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PRICING ASIAN OPTIONS: CONVERGENCE OF GRAM-CHARLIER SERIES

DANIEL DUFRESNE AND HAN-BO LI

ABSTRACT. We study the theoretical and numerical convergence of Gram-Charlier series ap-
plied to the pricing of Asian options. The distribution of the logarithm of the average is
represented as a Gram-Charlier expansion. Fairly precise results about the convergence of
Gram-Charlier series are proved in the case where the underlying security is modelled as a
geometric Brownian motion. Two other cases are studied, in one the log-price is modelled as a
variance gamma process, and the other is the Heston stochastic volatility model. We show that
convergence of the Gram-Charlier series holds in the geometric Browian motion case (under
a specified condition), but that it is unlikely in the other two cases. Numerical examples are
given; in some cases the series gives good results, while in others it does not do well.

1. INTRODUCTION

Average (or Asian) options have been studied for more than two decades, but there is still
no efficient, accurate method to price them. We summarize the previous literature. Approx-
imating the average by a single lognormal distribution, a classical technique borrowed from
engineering, was the first technique suggested (Turnbull and Wakeman [22], Levy [16]).
Simulation was proposed by Kemna and Vorst [13], who also noted that the geometric av-
erage can be used both as a lower bound for calls and as a control variate. Vazquez-Abad
and Dufresne [23] and subsequent authors studied the use of a change of measure in sim-
ulations. In the case of a continuous averaging Rogers and Shi [20] expressed the problem
in terms of a partial differential differential equation and derived sharp bounds for option
prices. That partial differential equation may also be obtained by time reveral (Dufresne [5],
Linetsky [17]). There is no simple analytical solution to this partial differential equation, it
may be solved numerically or using series.

For the continuous average there is an explicit Laplace transform for Asian option prices
(Geman and Yor [9]). Shaw [21] and others have successfully inverted the transform. Dufresne
[7] showed that Asian option prices can be expressed a infinite series involving the Laguerre
polynomials and the moments of the reciprocal average.

Closer to the topic of this paper, Edgeworth series for the distribution of the average were
used to approximate Asian option prices by Turnbull and Wakeman [22]; those series were
more precisely generalized Edgeworth series, with the lognormal acting as base distribution.
Those series, that were conceived of at least as far back as Cramér [4], have virtually no
established mathematical properties and have been shown to fail numerically in the case of
Asian options (Lemieux [15]). The convergence of those Edgeworth series has never been
proved, and their theoretical convergence is highly unlikely.

This paper focuses on another expansion, the Gram-Charlier, which will be shown to con-
verge for some sets of parameters (see Sections 2 and 3 below), when (i) the underlying is
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a geometric Brownian motion and (ii) the Gram-Charlier expansion is applied to the loga-
rithm of the average (not to the average itself). Theoretical convergence is a great advan-
tage, as is apparent in the numerical performance of the technique; the downside of this
technique is that the essential ingreadients are the moments of the logarithm of the average
price, and those are not available in closed form. Those moments thus need to be estimated
by simulation. It is nevertheless interesting to study those series, as subsequent research
may yield quicker ways of computing the moments of the logarithm of the average; there
are asymptotic formulas for those moments in Dufresne [7], that could possibly be used as
approximations, though this is not attempted in this paper.

These Gram-Charlier expansions for Asian options were first proposed by Popovic & Golds-
man [19], where interesting numerical examples are given but no study of convergence is
performed. Our contribution lies in (a) studying the convergence of the Gram-Charlier series
and proving convergence in some cases; (b) proving explicit formulas for the approximate
option prices, and (c) questioning the usefulness of the method in cases where the underly-
ing is not modelled as geometric Brownian motion (exponential of variance gamma process
in Section 4, Heston stochastic volatility model in Section 5). For (a) we prove apparently
new results regarding the domain of existence of the moment-generating function of log2 A
and give explicit formulas for the moments of the logarithm of a continuous average.

Gram-Charlier expansions have been used in different contexts in finance before, as an im-
provement on the normal distribution for log-returns in the Black-Scholes model. Corrado &
Su [2] and Jondeau & Rockinger [12] are only two of the several papers written on this topic,
a more recent one is Chateau & Dufresne [1], where a more exhaustive list of references may
be found.

2. GRAM-CHARLIER SERIES

2.1. Gram-Charlier series. Gram-Charlier series have a long history, going back to Laplace
at the beginning of the 19th century. The names of Thiele, Hermite Chebyshev and Cramér
are associated with the more modern theory of Gram-Charlier series (specific historical de-
tails are given in Chateau & Dufresne [1]). Define the Hermite polynomials

Hek(x) = (−1)k d
dxk e−

x2
2 , k = 0, 1, 2, . . . .

The first few are:

He0(x) = 1, He1(x) = x, He2(x) = x2 − 1, He3(x) = x3 − 3x.

The Hermite polynomials are orthogonal (with respect to the weight function e−
x2
2 ) and have

been used to express functions as series, e.g.

h(x) =
∞

∑
k=0

ckHek(x).

