Rate Anchor: 20 Yr, Not (yet) Whole Curve
- Stress-testing
 - Not Forecasting
 - Not Pricing
- What's Important:
 - Severe but Plausible Extreme Scenarios
 - Plausible: in historical context
 - Severe: represent real stresses
 - Extreme: on both (all) tails
- Much Less Important:
 - Accuracy Around the Likely Scenarios
- Completely Irrelevant:
 - Risk Neutrality
 - Arbitrage Free

Summary

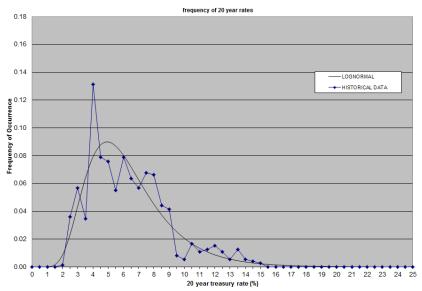
- Typical Generators (e.g. AAA).....
 - Gaussian-based volatility driver
 - A single mean reversion point (MRP)
-Fail To Produce Historically Plausible Ranges of Results
 - Unhistorical shape to the realized volatility
 - Tightly bunched paths versus historical ranges
 - MRP assumption largely drives the extreme paths
- To Fix the Problems
 - Use fat-tailed volatility driver
 - Randomize MRP to spread range of extreme paths
- But This Introduces More Parameters
 - Calibration becomes a real challenge

History of 20 Year US Treasury Rate

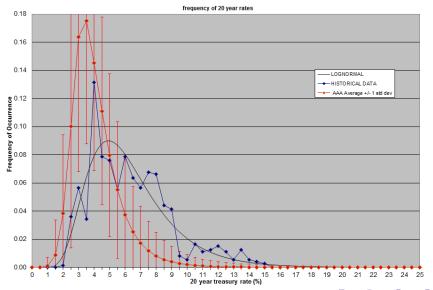
Plausible By Definition


20 Yr Treasuries: History vs AAA Generator Monthly %-iles

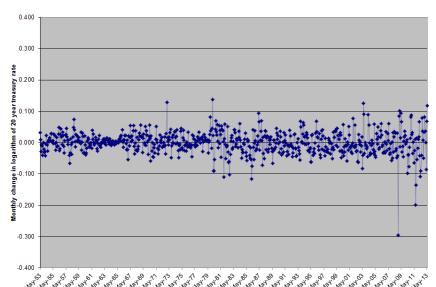
Neither Early 80's Nor Japan Are Remotely Plausible In AAA



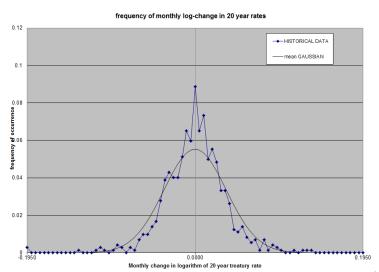
No One Path Follows the Monthly Extremes

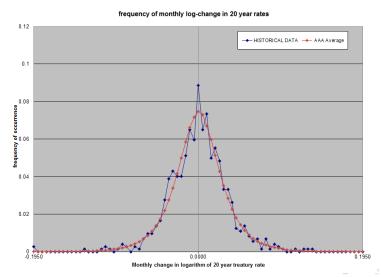

AAA Extreme Paths Are Not Japan-Like Near-Term - But They Persist


Historical Frequency of 20 Year Rates

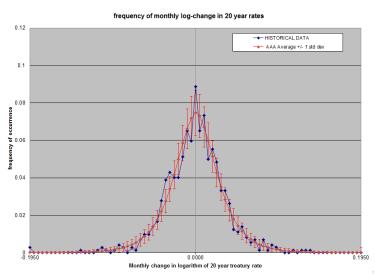


Historical Frequency of 20 Year Rates vs AAA Generator


Historical Realized Volatility of 20 Year Rates


Historical Distr. of Realized Volatility of 20 Year Rates

High Kurtosis


Historical Distr. of Realized Volatility vs AAA Generator

Stochastic Volatility Helps, May Not Fully Pick Up The Tails

Historical Distr. of Realized Volatility vs AAA Generator

Missing Tails Are Significant

Comparative Statistics: History vs AAA

Rate Levels and Spread as well as the Shape of the Realized Volatility Differ Significantly from History

