

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option

Yixing Zhao

Department of Statistical & Actuarial Sciences *The* University *of* Western Ontario London, Ontario, Canada

Joint work with Rogemar Mamon (*Western*), Huan Gao (*Bank of Montreal*) 52nd Actuarial Research Conference 26 – 29 July 2017, Atlanta, Georgia, USA

Outline

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

Introduction

2 Modelling framework

3

Oerivation of GAO prices

Risk measurement of GAO

I = 1

Section Outline

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

E

▶ < 문 > < E >

Research motivation

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

- Financial innovations response to increased longevity and ageing population.
- Insurance market is becoming an investment hub.
- Interest and mortality risks primary factors in valuation and risk management of longevity products. But, lapse risk is also very important.
- Lapse risk possibility that policyholders terminate their policies early ... for various reasons.
- Dire consequences from policy lapses huge losses and liquidity problem for insurance companies.

Research motivation (cont'd)

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

- In current practice, lapse rate is assumed constant or deterministic in actuarial valuation.
- Research advances on lapse risk modelling are rather slow, unlike those for interest and mortality dynamics.
- Policyholders' decision to surrender is directly affected by economic circumstances.

Objectives

Introduction

Modelling framework

- Derivation of GAO prices
- Risk measurement of GAO
- Conclusion

- **Develop** an integrated approach that addresses simultaneously guaranteed annuity option (GAO)'s *pricing* and *capital requirement calculation*.
- **Construct** a two-decrement stochastic model in which death and policy lapse occurrences with their correlations to the financial risk are explicitly modelled.
- **Apply** series of probability measure changes resulting to forward, survival, and risk-endowment measures.
- **Determine** risk measures using moment-based density method and results benchmarked with the Monte-Carlo simulation. *Our forumulation highlights the link between pricing and capital requirement.*

6/41

Section Outline

Introduction

- Modelling framework
- Mortality model Lapse rate model Valuation framework
- Derivation of GAO prices
- Risk measurement of GAO
- Conclusion

Modelling framework

- Interest rate model
- Mortality model
- Lapse rate model
- Valuation framework

Interest rate model

Introduction

Modelling framework

Mortality model Lapse rate model Valuation framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

We assume short-interest rate r_t follows the Vasiček model via the SDE

 $dr_t = a(b-r_t)dt + \sigma dX_t$

where *a*, *b*, and σ are positive constants and X_t is a standard one-dimensional Brownian motion.

Interest rate model (cont'd)

Introduction

Modelling framework Interest rate model Mortality model Lapse rate model

Valuation framework Derivation of

GAO prices

Risk measurement of GAO

Conclusion

Price B(t,T) of a T-maturity zero-coupon bond at time t < T is known to be

$$B(t,T) = \mathsf{E}^{Q}[e^{-\int_{t}^{T} r_{u} du} | \mathcal{F}_{t}] = e^{-A(t,T)r_{t} + D(t,T)},$$

where

$$A(t,T) = \frac{1 - e^{-a(T-t)}}{a}$$

and

$$D(t,T) = \left(b - \frac{\sigma^2}{2a^2}\right) [A(t,T) - (T-t)] - \frac{\sigma^2 A(t,T)^2}{4a}.$$

9/41

Mortality model

Introduction

Modelling framework Interest rate model Mortality model Lapse rate model Valuation framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

• The dynamics of the **force of mortality process** μ_t is given by

 $d\mu_t = c\mu_t dt + \xi dY_t \, ,$

where *c* and ξ are positive constants, and Y_t is a standard Brownian motion **correlated** with X_t ,

$$dX_t dY_t = \rho_{12} dt.$$

• The survival function is defined by

$$S(t,T) = \mathbb{E}^{Q}\left[e^{-\int_{t}^{T}\mu_{u}du}\middle|\mathcal{F}_{t}\right]$$

• • = • • = •

10/41

Lapse rate framework

Introduction

Modelling framework Interest rate model Mortality model Lapse rate model

Valuation framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

• For the **lapse rate process** I_t , we adopt the dynamics

 $dI_t = h(m-I_t)dt + \zeta dZ_t$

where *h*, *m* and ζ are positive constants and Z_t is a standard BM **correlated with both** X_t and Y_t .

• In particular,

 $dX_t dZ_t = \rho_{13} dt$ and $dY_t dZ_t = \rho_{23} dt$.