Gram-Charlier series are expansions for probability density functions (PDFs) in terms of the
normal PDF and Hermite polynomials:

g(x) = φ(x)
∞

∑
k=0

ckHek(x), (1)

where

φ(x) =
1√
2π

e−
x2
2 .
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A Gram-Charlier series is thus a Hermite series times the standard normal density. Cramér
[3] (see also [4]) proved the following result:

Theorem 1. Suppose a function g(·) is of finite variation in every finte interval [a, b], and satisfies
the condition ∫ ∞

−∞
|g(x)|e x2

4 dx < ∞. (2)

(Piecewise differentiable functions have finite variation.) Then, for every x ∈ R,

1
2
(g(x+) + g(x−)) = φ(x)

∞

∑
k=0

ckHek(x),

where

ck =
1
k!

∫ ∞

−∞
g(x)Hek(x) dx, k = 0, 1, . . .

In this paper the function g(·) is the PDF of some variable Y, so condition (2) is rewritten as

Ee
Y2
4 < ∞.

This sufficient condition cannot be improved upon in general, since there are cases where
the Gram-Charlier series defined above diverges, even though EepY2

< ∞ for all p < 1
4 (one

such case is the normal distribution with mean 0 and variance 2). The coefficients ck are
combinations of moments of Y:

ck =
1
k!

EHek(Y), k = 0, 1, . . . (3)

(so c0 = 1.) The finiteness of all those coefficients is no guarantee that the Gram-Charlier
series converges.

Using Gram-Charlier series numerically requires truncating the series. The result is not nec-
essarily a probability distribution, as it may become negative over some intervals. However,
any truncated Gram-Charlier series

φ(x)
N

∑
k=0

ckHek(x) (4)

integrates to 1, since c0 = 1 and∫ ∞

−∞
φ(x)Hek(x) dx = 0, k = 1, 2, . . .

Chateau & Dufresne [1] study the Gram-Charlier distributions, which, for finite N, consist of
the true probability distributions of the form (4). In this paper, by contrast, we consider the
approximations obtained when a (hopefully convergent) Gram-Charlier series is truncated.

2.2. Use of truncated Gram-Charlier expansions in pricing Asian options. If log-returns
have a normal distribution, as in the Black-Scholes model, it is natural to imagine that the
average price of the stock has a distribution that is approximately lognormal. This is the
same as saying that the logarithm of the average approximately has a normal distribution.
This ”lognormal approximation” of sums of lognormally distributed variables has a long
history, notably in engineering. Ever since the lognormal approximation has been used to
price Asian options it has been noted that the approximation is occasionally excellent but
otherwise not always very good. Dufresne [8] studied this question in detail. Intuitively
one may then think that the distribution of log A is not so different from a normal, and that
multiplying the normal distribution by a polynomial would be an improvement. Popovic
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& Goldsman [19] have looked at this case, as we do in Section 3, but the same idea may be
tested in cases where log-returns do not have a normal distribution.

In all the models we consider, the distribution of the underlying security under the pricing
(risk-neutral) measure Q is specified, and so the price of a European-style call on the average
A with maturity T and strike K is

C0 = e−rTE(A− K)+,

where r is the risk-free rate of interest. (To simplify the notation, ‘”E” denotes expectation
under the risk-neutral measure, often written ”EQ” in the literature, since in this paper we
do not need to refer to the physical measure). In each case the distribution of the logarithm
of A is approximated by a truncated Gram-Charlier series; the Gram-Charlier distribution
is given a location parameter a and scale parameter b, meaning that

X = log A, Y =
X− a

b
.

The PDF of Y is approximated by a truncated Gram-Charlier series:

f̂Y(y) = φ(y)
N

∑
k=0

ckHek(y). (5)

The approximated call price is then

Ĉ0 =
∫

R
(ea+by − K)+ f̂Y(y) dy.

The advantage of the Gram-Charlier approximation is that this integral can be evaluated
explicitly. The following computations are adapted from Chateau & Dufresne [1].

Theorem 2. Under the assumptions above,

Ĉ0 = ea+ b2
2 −rT

(
c̃0Φ(d1) + φ(d1)

N

∑
j=1

c̃jHej−1(−d1)

)
−Ke−rT

(
Φ(d2) + φ(d2)

N

∑
k=1

ckHek(−d2)

)
,

where

Φ(x) =
∫ x

−∞
φ(y) dy, d2 =

a− log K
b

, d1 = d2 + b, c̃j =
N

∑
k=j

ckbk−j
(

k
j

)
.

Proof. The no-arbitrage price is C0 = e−rTE(A− K)+, in which we substitute the truncated
Gram-Charlier series (5) for the PDF of (log A− a)/b :

Ĉ0 = e−rT
∫

R
(ea+by − K)+ f̂Y(y) dy

= e−rT
∫ ∞

−d2

ea+by f̂Y(y) dy− Ke−rT
∫ ∞

−d2

f̂Y(y) dy.

The last integral is easier to simplify, one only needs to note that (φ(x)Hek−1(x))′ = −φ(x)Hek(x):∫ ∞

−d2

φ(x)
N

∑
k=0

ckHek(y) dy = Φ(d2) + φ(d2)
N

∑
k=1

ckHek(−d2).

