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Research motivation

Financial innovations – response to increased longevity and
ageing population.

Insurance market is becoming an investment hub.

Interest and mortality risks – primary factors in valuation and
risk management of longevity products. But, lapse risk is also
very important.

Lapse risk – possibility that policyholders terminate their
policies early ... for various reasons.

Dire consequences from policy lapses – huge losses and liquidity
problem for insurance companies.
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Research motivation (cont’d)

In current practice, lapse rate is assumed constant or
deterministic in actuarial valuation.

Research advances on lapse risk modelling are rather slow,
unlike those for interest and mortality dynamics.

Policyholders’ decision to surrender is directly affected by
economic circumstances.
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Objectives

Develop an integrated approach that addresses simultaneously
guaranteed annuity option (GAO)’s pricing and capital
requirement calculation.

Construct a two-decrement stochastic model in which death
and policy lapse occurrences with their correlations to the
financial risk are explicitly modelled.

Apply series of probability measure changes resulting to
forward, survival, and risk-endowment measures.

Determine risk measures using moment-based density method
and results benchmarked with the Monte-Carlo simulation. Our
forumulation highlights the link between pricing and capital
requirement.
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Interest rate model

Mortality model

Lapse rate model

Valuation framework
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Interest rate model

We assume short-interest rate rt follows the Vasiček model via the
SDE

drt = a(b− rt)dt+σdXt ,

where a, b, and σ are positive constants and Xt is a standard
one-dimensional Brownian motion.
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Interest rate model (cont’d)

Price B(t,T ) of a T -maturity zero-coupon bond at time t < T is
known to be

B(t,T ) = EQ[e−
∫ T
t rudu |Ft ] = e−A(t,T )rt+D(t,T ),

where

A(t,T ) =
1−e−a(T−t)

a

and

D(t,T ) =

(
b−

σ2

2a2

)
[A(t,T )− (T − t)]−

σ2A(t,T )2

4a
.
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Mortality model

The dynamics of the force of mortality process µt is given by

dµt = cµtdt+ξd Yt ,

where c and ξ are positive constants, and Yt is a standard
Brownian motion correlated with Xt ,

dXtd Yt = ρ12dt.

The survival function is defined by

S(t,T ) = EQ
[
e−

∫ T
t µudu

∣∣∣Ft] .
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Lapse rate framework

For the lapse rate process lt , we adopt the dynamics

dlt = h(m− lt)dt+ζdZt ,

where h, m and ζ are positive constants and Zt is a standard
BM correlated with both Xt and Yt .

In particular,

dXtdZt = ρ13dt and d YtdZt = ρ23dt.
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Valuation framework

Let Md(t,T ) be the fair value at time t of a pure endowment
of $1 at maturity T when mortality is the only decrement, i.e.,

Md(t,T ) = EQ
[
e−

∫ T
t rudue−

∫ T
t µudu

∣∣∣Ft] .
Let Mτ (t,T ) be the fair value at time t of a $1 pure
endowment at maturity T under a two-decrement model (both
mortality and lapse rates are considered), i.e.,

Mτ (t,T ) = EQ
[
e−

∫ T
t rudue−

∫ T
t µudue−

∫ T
t ludu

∣∣∣Ft] .
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Valuation framework(cont’d)

Define ax(T ) as the annuity rate. A life annuity is a contract that
pays $1 to an insured annually conditional on his/her survival at the
moment of payments.

That is,

ax(T ) =
∞

∑
n=0

EQ
[
e−

∫ T+n
T rudue−

∫ T+n
T µudu

∣∣∣FT ]=
∞

∑
n=0

Md(T,T +n).
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Valuation framework (cont’d)

GAO is a contract that gives the policyholder the right to
convert a survival benefit into an annuity at a pre-specified
guaranteed conversion rate g.

GAO’s loss function L is the payoff ‘discounted’ by mortality
and lapse factors, i.e.,

L= ge−
∫ T

0 µudue−
∫ T

0 ludu(ax(T )−K)+ ,

where K = 1/g.