• • = • • = •

11/41

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option Yixing Zhao

Valuation framework

Introduction

Modelling framework Interest rate model Mortality model Lapse rate model Valuation framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

• Let $M^d(t, T)$ be the **fair value at time** *t* **of a pure endowment** of \$1 at maturity T when mortality is the only decrement, i.e.,

$$M^{d}(t,T) = \mathbb{E}^{Q}\left[e^{-\int_{t}^{T} r_{u} du} e^{-\int_{t}^{T} \mu_{u} du} \middle| \mathcal{F}_{t}\right].$$

 Let M^T(t, T) be the fair value at time t of a \$1 pure endowment at maturity T under a two-decrement model (both mortality and lapse rates are considered), i.e.,

$$M^{\tau}(t,T) = \mathbb{E}^{Q} \left[e^{-\int_{t}^{T} r_{u} du} e^{-\int_{t}^{T} \mu_{u} du} e^{-\int_{t}^{T} l_{u} du} \Big| \mathcal{F}_{t} \right].$$

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option Yixing Zhao

12/41

A B K A B K

Valuation framework(cont'd)

Introduction

Modelling framework Interest rate model Mortality model Lapse rate model Valuation framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

Define $a_x(T)$ as the **annuity rate.** A life annuity is a contract that pays \$1 to an insured annually conditional on his/her survival at the moment of payments.

That is,

$$a_{X}(T) = \sum_{n=0}^{\infty} \mathbb{E}^{Q} \left[e^{-\int_{T}^{T+n} r_{u} du} e^{-\int_{T}^{T+n} \mu_{u} du} \Big| \mathcal{F}_{T} \right] = \sum_{n=0}^{\infty} M^{d}(T, T+n).$$

Valuation framework (cont'd)

Introduction

Modelling framework Interest rate model Mortality model Lapse rate model Valuation framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

- GAO is a contract that gives the policyholder the right to convert a survival benefit into an annuity at a pre-specified guaranteed conversion rate g.
- GAO's **loss function** *L* is the payoff 'discounted' by mortality and lapse factors, i.e.,

$$L = g e^{-\int_0^T \mu_u du} e^{-\int_0^T I_u du} (a_x(T) - K)^+$$

where K = 1/g.

• The fair value of GAO at time 0, by risk-neutral pricing, is

$$P_{GAO} = g \mathbb{E}^{Q} \left[e^{-\int_{0}^{T} r_{u} du} e^{-\int_{0}^{T} \mu_{u} du} e^{-\int_{0}^{T} l_{u} du} (a_{X}(T) - K)^{+} \middle| \mathcal{F}_{0} \right]$$

Section Outline

Introduction

Modelling framework

Derivation of GAO prices

3

The forward measure

The survival measure

The endowmentrisk-adjusted measure Numerical implementation

Risk measurement of GAO

Conclusion

Derivation of GAO prices

- The forward measure
- The survival measure
- The endowment-risk-adjusted measure
- Numerical implementation

The forward measure

Introduction

Modelling framework

Derivation of GAO prices

The forward measure

The survival measure

The endowmentrisk-adjusted measure Numerical implementation

Risk measurement of GAO

Conclusion

• The forward measure \widetilde{Q} is constructed with the aid of the Radon-Nikodŷm derivative and Girsanov's theorem, and in particular

$$\left. \frac{d\widetilde{Q}}{dQ} \right|_{\mathcal{F}_{T}} = \Lambda_{T}^{1} := \frac{e^{-\int_{0}^{T} r_{u} du} B(T, T)}{B(0, T)}$$

• The dynamics of μ_t under \widetilde{Q} is given by

 $d\mu_t = [-\rho_{12}\sigma\xi A(t,T) + c\mu_t]dt + \xi d\widetilde{Y}_t.$

글 네 글 네

The forward measure (cont'd)

- Introduction
- Modelling framework
- Derivation of GAO prices
- The forward measure
- The survival measure
- The endowmentrisk-adjusted measure Numerical implementation
- Risk measurement of GAO
- Conclusion

• The *pure endowment under two-decrement model* can be represented as

$$M^{\tau}(t,T) = B(t,T)\mathbb{E}^{\widetilde{Q}}\left[e^{-\int_{t}^{T}\mu_{u}du}e^{-\int_{t}^{T}l_{u}du}\middle|\mathcal{F}_{t}\right].$$