For the first part of the approximate price, we use a change of measure. Let

ν(x) =
∫ x

−∞
φ(x)

N

∑
k=0

ckHek(y) dy, µ(x) =
∫ x

−∞
eby dν(y).
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Use the bilateral Laplace transform to represent µ as a Gram-Charlier expansion:

∫
R

esx dµ(x) =
∫

R
e(b+s)x dν(x) =

N

∑
k=0

ck

∫
R

e(b+s)xφ(x)Hek(x) dx.

Integrating by parts,∫
R

ecxφ(x)Hek(x) dx = c
∫

R
ecxφ(x)Hek−1(x) dx = (· · · ) = cke

c2
2 ,

which leads to ∫
R

esx dµ(x) =
N

∑
k=0

ck(s + b)ke
(s+b)2

2 = e
b2
2

N

∑
j=0

c̃jsjebs+ s2
2 .

This says that

dµ(x) = φ(x− b)
k

∑
j=0

c̃jHej(x− b) dx,

implying ∫ ∞

−d2

ea+by f̂Y(y) dy = ea+ b2
2 Φ(d1) + ea+ b2

2 φ(d1)
N

∑
j=1

c̃jHej−1(−d1). �

2.3. Implementation. If a function has a converging Gram-Charlier expansion

g(x) = φ(x)
∞

∑
k=0

ckHek(x) (6)

then, using the orthogonality of the Hermite polynomials∫ ∞

−∞
g(x)Hej(x) dx = cj

∫ ∞

−∞
φ(x)(Hej(x))2 dx = cj j! j = 0, 1, . . . .

(for more details, see Chateau & Dufresne [1] and Lebedev [14]). If g(·) is the PDF of a
random variable Y then

cj =
1
j!

EHej(Y). (7)

To approximate the distribution of log A we first need the parameters a and b, that represent
centering and scale, respectively. We let

X = log A, a = Ê log A, b =
√

V̂ar log A, Y =
X− a

b
.

(The hat over the expectation or variance indicates values found by simulation.) The PDF of
the random variable Y is assumed to have a Gram-Charlier expansion (6). The value of c0 is
always 1, and by definition it has expectation 0 and variance 1, so we set

c1 = 0, c2 = 0,

in agreement with (7). The other cj’s are then defined as

cj = ÊHej(Y), j = 3, 4, . . .
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3. FIRST APPLICATION: ASIAN OPTIONS IN THE BLACK-SCHOLES MODEL

The risk-free asset has return r, and the risky asset satisfies

dSt = rSt dt + σSt dWt,

where W is a standard Brownian motion under the risk-neutral measure. Hence,

St = S0 exp
((

r− σ2

2

)
t + σW̃t

)
, t ≥ 0. (8)

In all our numerical illustrations the payoff of the option is (A− K)+, where

1
m

m

∑
j=1

Stj , tj =
jT
m

.

3.1. Convergence of the Gram-Charlier series for logA. It is easily seen that

EepA2
= ∞

for any p > 0, so the condition in Theorem 2 cannot be satisfied if Gram-Charlier series
are applied to A itself. Moreover, the distribution of A is not determined by its moments,
meaning that there is an infinite number of other distributions with the same moments as A.
The Gram-Charlier series are based on moments; hence, when forming a Gram-Charlier ex-
pansion for the distribution of A we do not know which of those distribution the expansion
would converge to, even if it did converge (the same comments apply to the generalized
Edgeworth expansion described in Section 1). However, it is much more intuitive that the
distribution of log A should be close to the normal.

If the average consists of just m = 1 averaging point then

Y =
log A−E log A√

Var log A

has a standard normal distribution, so the condition Ee
Y2
4 < ∞ is satisfied and (Theorem 1)

the Gram-Charlier converges. The following results give theoretical justifications for trust-
ing those series when the log-returns have a normal distribution. Given a standard Brown-
ian motion W, we consider general discrete and continuous weighted averages

A =
N

∑
j=1

wje
σWtj , 0 < t1 < · · · < tN = T, wj, σ > 0 ∀j

A =
∫ T

0
wseσWs ds, σ, T > 0, ws ≥ 0 ∀ s, ws ≥ ε > 0 ∀ 0 ≤ t∗ ≤ s < T.

Define
p∗(X) = sup{p |EeX < ∞}.

(This is the “abscissa of convergence” of the moment generating function of X.)

Theorem 3. (a) The distribution of A is not determined by its moments. If wt = eρt for some real
number ρ then the distribution of A is not determined by its moments.

(b) EAp < ∞ (resp. EA p
< ∞) for all p ∈ R.

(c) The distribution of log A (resp. log A) is determined by its moments.

(d) p∗(log2 A) = 1
2σ2T (resp. p∗(log2 A) = 1

2σ2T ).
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Proof. (a) The variable A is a weighted sum of products of the independent lognormal vari-
ables:

Lj = eσ∆Wtj , ∆Wtj = Wtj+1 −Wtj , A = f (L1, . . . , Ln).