The fair value of GAO at time 0, by risk-neutral pricing, is

PGAO = gEQ
[
e−

∫ T
0 rudue−

∫ T
0 µudue−

∫ T
0 ludu(ax(T )−K)+

∣∣∣F0

]
.
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3 Derivation of GAO prices

The forward measure

The survival measure

The endowment-risk-adjusted measure

Numerical implementation
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The forward measure

The forward measure Q̃ is constructed with the aid of the
Radon-Nikodŷm derivative and Girsanov’s theorem, and in
particular

dQ̃

dQ

∣∣∣∣∣
FT

= Λ1
T :=

e−
∫ T

0 ruduB(T,T )

B(0,T )
.

The dynamics of µt under Q̃ is given by

dµt = [−ρ12σξA(t,T ) +cµt ]dt+ξdỸt .
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The forward measure (cont’d)

The pure endowment under two-decrement model can be
represented as

Mτ (t,T ) = B(t,T )EQ̃
[
e−

∫ T
t µudue−

∫ T
t ludu

∣∣∣Ft] .
The pure endowment under one-decrement model can be
expressed as

Md(t,T ) = B(t,T )EQ̃
[
e−

∫ T
t µudu

∣∣∣Ft] .
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The forward measure (cont’d)

Given the dynamics of µt under Q̃, we have

Md(t,T ) = eD(t,T )+H̃(t,T )−A(t,T )rt−G̃(t,T )µt ,

where

G̃(t,T ) =
ec(T−t)−1

c

and

H̃(t,T ) =

(
ρ12σξ

ac
−
ξ2

2c2

)
[G̃(t,T )− (T − t)] +

ρ12σξ

ac
[A(t,T )−φ(t,T )] +

ξ2

4c
G̃(t,T )2

with

φ(t,T ) =
1−e−(a−c)(T−t)

a−c .
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The forward measure(cont’d)

Hence, the annuity rate ax(T ) can be expressed as

ax(T ) =
∞

∑
n=0

Md(T,T +n) =
∞

∑
n=0

βd(T,T +n)e−V
d (T,T+n) ,

where
βd(t,T ) = eD(t,T )+H̃(t,T )

and
V d(t,T ) = A(t,T )rt + G̃(t,T )µt .
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The survival measure

Define the (survival) measure Q̄ equivalent to Q̃ via

dQ̄

dQ̃

∣∣∣∣
FT

= Λ2
T :=

e−
∫ T

0 µuduS(T,T )

S(0,T )
.

Thus,

EQ̃
[
e−

∫ T
t µudue−

∫ T
t ludu

∣∣∣Ft]= S(t,T )EQ̄
[
e−

∫ T
t ludu

∣∣∣Ft] .
We have

Mτ (t,T ) = B(t,T )S(t,T )EQ̄
[
e−

∫ T
t ludu

∣∣∣Ft] .
The dynamics of lt under Q̄ is given by

dlt = (hm−ρ13σζA(t,T )−ρ23ξζG̃(t,T )−hlt)dt+ζdZt .
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The survival measure (cont’d)

We then have

EQ[e−
∫ T
t ludu |Ft ] = e−lt I(t,T )+J(t,T ) ,

where

I(t,T ) =
1−e−h(T−t)

h
,

and

J(t,T ) =

(
ρ23ξζ

ch
−
ρ13σζ

ah
−
ζ2

2h2
+m

)
[I(t,T )− (T − t)] +

ρ13σζ

ah
[A(t,T )−ϑ(t,T )] +

ρ23ξζ

ch
[G̃(t,T )−ψ(t,T )]

−
ζ2

4h
I(t,T )2

with

ψ(t,T ) =
1−e−(h−c)(T−t)

h−c and ϑ(t,T ) =
1−e−(a+h)(T−t)

a+h
.
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The survival measure (cont’d)

We obtain the analytic solution

Mτ (t,T ) = βτ (t,T )e−V
τ (t,T ) ,

where
βτ (t,T ) = eD(t,T )+H̃(t,T )+J(t,T )

and
V τ (t,T ) = A(t,T )rt + G̃(t,T )µt + I(t,T )lt .
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The endowment-risk-adjusted measure Q̂

Define measure Q̂ equivalent to Q as

dQ̂

dQ

∣∣∣∣∣
FT

= Λ3
T :=

e−
∫ T

0 rudue−
∫ T

0 µudue−
∫ T

0 luduMτ (T,T )

Mτ (0,T )
.