• The *pure endowment under one-decrement model* can be expressed as

$$M^{d}(t,T) = B(t,T)\mathbb{E}^{\widetilde{Q}}\left[e^{-\int_{t}^{T}\mu_{u}du}\Big|\mathcal{F}_{t}\right].$$

> < E > < E >

The forward measure (cont'd)

Introduction

Modelling framework

Derivation of GAO prices

The forward measure

The survival measure

The endowmentrisk-adjusted measure Numerical implementation

Risk measurement of GAO

Conclusion

Given the dynamics of μ_t under \widetilde{Q} , we have

$$M^{d}(t,T) = e^{D(t,T) + \widetilde{H}(t,T) - A(t,T)r_{t} - \widetilde{G}(t,T)\mu_{t}}$$

where

$$\widetilde{G}(t,T) = \frac{e^{c(T-t)}-1}{c}$$

and

$$\widetilde{H}(t,T) = \left(\frac{\rho_{12}\sigma\xi}{ac} - \frac{\xi^2}{2c^2}\right) [\widetilde{G}(t,T) - (T-t)] + \frac{\rho_{12}\sigma\xi}{ac} [A(t,T) - \phi(t,T)] + \frac{\xi^2}{4c} \widetilde{G}(t,T)^2$$

with

$$\phi(t,T) = \frac{1 - e^{-(a-c)(T-t)}}{a-c}$$

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option Yixing Zhao

글 네 글 네 글 네

The forward measure(cont'd)

Introduction

Modelling framework

Derivation of GAO prices

The forward measure

The survival measure

The endowmentrisk-adjusted measure Numerical implementation

Risk measurement of GAO

Conclusion

Hence, the **annuity rate** $a_x(T)$ can be expressed as

ļ

$$a_{X}(T) = \sum_{n=0}^{\infty} M^{d}(T, T+n) = \sum_{n=0}^{\infty} \beta^{d}(T, T+n) e^{-V^{d}(T, T+n)}$$

where

$$\beta^d(t,T) = e^{D(t,T) + \widetilde{H}(t,T)}$$

and

$$V^d(t,T) = A(t,T)r_t + \widetilde{G}(t,T)\mu_t.$$

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option Yixing Zhao

The survival measure

Introduction

Modelling framework

Derivation of GAO prices

The forward measure

The survival measure

The endowmentrisk-adjusted measure Numerical implementation

Risk measurement of GAO

Conclusion

• Define the (survival) measure \bar{Q} equivalent to \widetilde{Q} via

$$\frac{d\bar{Q}}{d\bar{Q}}\Big|_{\mathcal{F}_T} = \Lambda_T^2 := \frac{e^{-\int_0^T \mu_u du} S(T,T)}{S(0,T)}.$$

Thus,

$$\mathbb{E}^{\widetilde{Q}}\left[e^{-\int_{t}^{T}\mu_{u}du}e^{-\int_{t}^{T}l_{u}du}\Big|\mathcal{F}_{t}\right] = S(t,T)\mathbb{E}^{\widetilde{Q}}\left[e^{-\int_{t}^{T}l_{u}du}\Big|\mathcal{F}_{t}\right].$$

• We have

$$M^{\tau}(t,T) = B(t,T)S(t,T)\mathbb{E}^{\bar{Q}}\left[e^{-\int_{t}^{T}I_{u}du}\Big|\mathcal{F}_{t}\right].$$

• The dynamics of I_t under \overline{Q} is given by

 $dI_t = (hm - \rho_{13}\sigma\zeta A(t,T) - \rho_{23}\xi\zeta\widetilde{G}(t,T) - hI_t)dt + \zeta d\overline{Z}_t.$

The survival measure (cont'd)