It is well known that the lognormal distribution is not determined by its moments. If one of
the Lj’s, say L1, is replaced with another variable, denote it L̃1, that does not have a lognor-
mal distribution but has the same moments as L1, and is independent of L2, . . . , Ln, then the
variable f (L̃1, L2, . . . , Ln) has the same moments as A but has a different distribution.

The same result concerning A is more involved, and is proved by Hörfelt [11], in the case
where ws is an exponential function.

(b) Let the running maximum of Brownian motion up to time t be Wt, and the running
minimum Wt. Then

eσWT
n

∑
j=1

wj ≤ A ≤ eσWT
n

∑
j=1

wj. (9)

The moments of arbitrary positive or negative order of the variables on the extreme left and
right are all finite. Same proof for A .

(c) A sufficient condition for the distribution of a variable X to be determined by its moments
is that EeρX be finite for ρ ∈ (−ε, ε), for some ε > 0 (since any distribution with the same
moments as X then has the same moment generating function as X, implying that it is the
same as the distribution of X). This condition is statisfied for log A and log A , from part (b).

(d) From (9),

| log A| ≤ min(C1 − σWT, C2 + σWT), C1, C2 constants.

The distributions of−WT and WT are known to be the same as that of |WT|. Hence, E exp
(

p log2 A
)

<

∞ for any p < 1/(2σ2T). We also have

A ≥ wNeσWT =⇒ log A ≥ log wN + σWT.

This implies that E exp
(

p log2 A
)

= ∞ for any p > 1/(2σ2T). We conclude that p∗(log2 A) =

1/(2σ2T).

The case of continuous averages is very similar. The continuous counterpart of Eq. (9)
implies that p∗(log2 A) ≥ 1/(2σ2T). To prove the reverse inequality, choose δ ∈ T − t∗, so
that that

A ≥ ε
∫ T

T−δ
eσWs ds.

By the (continuous) arithmetic-geometric inequality,∫ T

T−δ
eσWs ds ≥ δ exp

(
1
δ

∫ T

T−δ
Ws ds

)
.

Now
1
δ

∫ T

T−δ
Ws ds = WT−δ + W̃,

where

W̃ =
1
δ

∫ T

T−δ
(Ws −WT−δ) ds ∼ N

(
0,

δ

3

)
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is independent of the Brownian motion up to time T − δ. Hence,

log A ≥ log(δε) + WT−δ + W̃ ∼ N
(

log(δε), T − 2δ

3

)
.

This implies that E exp(p log2 A) = ∞ for any p ≥ 1/(2σ2(T − 2δ/3)). This is valid for
any 0 < δ < T − t∗, so we conclude that p∗(log2 A) ≤ 1/(2σ2T). �

In order to apply Theorem 1 we need

p∗(log2 A) >
1

4Var log A
(10)

in part (d) of Theorem 3. A simple formula for Var log A is not known in general, but we
study two special cases that are quite tractable.

3.2. Example 1. Consider a discrete average with N = 2 terms, and, for simplicity, let r = σ2

2
an S0 = 2, implying that

A = eσWt1 + eσWt2 ,

or
log A = σWt1 + log(1 + eσ∆Wt1 ).

Here ∆Wt1 = Wt2−Wt1 is independent of Wt1 . Apply the formula for the moment-generating
function of a non-central chi-square distribution:

Ees(Z+c)2
=

1√
1− 2s

esc2/(1−2s), Z ∼ N(0, 1), s <
1
2

, c ∈ R.

Conditioning on ∆Wt1 , one finds (letting ∆t1 = t2 − t1)

E exp(p log2 A) =
1√

1− 2pσ2t1
E exp

(
p

1− 2pσ2t1
log2(1 + eσ

√
∆t1 Z)

)
if 2pσ2t1 < 1. Here Z as a standard normal distribution and the function

log2(1 + eσ
√

∆t1 z)

approaches 0 when z tends to minus infinity, while it is asymptoticaly equal to σ2∆t1z2 when
z tends to plus infinity; hence the last expectation is finite if, and only if,

2pσ2t1 < 1 and
pσ2∆t1

1− 2pσ2t1
<

1
2

.

These conditions are equivalent to 2pσ2t2 < 1, which confirms part (d) of Theorem 3.

In order to know whether (10) holds, we need the variance of log A; that variable is the sum
of two independent variables, the first a normal with variance σ2t1, the other with a variance
equal to

Var log(1 + eσ
√

∆t1Z).

The function
g(q) = [Var log(1 + eqZ)]/q2

can be shown to tend to 0.25 as q→ 0+, and to have an asymptotic value of (1− 1/π)/2 .
=

0.341 as q → ∞ (see Appendix). Moreover, numerical computations (not shown) indicate
that g(q) increases with q (we plotted it over the interval (0, 1000)). Hence, we write

Var log A = σ2t1 + σ2∆t1g(σ
√

∆t1),
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and, using (10) and the value of p∗ just obtained, we conclude that the Gram-Charlier series
for log A will converge if

1
2σ2t2

>
1

4(σ2t1 + σ2∆t1g(σ
√

∆t1))
.