60 Year History	AAA Mean	AAA StdDev
.0635	.0410	.0081
.0266	.0117	.0058
3.53	3.02	1.29
21.5	17.7	26.1
.0360	.0338	.0039
10.9	5.3	1.6
479	76	124
	.0635 .0266 3.53 21.5	History Mean .0635 .0410 .0266 .0117 3.53 3.02 21.5 17.7 .0360 .0338 10.9 5.3

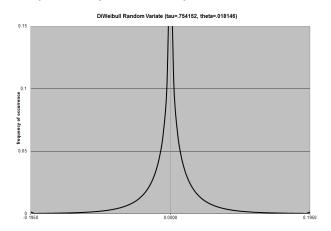
Consider A New Model

Traditional Models (including AAA)

```
\Delta \ln Rate_t = F*(\ln MRP - \ln Rate_{t-1}) + SlopeAdjustment + (1 - F)*Gaussian\Delta
```

• Proposed New Model:

Regime-Switching with Random Regimes


```
\begin{array}{l} \Delta \ln Rate_i = \\ F* \left( \ln MRP_t - \ln Rate_{t-1} \right) - DriftCompensation + (1-F)*DiWeibull\Delta \\ \text{where} \\ MRP_t = MRP_{t-1} \\ \text{unless} \\ t - t_{regime} > \text{a random } Gamma(\alpha,\beta) \text{ variate.} \\ \text{In that case, the regime switches to a new, random } MRP : \end{array}
```

And the regime-switching clock restarts at $t_{regime} = t$. (a SlopeAdjustment can be included if desirable)

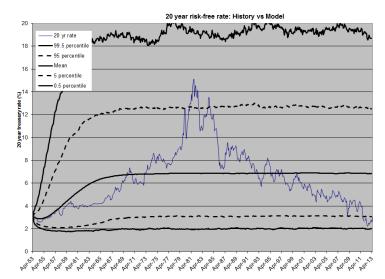
 $MRP_t =$ a random LogNormal variate, fixed until next regime-switch.

What Is A DiWeibull?

DiWeibull Is Like Laplace: Laplace is symmetric Exponential, DiWeibull is symmetric Weibull

A Sample Path From the New Model (inti-MRP 4-53)

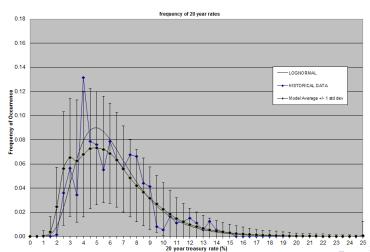
New Model Requires 8 Parameters


- 2 Parameters For The Regime Clock Random $Gamma(\alpha, \beta)$ Variate.
 - $\alpha=7.1$ and $\beta=1.14$ (in annualized units) follows from MLE applied to historical random MRP estimates derived by Least Square Error analysis versus historical rates
 - ullet Average length of an interest rate regime is lphaeta=8 Years plus 1 Month
- 1 Initial Value For The MRP
 - Least Square Error analysis versus historical rates gives
 - For 4-1953 start: init-MRP=2.36%
 - For 6-2013 start: init-MRP=2.04%
- This Leaves 5 Parameters To Be Determined
 - 2 Parameters For The Lognormal Random MRP
 - 2 Parameters For The DiWeibull Δ Volatility Driver
 - 1 Mean Reversion Strength Factor (F in the formula)
- Choose The 5 Parameters To Best Align Comparative Statistics vs History