Introduction

Modelling framework

Derivation of GAO prices

The forward measure

The survival measure

The endowmentrisk-adjusted measure Numerical implementation

Risk measurement of GAO

Conclusion

We then have

$$\mathbb{E}^{\overline{Q}}[e^{-\int_t^T l_u du} | \mathcal{F}_t] = e^{-l_t \overline{l}(t,T) + \overline{J}(t,T)}$$

where

$$\overline{l}(t,T) = \frac{1 - e^{-h(T-t)}}{h},$$

and

$$\overline{J}(t,T) = \left(\frac{\rho_{23}\xi\zeta}{ch} - \frac{\rho_{13}\sigma\zeta}{ah} - \frac{\zeta^2}{2h^2} + m\right) [\overline{I}(t,T) - (T-t)] + \frac{\rho_{13}\sigma\zeta}{ah} [A(t,T) - \vartheta(t,T)] + \frac{\rho_{23}\xi\zeta}{ch} [\widetilde{G}(t,T) - \psi(t,T)] - \frac{\zeta^2}{4h} \overline{I}(t,T)^2$$

with

$$\psi(t,T) = \frac{1 - e^{-(h-c)(T-t)}}{h-c} \quad \text{and} \quad \vartheta(t,T) = \frac{1 - e^{-(a+h)(T-t)}}{\frac{1}{2} + \frac{a+h}{2}}.$$

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option Yixing Zhao

The survival measure (cont'd)

Introduction

Modelling framework

Derivation of GAO prices

The forward measure

The survival measure

The endowmentrisk-adjusted measure Numerical implementation

Risk measurement of GAO

Conclusion

We obtain the analytic solution

ſ

$$M^{\tau}(t,T) = \beta^{\tau}(t,T)e^{-V^{\tau}(t,T)}$$

where

$$\beta^{\tau}(t,T) = e^{D(t,T) + \widetilde{H}(t,T) + \overline{J}(t,T)}$$

and

$$V^{\tau}(t,T) = A(t,T)r_t + \widetilde{G}(t,T)\mu_t + \overline{I}(t,T)I_t.$$

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option Yixing Zhao

E

A B K A B K

The endowment-risk-adjusted measure \widehat{Q}

Introduction

Modelling framework

Derivation of GAO prices

The forward measure

The survival measure

The endowmentrisk-adjusted measure

Numerical implementation

Risk measurement of GAO

Conclusion

• Define measure \widehat{Q} equivalent to Q as

$$\left. \frac{d\widehat{Q}}{dQ} \right|_{\mathcal{F}_{T}} = \Lambda_{T}^{3} := \frac{e^{-\int_{0}^{T} r_{u} du} e^{-\int_{0}^{T} \mu_{u} du} e^{-\int_{0}^{T} l_{u} du} M^{\tau}(T,T)}{M^{\tau}(0,T)}.$$

• Consequently,

$$P_{GAO} = gM^{\tau}(0,T)\mathbb{E}^{\widehat{Q}}\left[\left(a_{x}(T)-K\right)^{+}|\mathcal{F}_{0}\right]$$
$$= gM^{\tau}(0,T)\mathbb{E}^{\widehat{Q}}\left[\left(\sum_{n=0}^{\infty}\beta^{d}(T,T+n)e^{-V^{d}(T,T+n)}-K\right)^{+}\middle|\mathcal{F}_{0}\right]$$

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option Yixing Zhao

3/41

ヨト・モラト

The endowment-risk-adjusted measure (cont'd)

Introduction

Modelling framework

Derivation of GAO prices

The forward measure The survival

ne survival measure

The endowmentrisk-adjusted measure

Numerical implementation

Risk measurement of GAO

and

Conclusion

The stochastic dynamics of
$$r_t$$
, μ_t and l_t under Q are

$$dr_t = (ab - \sigma^2 A(t,T) - \rho_{12}\sigma\xi\tilde{G}(t,T) - \rho_{13}\sigma\zeta\bar{I}(t,T) - ar_t)dt + \sigma d\hat{X}_t,$$

$$d\mu_t = (c\mu_t - \rho_{12}\sigma\xi A(t,T) - \xi^2\tilde{G}(t,T) - \rho_{23}\xi\zeta\bar{I}(t,T))dt + \xi d\hat{Y}_t,$$

 \sim

 $dI_t = (hm - \rho_{13}\sigma\zeta A(t,T) - \zeta^2 \overline{I}(t,T) - \rho_{23}\xi\zeta \widetilde{G}(t,T))dt + \xi d\widehat{Z}_t,$ where $d\widehat{X}_t d\widehat{Y}_t = \rho_{12}dt$, $d\widehat{X}_t d\widehat{Z}_t = \rho_{13}dt$ and $d\widehat{Y}_t d\widehat{Z}_t = \rho_{23}dt$.