Consequently,

PGAO = gMτ (0,T )EQ̂[(ax(T )−K)+|F0]

= gMτ (0,T )EQ̂
[(

∞

∑
n=0

βd(T,T +n)e−V
d (T,T+n)−K

)+∣∣∣∣∣F0

]
.
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The endowment-risk-adjusted measure (cont’d)

The stochastic dynamics of rt , µt and lt under Q̂ are

drt =(ab−σ2A(t,T )−ρ12σξG̃(t,T )−ρ13σζI(t,T )−art)dt+

σdX̂t ,

dµt = (cµt −ρ12σξA(t,T )−ξ2G̃(t,T )−ρ23ξζI(t,T ))dt+ξdŶt ,

and

dlt = (hm−ρ13σζA(t,T )−ζ2I(t,T )−ρ23ξζG̃(t,T ))dt+ξdẐt ,

where dX̂tdŶt = ρ12dt, dX̂tdẐt = ρ13dt and dŶtdẐt = ρ23dt.
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Numerical implementation

We provide a numerical experiment using our proposed (i)
change-of-measure method for pricing and (ii) Monte-Carlo
simulation (benchmark).

Table 1: Parameter values

Contract specification
g = 11.1% T = 15 n = 35

Interest rate model
a = 0.15 b = 0.045 σ = 0.03 r0 = 0.045

Mortality model
c = 0.1 ξ = 0.0003 µ0 =−0.006

Lapse rate model
h = 0.12 m = 0.02 ζ = 0.01 l0 = 0.02
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Numerical implementation (cont’d)

Table 2: Comparison of GAO prices obtained using our proposed
method and Monte-Carlo method

(ρ12, ρ13, ρ23) MC Proposed
(−0.9,−0.9,0.81) 0.06012 (0.00024) 0.05942 (0.00019)
(−0.6,−0.6,0.36) 0.06682 (0.00030) 0.06608 (0.00021)
(−0.3,−0.3,0.09) 0.07407 (0.00036) 0.07414 (0.00023)

(0.0,0.0,0.0) 0.08270 (0.00045) 0.08272 (0.00025)
(0.3,0.3,0.3) 0.09444 (0.00054) 0.09396 (0.00028)
(0.6,0.6,0.6) 0.10758 (0.00069) 0.10650 (0.00032)
(0.9,0.9,0.9) 0.11993 (0.00081) 0.11954 (0.00035)

(−0.9,0.81,−0.9) 0.07866 (0.00043) 0.07868 (0.00023)
(−0.6,0.36,−0.6) 0.07773 (0.00041) 0.07710 (0.00023)
(−0.3,0.09,−0.3) 0.07941 (0.00042) 0.07880 (0.00024)
(0.81,−0.9,−0.9) 0.07947 (0.00038) 0.07865 (0.00026)
(0.36,−0.6,−0.6) 0.07875 (0.00038) 0.07772 (0.00025)
(0.09,−0.3,−0.3) 0.07957 (0.00040) 0.07972 (0.00025)

average computing time 213.82 secs 0.14 secs
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Numerical implementation (cont’d)