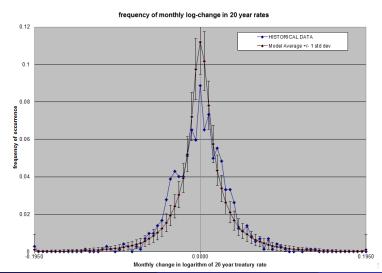
Comp. Stats: History vs New Model (init-MRP 4-53)

Rate Levels and Spread as well as the Shape of the Realized Volatility Now Align With History

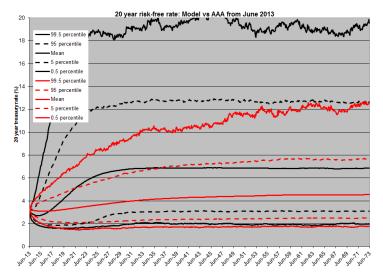
60 Year History	Model Mean	Model StdDev
.0635	.0631	.0126
.0266	.0268	.0105
3.53	2.96	1.24
21.5	15.8	18.9
.0360	.0363	.0027
10.9	10.9	4.8
479	365	636
	History .0635 .0266 3.53 21.5	History Mean .0635 .0631 .0266 .0268 3.53 2.96 21.5 15.8 .0360 .0363 10.9 10.9


New Model (init-MRP 4-53) vs History: Monthly %-iles

Only 55/723 Months Breach 5%-95%: History Fits Into This Easily

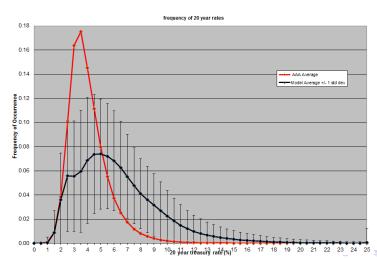

Hist Freq of 20 Yr Rates vs New Model (init-MRP 4-53)

Fits Like A Glove

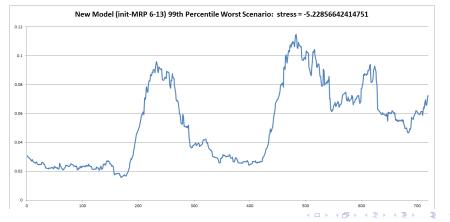


Realized Vol: History vs New Model (init-MRP 4-53)

Too Far In The Other Direction? At Least The Tail Is Good



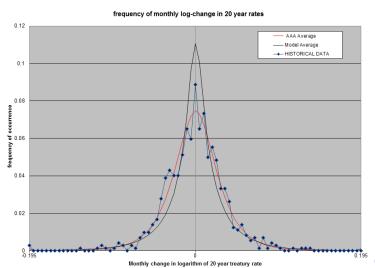
AAA Vs New Model (init-MRP 6-13): Monthly %-iles


AAA Vs New Model (init-MRP 6-13): Rate Frequency

Same Prob. \leq 2.25%, Wild Difference Thereafter

An Extreme Path In The New Model (init-MRP 6-13)

For First 15 Years Slightly More Stress Than The 99%-ile AAA Scenario (And After 15 It Has Different Stresses That AAA Would Never Generate)


Comp. Stats: New Model (init-MRP 6-13) vs AAA

Shape Of Model Realized Volatility Is Not Only Fatter-Tailed On Average But Also Much More Varied

Tatter Tanea On Average Bat Also Mach More Varied				
	Model	Model	AAA	AAA
	Mean	StdDev	Mean	StdDev
Rate = 20 Year Treasury				
Rate Mean	.0628	.0126	.0410	.0081
Rate StdDev	.0271	.0104	.0117	.0058
Rate Kurtosis (normal=3)	2.94	1.19	3.02	1.29
Rate 6th-osis (normal=15)	15.3	17.7	17.7	26.1
(6th Ctrl Mom/StdDev^6)				
Realized Volatility = $\Delta \ln Rate$				
Volatility StdDev	.0364	.0027	.0338	.0039
Volatility Kurtosis (normal=3)	10.8	5.0	5.3	1.6
Volatility 6th-osis (normal=15)	368	706	76	124