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option Yixing Zhao

Numerical implementation

Introduction

Modelling framework

Derivation of GAO prices

The forward measure

The survival measure

The endowmentrisk-adjusted measure

Numerical implementation _

Risk measurement of GAO

Conclusion

We provide a numerical experiment using our proposed (i) change-of-measure method for pricing and (ii) Monte-Carlo simulation (benchmark).

Table 1: Parameter values

Contract specification						
g = 11.1%	T = 15	<i>n</i> = 35				
Interest rate model						
a = 0.15	<i>b</i> = 0.045	$\sigma = 0.03$	$r_0 = 0.045$			
Mortality model						
<i>c</i> = 0.1	$\xi = 0.0003$	$\mu_0 = -0.006$				
Lapse rate model						
h = 0.12	<i>m</i> = 0.02	$\zeta=0.01$	$l_0 = 0.02$			

A B K A B K

Introduction

Modelling framework

Derivation of GAO prices

The forward measure

The survival measure

The endowmentrisk-adjusted measure

Numerical implementation

Risk measurement of GAO

Conclusion

Table 2: Comparison of GAO prices obtained using our proposed method and Monte-Carlo method

$(\rho_{12}, \rho_{13}, \rho_{23})$	MC	Proposed
(-0.9, -0.9, 0.81)	0.06012 (0.00024)	0.05942 (0.00019)
(-0.6, -0.6, 0.36)	0.06682 (0.00030)	0.06608 (0.00021)
(-0.3, -0.3, 0.09)	0.07407 (0.00036)	0.07414 (0.00023)
(0.0, 0.0, 0.0)	0.08270 (0.00045)	0.08272 (0.00025)
(0.3, 0.3, 0.3)	0.09444 (0.00054)	0.09396 (0.00028)
(0.6, 0.6, 0.6)	0.10758 (0.00069)	0.10650 (0.00032)
(0.9, 0.9, 0.9)	0.11993 (0.00081)	0.11954 (0.00035)
(-0.9, 0.81, -0.9)	0.07866 (0.00043)	0.07868 (0.00023)
(-0.6, 0.36, -0.6)	0.07773 (0.00041)	0.07710 (0.00023)
(-0.3, 0.09, -0.3)	0.07941 (0.00042)	0.07880 (0.00024)
(0.81, -0.9, -0.9)	0.07947 (0.00038)	0.07865 (0.00026)
(0.36, -0.6, -0.6)	0.07875 (0.00038)	0.07772 (0.00025)
(0.09, -0.3, -0.3)	0.07957 (0.00040)	0.07972 (0.00025)
average computing time	213.82 secs	0.14 secs

Introduction

Modelling framework

Derivation of GAO prices

The forward measure

The survival measure

The endowmentrisk-adjusted measure Numerical

implementation

Risk measurement of GAO

Conclusion

Table 3: GAO prices under constant and stochastic lapse rates

ore Constant				ρ ₁₃		
p ₁₂ const	Constant	-0.9	-0.5	0	0.5	0.9
-0.9	0.0679	0.0595	0.0635	0.0689	0.0747	0.0800
-0.8	0.0693	0.0603	0.0651	0.0704	0.0762	0.0817
-0.7	0.0712	0.0615	0.0660	0.0721	0.0777	0.0835
-0.6	0.0717	0.0631	0.0675	0.0731	0.0800	0.0859
-0.5	0.0738	0.0639	0.0685	0.0751	0.0819	0.0880
-0.4	0.0750	0.0652	0.0698	0.0768	0.0838	0.0899
-0.3	0.0765	0.0662	0.0712	0.0782	0.0854	0.0919
-0.2	0.0780	0.0677	0.0727	0.0800	0.0876	0.0944
-0.1	0.0808	0.0685	0.0739	0.0814	0.0892	0.0961
0.0	0.0810	0.0700	0.0754	0.0831	0.0911	0.0985
0.1	0.0836	0.0711	0.0769	0.0843	0.0933	0.1001
0.2	0.0842	0.0718	0.0780	0.0859	0.0948	0.1029
0.3	0.0863	0.0731	0.0799	0.0881	0.0975	0.1049
0.4	0.0883	0.0749	0.0812	0.0898	0.0993	0.1071
0.5	0.0896	0.0757	0.0823	0.0911	0.1013	0.1097
0.6	0.0913	0.0770	0.0839	0.0929	0.1035	0.1121
0.7	0.0930	0.0776	0.0854	0.0949	0.1057	0.1145
0.8	0.0948	0.0793	0.0865	0.0964	0.1074	0.1168
0.9	0.0964	0.0812	0.0884	0.0980	0.1094	0.1192