This condition is the same as

(1− 2g(σ
√

∆t1))∆t1 < t1, (11)

which has some intuitive appeal. It says that Cramér’s condition does not hold when ∆t1
is too large relative to t1. It is interesting to note that the value of σ does not make a big
difference in whether (11) holds or not; for relatively small values of σ

√
∆t1, such as would

be found in option pricing, condition (11) roughly says that convergence is certain to occur
if t2 is less than three times t1.

3.3. Example 2. Consider a continuous average

Mt =
∫ t

0
e2Ws ds.

The choice σ = 2 is temporary, it is there so we can make use of the remarkable Bougerol
identity: if (B, W) is a pair of independent standard Brownian motions, then for each fixed
t > 0 ∫ t

0
eWs dBs

d
= sinh(Wt),

where the symbol “ d
=” means “has the same distribution as”. From the independence of B

and W and the elementary properties of stochastic integrals the left hand side has the same
distribution as Z

√
Mt, where Z has a standard normal distribution and is independent of

Mt. Thus

|Z|
√

Mt
d
= sinh |Wt|, Z ∼ N(0, 1).

From this representation we get

2 log |Z|+ log Mt
d
= 2 log sinh |Wt|. (12)

Taking expectations on each side, this yields

2E log |Z|+ E log Mt = 2E log sinh |Wt|. (13)

Squaring (12) then yields

4E log2 |Z|+ 4(E log Mt)(E log |Z|) + E log2 Mt = 4E log2 sinh |Wt|.
Subtracting the square of (13) from the last espression and rearranging yields

Var log Mt = 4Var log sinh |Wt| − 4Var log |Z|+ 8E log |Z|(E log |Z| −E sinh |Wt|).
This can be computed numerically and used to determine whether condition (10) holds;
from Theorem 3 the latter is the same as

Var log Mt > t.

The two sides of this inequality are plotted in Figure 1. It can be seen that Cramér’s condition
for convergence is satisfied for every t ≤ 20 (one needs to check that Var log Mt > t, t =

σ2T/4, which we have done for t ≤ 20).

Now, the scaling property of Brownian motion may be used to extend this result to arbitrary
σ > 0:

A =
∫ T

0
eσWs ds d

=
4
σ2

∫ σ2T
4

0
e2Wu du =

4
σ2 M σ2T

4
.
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FIGURE 1. Var log A (top) versus the function 1/4p∗(log A) = t.

Therefore, this example shows that the Gram-Charlier series converges in cases where the
payoff is expressed in terms of a continuous average and r = σ2/2.

3.4. Performance of the Gram-Charlier approximations. We use the following parameters:

r = 0.05, σ = 1, S0 = 1, m = 200, T = 1, NumSim = 106,

where NumSim is the number of iterations performed.

We compute approximate densities of orders four to ten. Figure 2 shows the results. The
approximations are not always true densities, however, as they may not satisfy the non-
negativity condition. For example, the degree 10 Gram-Charlier approximation of the den-
sity of log A is negative between x = −3.898 and x = −2.754, and the integral of the func-
tion between these two points is −5.148× 10−7. The approximate densities improve as the
number of terms increases.

-2 -1 0 1 2

0.2

0.4

0.6

0.8

k=10

k=8

k=6

k=4

Normal

FIGURE 2. Simulated frequency distribution of log A vs Gram-Charlier ap-
proximations of degree k.
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A test of the Gram-Charlier approximations is the Kolmogorov-Smirnov test value

max
x
| f̂n(x)− f (x)|,

shown in Table 1. In place of the true density f (·) we use the frequency curve obtained by
simulation.

K-S statistic
GC degree 10 0.00118901
GC degree 8 0.00146130
GC degree 6 0.00220439
GC degree 4 0.00454614
Normal (degree 0) 0.02378388

TABLE 1. Kolomogorov-Smirnov test statistics

Another test we performed is the computation of moments of A using the Gram-Charlier
approximations of oders up 10 (see Table 1, where sampling errors are presented for the
case σ = 1). Integrating enx time the density of log A puts a lot of weight on higher values of
x, and it is to be expected that errors increase with n. For small σ the approximate moments
are remarkably good up to orders 8 or 10, but this is not so when σ is larger. The formulas
used to calculate the moments are explained in the Appendix.

Table 3 shows approximate Asian call option prices. Prices for different Gram-Charlier de-
grees and volatility assumptions are presented in Table 2. All approximations of the option
price fall within the 95% confidence interval of the sample price. Figure 3 compares the
simulated option prices (dots) with the approximated ones (continuous curve) in the case
where σ = 1 and a Gram-Charlier approximation of degree 10 is used.

4. SECOND APPLICATION: THE VARIANCE GAMMA PROCESS

The gamma distribution is infinitely divisible and may be used to define a Lévy process,
which is positive and non-decreasing. The variance gamma (VG) process is obtained by
replacing the time variable t in a Browian motion with a “stochastic clock”, represented by
a gamma process. The result is also a Lévy process. The variance gamma has been used to
model log-returns of risky assets (Madan, Carr and Chang [18]). If W is a standard Brownian
motion and

Bt = θt + σWt (14)
then one defines

Xt = BTt ,
where T is a gamma process, indepedent of W. The gamma process is given a single param-
eter ν, so X has three parameters (θ, σ, ν). The parameter ν is chosen so that ETt = t and
VarTt = νt.