Table 3: GAO prices under constant and stochastic lapse rates

ρ12 Constant ρ13
-0.9 -0.5 0 0.5 0.9

-0.9 0.0679 0.0595 0.0635 0.0689 0.0747 0.0800
-0.8 0.0693 0.0603 0.0651 0.0704 0.0762 0.0817
-0.7 0.0712 0.0615 0.0660 0.0721 0.0777 0.0835
-0.6 0.0717 0.0631 0.0675 0.0731 0.0800 0.0859
-0.5 0.0738 0.0639 0.0685 0.0751 0.0819 0.0880
-0.4 0.0750 0.0652 0.0698 0.0768 0.0838 0.0899
-0.3 0.0765 0.0662 0.0712 0.0782 0.0854 0.0919
-0.2 0.0780 0.0677 0.0727 0.0800 0.0876 0.0944
-0.1 0.0808 0.0685 0.0739 0.0814 0.0892 0.0961
0.0 0.0810 0.0700 0.0754 0.0831 0.0911 0.0985
0.1 0.0836 0.0711 0.0769 0.0843 0.0933 0.1001
0.2 0.0842 0.0718 0.0780 0.0859 0.0948 0.1029
0.3 0.0863 0.0731 0.0799 0.0881 0.0975 0.1049
0.4 0.0883 0.0749 0.0812 0.0898 0.0993 0.1071
0.5 0.0896 0.0757 0.0823 0.0911 0.1013 0.1097
0.6 0.0913 0.0770 0.0839 0.0929 0.1035 0.1121
0.7 0.0930 0.0776 0.0854 0.0949 0.1057 0.1145
0.8 0.0948 0.0793 0.0865 0.0964 0.1074 0.1168
0.9 0.0964 0.0812 0.0884 0.0980 0.1094 0.1192
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4 Risk measurement of GAO

Description of risk measures

Moment-based density approximation

Numerical implementation
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Description of risk measures

We evaluate GAO’s capital requirements through several risk
measures recommended by regulatory authorities.

For 0< α< 1, value at risk (VaR) is defined as

VaRα(Z) = inf{z : P (Z ≤ z)≥ α}.

For 0< α< 1, conditional tail expectation (CTE) is defined as

CTEα(Z) = E[Z|Z > VaRα(Z)].
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Description of risk measures (cont’d)

The distortion risk measure is defined as

ζχ(z) =

∫ ∞
0
χ(SZ(z))dz,

where SZ(z) is the survival function of the loss random variable
(RV) Z, and χ(x) is the distortion function χ : [0,1]→ [0,1],
which is a non-decreasing function with χ(0) = 0 and χ(1) = 1.

The distortion function can be

(Proportional hazard transform) χ(x) = xγ ,

(Wang transform) χ(x) = Φ(Φ−1(x) + Φ−1(ι)),

(Lookback transform) χ(x) = xη(1−η log(x)).
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Description of risk measures(cont’d)

The spectral risk measure ϕ is given by

ϕω =

∫ 1

0
ω(υ)q(υ)dυ,

where ω(υ) is a weighting function such that
∫ 1

0
ω(υ)dυ = 1

and q(υ) is a quantile function of a loss RV.

Two commonly-used weighting functions

ωE(υ) =
κe−κ(1−υ)

1−e−κ (exponential function),

ωP (υ) = δνδ−1 (power function).
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Moment-based density approximation

Underlying idea: the exact density function with known first n
moments can be approximated by the product of
(i) a base density, and
(ii) a polynomial of degree q.

Define the ‘liability’ or loss RV

Lp = ge−
∫ T

0 µudue−
∫ T

0 ludu

(
∞

∑
n=0

βd(T,T +n)e−V
d (T,T+n)−K

)
.

Write

L :=

{
0 if Lp ≤ 0,

Lp if Lp > 0.
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Procedure for moment-based density
approximation

Choose the gamma distribution as the base function.

Make the transformation Z := Lp−u, where u is a relatively
small value.

Let the moments of the random variable Z be
µZ(i) for i = 0,1, . . . ,q.

Let the theoretical moments of the base function Ψ(z) be
mZ(i) for i = 0,1, . . . ,2q.