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option Yixing Zhao

Section Outline

Introduction

Modelling framework

Derivation of GAO prices

4

Risk measurement of GAO

Description of risk measures

Moment-based density approximation

Numerical implementation

Conclusion

Risk measurement of GAO

- Description of risk measures
- Moment-based density approximation
- Numerical implementation

Description of risk measures

- Introduction
- Modelling framework
- Derivation of GAO prices
- Risk measurement of GAO
- Description of risk measures
- Moment-based density approximation
- Numerical implementation
- Conclusion

- We evaluate GAO's capital requirements through several risk measures recommended by regulatory authorities.
- For $0 < \alpha < 1$, value at risk (VaR) is defined as

$$VaR_{\alpha}(Z) = \inf\{z : P(Z \le z) \ge \alpha\}.$$

• For $0 < \alpha < 1$, conditional tail expectation (CTE) is defined as $CTE_{\alpha}(Z) = \mathbb{E}[Z|Z > VaR_{\alpha}(Z)].$

29/41

Description of risk measures (cont'd)

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Description of risk measures

Moment-based density approximation Numerical implementation

Conclusion

• The distortion risk measure is defined as

$$\zeta_{\chi}(z) = \int_0^\infty \chi(S_{Z}(z)) dz,$$

where $S_Z(z)$ is the survival function of the loss random variable (RV) Z, and $\chi(x)$ is the distortion function $\chi: [0,1] \rightarrow [0,1]$, which is a non-decreasing function with $\chi(0) = 0$ and $\chi(1) = 1$.

• The distortion function can be

(Proportional hazard transform) $\chi(x) = x^{\gamma}$,

(Wang transform) $\chi(x) = \Phi(\Phi^{-1}(x) + \Phi^{-1}(\iota)),$ (Lookback transform) $\chi(x) = x^{\eta}(1 - \eta \log(x)).$

Description of risk measures(cont'd)

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Description of risk measures

Moment-based density approximation Numerical implementation

Conclusion

• The spectral risk measure φ is given by

$$\varphi_{\omega} = \int_0^1 \omega(\upsilon) q(\upsilon) d\upsilon,$$

where $\omega(v)$ is a weighting function such that $\int_0^1 \omega(v) dv = 1$ and q(v) is a quantile function of a loss RV.

• Two commonly-used weighting functions

$$\omega_E(\upsilon) = \frac{\kappa e^{-\kappa(1-\upsilon)}}{1-e^{-\kappa}} \text{ (exponential function),}$$

$$\omega_P(\upsilon) = \delta \nu^{\delta-1}$$
 (power function).

글 네 글 네

Moment-based density approximation

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Description of risk measures

Moment-based density approximation

Numerical implementation

Conclusion

- Underlying idea: the exact density function with known first *n* moments can be approximated by the product of (i) a base density, and
 - (ii) a polynomial of degree q.

• Define the 'liability' or loss RV

$$p_{p} = g e^{-\int_{0}^{T} \mu_{u} du} e^{-\int_{0}^{T} l_{u} du} \left(\sum_{n=0}^{\infty} \beta^{d} (T, T+n) e^{-V^{d} (T, T+n)} - K \right).$$

Write

L

$$L := \begin{cases} 0 & \text{if } L_p \leq 0, \\ L_p & \text{if } L_p > 0. \end{cases}$$

4 E K 4 E K

Procedure for moment-based density approximation

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Description of risk measures

Moment-based density approximation

Numerical implementation

Conclusion

- $\bullet\,$ Choose the gamma distribution as the base function.
- Make the transformation Z := L_p − u, where u is a relatively small value.
- Let the moments of the random variable Z be $\mu_Z(i)$ for i = 0, 1, ..., q.
- Let the theoretical moments of the base function Ψ(z) be m_Z(i) for i = 0, 1, ..., 2q.
- The parameters α and θ of $\Psi(z)$ are determined by setting $\mu_Z(i) = m_Z(i)$ for i = 1, 2.