Realized Vol: New Model (init-MRP 6-13) vs AAA

Both Miss Parts of Historical Volatility Shape Despite Other Evidence

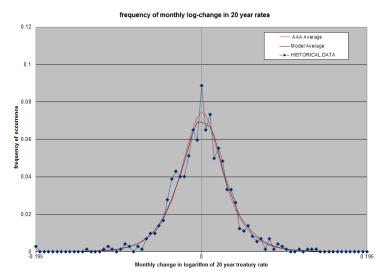
Calibrate Instead On Direct Shape Statistics

Instead of Kurtotis and 6th-osis:

Minimize L2 Distance of CDF to History

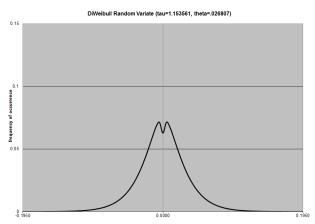
$$\sqrt{\int (F(r) - H(r))^2 dr}$$

Minimize L1 Distance of CDF to History

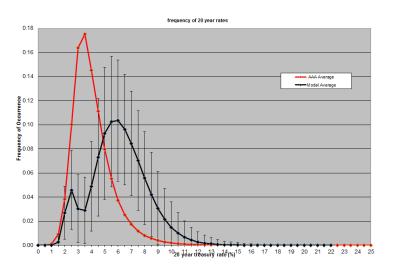

$$\int |F(r) - H(r)| dr$$

- Use CDF Rather Than PDF To Emphasize Tails
- Use Both Rates and Realized Volatility

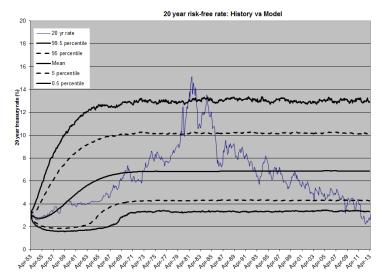
Calibration On L2 and L1 Distance, Means, Vol Std Dev

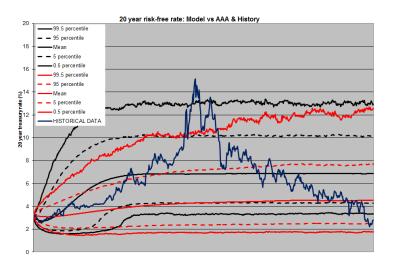

	Model Mean	Model StdDev	AAA Mean	AAA StdDev
Rate = 20 Year Treasury				
Rate Mean	.0631	.0078	.0410	.0081
Rate StdDev	.0190	.0048	.0117	.0058
L2 Distance to History	.0372	.0135	.0858	.0271
L1 Distance to History	.0102	.0035	.0230	.0070
Realized Volatility = $\Delta \ln Rate$				
Volatility StdDev	.0335	.0018	.0338	.0039
L2 Distance to History	.0067	.0012	.0074	.0030
L1 Distance to History	.0027	.0004	.0031	.0013

Realized Vol. Comparison For This Alternative Calibration

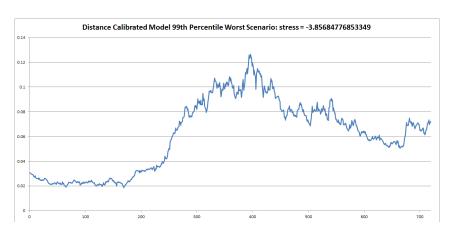


DiWeibull Driver For This Alternative Calibration


With This Calibration The Volatility Driver Has Milder Tail BiModal Not A Problem: Mean-Reversion Smooths It Out In Realized Vol.


Rate Distr. Comparison For This Alternative Calibration

Monthly %-iles vs History For This Alternative Calibration



And Compared To AAA Generator

Extreme Path In This Alternative Calibration

Still Japan-like For A Good 15 Years