The parameters α and θ of Ψ(z) are determined by setting
µZ(i) =mZ(i) for i = 1,2.
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Procedure for moment-based density
approximation (cont’d)

The approximated density of Lp is given by

fLp(l) =
(l −u)α−1

Γ(α)θα
e−(l−u)/θ

q

∑
i=0

ki(l −u)i .

k0,k1, . . . ,kn are determined by

(k0,k1, . . . ,kn)> =M−1(µZ(0),µZ(1), . . . ,µZ(q))>,

where M is a (q+ 1)× (q+ 1) symmetric matrix whose
(i + 1)th row is (mZ(i),mZ(i + 1), . . . ,mZ(i +q)).
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Numerical implementation

Figure 1: Approximating the distribution of Lp
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Numerical implementation (cont’d)

Table 4: Risk measures of gross loss for GAO under different
sample sizes

Risk measures N = 10,000 N = 100,000 N = 1,000,000
ECDF MCDF ECDF MCDF ECDF MCDF

VaR (α= 0.90) 0.1659 0.1631 0.1655 0.1658 0.1669 0.1681
VaR (α= 0.95) 0.2115 0.2068 0.2114 0.2104 0.2139 0.2143
VaR (α= 0.99 ) 0.3127 0.3042 0.3190 0.3211 0.3237 0.3271
CTE (α= 0.90 ) 0.2300 0.2243 0.2328 0.2321 0.2353 0.2364
CTE (α= 0.95 ) 0.2739 0.2664 0.2798 0.2787 0.2830 0.2842
CTE (α= 0.99 ) 0.3757 0.3658 0.3964 0.3935 0.3970 0.4016
WT (γ = 0.90) 0.1872 0.1818 0.1920 0.1922 0.1935 0.1938
WT (γ = 0.50) 0.2340 0.2254 0.2426 0.2430 0.2444 0.2443
WT (γ = 0.10 ) 0.3356 0.3156 0.3574 0.3586 0.3614 0.3570
PH (ι= 0.10) 0.0752 0.0736 0.0760 0.0760 0.0765 0.0767
PH (ι= 0.05 ) 0.1361 0.1317 0.1401 0.1402 0.1413 0.1411
PH (ι= 0.01 ) 0.4199 0.4076 0.4895 0.4908 0.5332 0.5345
LB (η = 0.90) 0.1549 0.1496 0.1575 0.1576 0.1587 0.1593
LB (η = 0.50 ) 0.2668 0.2500 0.2816 0.2826 0.2853 0.2822
LB (η = 0.10) 0.5885 0.5670 0.7190 0.7215 0.8148 0.8186

EWQRM (κ= 1) 0.0867 0.0852 0.0875 0.0875 0.0881 0.0884
EWQRM (κ= 20 ) 0.2469 0.2444 0.2517 0.2517 0.2542 0.2557
EWQRM (κ= 100 ) 0.3512 0.3564 0.3660 0.3664 0.3673 0.3714

PWRM (δ = 1) 0.0672 0.0659 0.0678 0.0678 0.0683 0.0684
PWRM (δ = 20 ) 0.2485 0.2460 0.2534 0.2534 0.2559 0.2574
PWRM (δ = 100) 0.3515 0.3567 0.3664 0.3668 0.3676 0.3718
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Numerical implementation (cont’d)

Figure 2: Variation of risk measures as a function of ρ13 with a
given ρ12 and ρ23 = ρ12ρ13
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Numerical implementation (cont’d)

Figure 3: Sensitivity of risk measures to various parameters
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Conclusion

This work contributes to the development of an integrated
modelling framework for GAO pricing and capital requirement
determination.

Each of the three risk factors has an affine structure
specification and their correlations with one another is fully
described.

We employed iteratively the change of probability measure
technique to efficiently and accurately compute GAO prices.

We further evaluated seven different risk measures for GAO
through the empirical CDF and moment-based density
approximation methods.
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Conclusion (cont’d)

Our numerical results show efficiency and accuracy of our
proposed methods GAO’s valuation and risk measurement.

Our results suggest that lapse rate’s stochastic behaviour must
be captured accurately and taken into account when designing,
pricing and monitoring insurance products.
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