The stock price process is defined as

St = S0 exp(rt + ωt + Xt(σ, ν, θ)), ω =
1
ν

log
(

1− θν− σ2ν

2

)
. (15)

Writing down the characteristic function of the variance gamma process {Xt} shows that it
can be expressed as the difference of two gamma processes. Since

EepG2
= ∞, p > 0,
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for any variable G with a gamma distribution, this also says that the gamma process never sat-
isfies the condition for convergence in Theorem 1. Theoretical convergence of the Gram-Charlier
series is then unlikely, even though the variance gamma process is a mixture of normal dis-
tributions. This does not preclude the possibility that a finite number of terms might still
give a good approximation of the true density.

4.1. Performance of Gram-Charlier approximations of log-average price. For our simula-
tions we initially assume the following parameters:

r = 0.05, σ = 0.5, θ = −0.5, ν = 0.3,
S0 = 1, m = 200, T = 1, NumSim = 106.

Figure 4 shows the (dismal) results. The quality of the approximation improves if ν gets
smaller, meaning that the variance gamma process is close to a Brownian motion (the vari-
ance of Tt is smaller), see Figure 5, where ν = 0.05. Option prices (Table 4) show the same
behaviour, the Gram-Charlier approximations are better for small values of ν. By and large
we did not observe a large influence of the parameters θ and σ. We conclude that Gram-
Charlier approximations are only useful for relatively small values of ν.

5. THIRD APPLICATION: THE HESTON MODEL

Heston [10] proposed using a square-root process to model squared volatility. This model
has some tractability but there is no closed form expression for Asian option prices. The
model is:

dSt = µSt dt +
√

VtSt dW(1)
t

dvt = κ(θ −Vt) dt + γγ
√

vtStdW(2)
t .

There is correlation ρ between the two standard Brownian motions W(1), W(2).

The Laplace transform of the log-price is known for this model, it follows from results due
to Feller in the 1950s. The formula for this Laplace transform shows that

E(p log St) = ∞

if p is larger than some p0,which implies that E(p log2 St) = ∞ for any p > 0. This means
that the log-price under the square-root volatility model never satisfies the condition for convergence
in Theorem 1, and so convergence of the Gram-Charlier series for the distribution of log A is
unlikely.

5.1. Performance of Gram-Charlier approximations of log-average price. The base sce-
nario is

r = 0.05, γ = 0.5, v0 = 0.05, θ = 0.05, κ = 2, ρ = 0,
S0 = 1, m = 200, T = 1, NumSim = 106.

The performance of the approximation appears to depend heavily on the mean reversion
parameter, κ, and the volatility of squared-volatility parameter, γ. The accuracy of the ap-
proximation seems to be independent of the long-run average volatility, θ, which has been
tested up to θ = 1.5 (with v0 adjusted accordingly). With high θ the approximation dete-
riorates with higher maturities (T). In all cases tested, the Gram-Charlier approximations

12



appeared to diverge, though the rate of divergence varied. The results are shown in Figures
6 and 7.

In cases where γ is relatively small, for example γ = 0.1, the accuracy of the approximation
is less dependent on the parameter κ, than when γ is high, for example, γ = 0.9. When γ is
small the approximation performs extremely well. The obvious explanation is that when γ is
small the log-price is closer to a Brownian motion. When γ is relatively large, for example,
γ = 1, the approximation is acceptable when κ is high. Prices for Asian call options are
shown in Table 5 under various scenarios of γ and κ, with all other parameters as above.
While the prices derived in the low γ cases are all within the 95% confidence interval of
the sample price, the prices derived from the approximation in the high γ case fall further
outside the confidence interval, the higher the order of the approximation.

The accuracy of the approximation appears to deteriorate quite rapidly as |ρ| increases. The
greater the magnitude of ρ, the faster the deterioration of the approximation with the order,
as higher order approximations become meaningless more quickly. The case where ρ = −0.3
is shown in Figure 11.

6. CONCLUSION

We have shown explicit formulas for Asian option prices when the density of the logarithm
of the average A is approximated by a Gram-Charlier truncated series. A significant draw-
back of the approximation method we used to price Asian options is that the moments of
log A need to be obtained by simulation. The method is therefore not an improvement over
direct simulation of Asian option prices, unless one is looking for an analytic formula for
the density of A or for option prices. It is however not inconceivable that good approxima-
tions for the moments of log A might be found in future, and this is one of the aims of our
research. We have tried to fit Gram-Charlier series using the moments of the A itself, but
this was not successful.

We have shown apparently new results on the convergence of Gram-Charlier series for log A
when the stock price S follows a geometric Brownian motion (the classical Black-Scholes
model). In this case the method does show some promise, since the series can be shown to
converge, and the moments of the logarithm of the average may have not too complicated
expressions, as we have shown in the case where r = σ2/2. In the other two models studied
(variance gamma log-price, Heston) the method appears to have limited applicability, re-
stricted to cases where the distribution of the log-price is not too different from a Brownian
motion.

7. APPENDIX

7.1. The function g(·) in Example 1, Section 3. The variable Z has a standard normal dis-
tribution in

g(q) = [Var log(1 + eqZ)]/q2.

When q→ ∞, we use the inequality log(1 + y) ≤ y to justify

1
q

E(log(1 + eqZ)1{Z<0}) ≤
1
q

E(eqZ)1{Z<0}) → 0.

13



This implies

1
q

E(log(1+ eqZ)1{Z>0}) = E(Z1{Z>0})+
1
q

E(log(1+ e−qZ)1{Z>0}) → E(Z1{Z>0}) =
1√
2π

.

In the same way,

1
q2 E(log2(1 + eqZ)1{Z<0}) → 0

1
q2 E(log2(1 + eqZ)1{Z>0}) → E(Z21{Z>0}) =

1
2

.

Hence,

g(q) → 1
2
− 1

2π

.
= .340845 as q → ∞.

Now turn to the limit as q→ 0. Subtracting log 2, we see that

Var log(1 + eqZ) = Varh(qZ), where h(x) = log
(

1 + ex

2

)
.

The function h(·) is increasing, it has a bounded derivative for x ∈ [−1, 1], and h(0) = 0. We
will use the following inequality, valid for z > 0:

Φ(−z) =
∫ ∞

z
φ(x) dx ≤ 1

z

∫ ∞

z
x

e−
x2
2

√
2π

dx =
φ(z)

z
.

First,
1
q

E(h(qZ)1{qZ<−1}) ≤ |h(−1)|Φ
(
−1

q

)
→ 0 as q→ 0 + .

Next, writing h(x) = log
(

1 +
ex − 1

2

)
,

1
q

E(h(qZ)1{qZ>1}) ≤
1
q

E

(
eqZ − 1

2
1{qZ>1}

)
→ 0

1
q

E(h(qZ)1{|qZ|≤1}) = E

(
1
q

∫ qZ

0
h′(x) dx1{|qZ|≤1}

)
→ h′(0)EZ = 0.

The same ideas apply to the second moment: as q→ 0+,

1
q2 E(h(qZ)21{qZ<−1}) ≤ h(−1)2Φ

(
−1

q

)
→ 0

1
q2 E(h(qZ)21{qZ>1}) ≤

1
q2 E

(
eqZ − 1

2
1{qZ>1}

)2

→ 0

1
q2 E(h(qZ)21{|qZ|≤1}) → h′(0)2EZ2 =

1
4

.

We conclude that g(0+) = 1/4.

7.2. Moments of the arithmetic average. The following is taken from Dufresne [6]. The
same method works any time log-returns have independent increments and averaging time
points are evenly spaced. In the Black-Scholes model, let S be the stock price process, with

St = S0e
(

r− σ2
2

)
t+σWt , Rj = Stj /Stj−1 , j = 1, . . . , m

A =
1
m

m

∑
i=1

Sti =
S0

m
(R1 + R1R2 + ... + R1R2 · · · Rm).
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The variables {Rj} are independent, and we assume tj = jT/m, making them identically
distributed.

Let Bk = R1 + R1R2 + · · ·+ R1R2 · · · Rk, B0 = 0. Then

Bk = Rk(1 + Bk−1), k = 1, . . . , m,

where Rk, Bk−1 are independent. This implies, for n = 1, 2, . . . ,

E(Bn
k ) = E(Rn

k )E(1 + Bm−1)
n = E(Rn

k )
n

∑
j=0

(
n
j

)
E(Bj

k−1), k = 1, . . . , m.

The moments of Rk are obtained from the moment generating function of the normal distri-
bution, and

E(An) =

(
S0

m

)n
E(Bn

m).
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Moments→ 1 2 3 4 5 6 7 8 9 10
σ = 0.1
GC degree 10 1.0256 1.05545 1.08988 1.12929 1.17413 1.22495 1.28237 1.34711 1.42001 1.50203
GC degree 8 1.0256 1.05545 1.08988 1.12929 1.17413 1.22495 1.28237 1.34711 1.42001 1.50203
GC degree 6 1.0256 1.05545 1.08988 1.12929 1.17413 1.22495 1.28237 1.34711 1.42001 1.50204
GC degree 4 1.0256 1.05545 1.08988 1.12929 1.17413 1.22495 1.28237 1.34711 1.42002 1.50204
Sample 1.0256 1.05545 1.08988 1.12929 1.17413 1.22495 1.28237 1.34711 1.42001 1.50203
True 1.02555 1.05534 1.0897 1.12903 1.1738 1.22453 1.28185 1.34648 1.41927 1.50116
σ = 1
GC degree 10 1.0261 1.52062 3.49245 13.1958 83.221 836.937 12458.8 257655. 7.119×106 2.576×108

error (0.002) (0.011) (0.105) (1.669) (32.363) (700.83) (1.717×104) (4.9×105) (1.674×107) (6.994×108)
GC degree 8 1.0261 1.52056 3.48748 13.0145 78.2373 708.957 9016.4 153797. 3.445×106 1.006×108

error (0.002) (0.011) (0.097) (1.2) (17.312) (282.560) (5353.29) (1.212×105) (3.358×106) (1.16×108)
GC degree 6 1.02609 1.51985 3.46473 12.5793 71.0543 588.196 6757.03 104201. 2.123×106 5.682×107

error (0.002) (0.011) (0.078) (0.703) (7.238) (87.205) (1.266.33) (2.272×104) (5.133×105) (1.482×107)
GC degree 4 1.02605 1.51608 3.38688 11.4885 56.9081 392.957 3667.14 45564.1 749760. 1.633×107

error (0.002) (0.01) (0.055) (0.352) (2.674) (24.794) (287.918) (4264.77) (8.161×104) (2.035×106)
Sample 1.0261 1.52062 3.49179 13.1476 80.9017 744.335 9012.71 129254. 2.053×106 3.475×107

error (0.002) (0.011) (0.108) (1.929) (45.403) (1173.53) (3.153×104) (8.654×105) (2.409×107) (6.775×108)
True 1.02555 1.52142 3.53399 14.0893 106.106 1646.56 56349. 4.457×106 8.396×108 3.8434×1011

σ = 1.5
GC degree 10 1.02592 2.59143 21.4118 522.629 26228.8 2.216×106 2.998×108 6.507×1010 2.301×1013 1.347×1016

GC degree 8 1.02591 2.58195 20.0209 396.315 14704.9 904144. 9.045×107 1.488×1010 4.087×1012 1.901×1015

GC degree 6 1.02575 2.53966 17.4444 271.636 7739.8 373416. 3.014×107 4.098×109 9.489×1011 3.779×1014

GC degree 4 1.02468 2.4409 14.052 162.73 3338.25 117206. 7.048×106 7.323×108 1.327×1011 4.222×1013

Sample 1.02592 2.59209 21.5731 532.855 24659.9 1.523×106 1.077×108 8.178×109 6.474×1011 5.267×1013

True 1.02555 2.6337 26.1811 1517.07 637159. 2.099×109 5.614×1013 1.247×1019 2.336×1025 3.743×1032

TABLE 2. Approximate moments of A, Black-Scholes case.

Asian Call Prices σ = 0.1 σ = 0.5 σ = 1 σ = 1.5
GC degree 10 0.036620 0.123903 0.231135 0.330852
GC degree 8 0.036620 0.123910 0.231189 0.331501
GC degree 6 0.036619 0.123897 0.230957 0.329924
GC degree 4 0.036620 0.123787 0.230379 0.328730
Simulation 0.036621 0.123910 0.231101 0.330900
95% confidence (0.0361815, (0.121732, (0.230008, (0.329807,
interval 0.0370598) 0.126087) 0.232193) 0.331992)

TABLE 3. Asian call option prices with strike 1, Black-Scholes case.

Asian Call Prices ν = 0.05 ν = 0.1 ν = 0.2 ν = 0.3
GC degree 10 0.037552 0.036729 0.035338 0.029753
GC degree 8 0.037592 0.036887 0.035649 0.033755
GC degree 6 0.037496 0.037002 0.036918 0.037521
GC degree 4 0.037605 0.036894 0.035754 0.034256
Simulation 0.037573 0.036846 0.035848 0.034635
95% CI upper (0.037348, (0.036621, (0.035626, (0.034416,
lower 0.037798) 0.037071) 0.036070) 0.034854)

TABLE 4. Asian option prices with strike 1, variance gamma case.
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FIGURE 3. Asian Option call price with volatility 1, for varying strikes.
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FIGURE 4. Approximating the log-average density with GC of varying degree
(k), variance gamma with ν = 0.3.
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FIGURE 5. Approximating the log-average density with Gram-Charlier of
varying degree (k), variance gamma with ν = 0.05.
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FIGURE 6. Gram-Charlier approximations for log A, Heston model with ρ = 0.
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Asian Call Prices
γ = 0.1 κ = 0.5 κ = 1 κ = 2 κ = 4
GC degree 10 0.063417 0.063440 0.063471 0.063505
GC degree 8 0.063417 0.063439 0.063471 0.063505
GC degree 6 0.063404 0.063427 0.063458 0.063492
GC degree 4 0.063396 0.063420 0.063454 0.063490
Simulation 0.063366 0.063388 0.063419 0.063455
95% CI upper (0.062769, (0.062802, (0.062834, (0.062869,
lower 0.063963) 0.063974) 0.064005) 0.064041)
γ = 1 κ = 0.5 κ = 1 κ = 2 κ = 4
GC degree 10 0.393768 0.222653 0.101475 0.065715
GC degree 8 0.007245 0.030785 0.051592 0.061008
GC degree 6 0.076491 0.072549 0.067928 0.064493
GC degree 4 0.060696 0.061024 0.061510 0.062125
Simulation 0.063769 0.063504 0.063138 0.062875
95% CI upper (0.063074, (0.062838, (0.062507, (0.062289,
lower 0.064465) 0.064169) 0.063770) 0.063461)

TABLE 5. Asian option prices with strike 1, Heston model.
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FIGURE 7. Gram-Charlier approximations for log A, Heston model with ρ = −0.3.
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