イロト イヨト イヨト

Procedure for moment-based density approximation (cont'd)

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Description of risk measures

Moment-based density approximation

Numerical implementation

Conclusion

• The **approximated density** of *L_p* is given by

$$f_{L_p}(l) = \frac{(l-u)^{\alpha-1}}{\Gamma(\alpha)\theta^{\alpha}} e^{-(l-u)/\theta} \sum_{i=0}^q k_i (l-u)^i.$$

• k_0, k_1, \ldots, k_n are determined by

$$(k_0, k_1, \ldots, k_n)^{\top} = \mathbf{M}^{-1}(\mu_Z(0), \mu_Z(1), \ldots, \mu_Z(q))^{\top},$$

where **M** is a $(q+1) \times (q+1)$ symmetric matrix whose (i+1)th row is $(m_Z(i), m_Z(i+1), \dots, m_Z(i+q))$.

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option Yixing Zhao

Numerical implementation

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Description of risk measures

Moment-based density approximation

Numerical implementation

Conclusion

Figure 1: Approximating the distribution of L_p

E

イロト イヨト イヨト イヨト

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO Description of risk

measures Moment-based

density approximation

Numerical implementation

Conclusion

Table 4: Risk measures of gross loss for GAO under different sample sizes

Risk measures	N = 10,000		N = 100,000		N = 1,000,000	
	ECDF	MCDF	ECDF	MCDF	ECDF	MCDF
$VaR (\alpha = 0.90)$	0.1659	0.1631	0.1655	0.1658	0.1669	0.1681
$VaR \ (\alpha = 0.95)$	0.2115	0.2068	0.2114	0.2104	0.2139	0.2143
VaR ($\alpha = 0.99$)	0.3127	0.3042	0.3190	0.3211	0.3237	0.3271
CTE ($\alpha = 0.90$)	0.2300	0.2243	0.2328	0.2321	0.2353	0.2364
CTE ($\alpha = 0.95$)	0.2739	0.2664	0.2798	0.2787	0.2830	0.2842
CTE ($\alpha = 0.99$)	0.3757	0.3658	0.3964	0.3935	0.3970	0.4016
WT ($\gamma = 0.90$)	0.1872	0.1818	0.1920	0.1922	0.1935	0.1938
WT ($\gamma = 0.50$)	0.2340	0.2254	0.2426	0.2430	0.2444	0.2443
WT ($\gamma = 0.10$)	0.3356	0.3156	0.3574	0.3586	0.3614	0.3570
PH $(\iota = 0.10)$	0.0752	0.0736	0.0760	0.0760	0.0765	0.0767
PH ($\iota = 0.05$)	0.1361	0.1317	0.1401	0.1402	0.1413	0.1411
PH ($\iota = 0.01$)	0.4199	0.4076	0.4895	0.4908	0.5332	0.5345
LB $(\eta = 0.90)$	0.1549	0.1496	0.1575	0.1576	0.1587	0.1593
LB $(\eta = 0.50)$	0.2668	0.2500	0.2816	0.2826	0.2853	0.2822
LB $(\eta = 0.10)$	0.5885	0.5670	0.7190	0.7215	0.8148	0.8186
EWQRM ($\kappa = 1$)	0.0867	0.0852	0.0875	0.0875	0.0881	0.0884
EWQRM ($\kappa = 20$)	0.2469	0.2444	0.2517	0.2517	0.2542	0.2557
EWQRM ($\kappa = 100$)	0.3512	0.3564	0.3660	0.3664	0.3673	0.3714
PWRM $(\delta = 1)$	0.0672	0.0659	0.0678	0.0678	0.0683	0.0684
PWRM ($\delta = 20$)	0.2485	0.2460	0.2534	0.2534	0.2559	0.2574
PWRM ($\delta = 100$)	0.3515	0.3567	0.3664	0.3668	0.3676	0.3718
				1 D > 4 B		1 E 1

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option Yixing Zhao

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Description of risk measures

Moment-based density approximation

Numerical implementation

Conclusion

Figure 2: Variation of risk measures as a function of ρ_{13} with a given ρ_{12} and $\rho_{23} = \rho_{12}\rho_{13}$

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option

E

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Description of risk

Moment-based density approximation

Numerical implementation

Conclusion

Figure 3: Sensitivity of risk measures to various parameters

A two-decrement model for the valuation and risk measurement of a guaranteed annuity option

Section Outline

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

Conclusion

39/41

E

▶ < 문 > < E >

Conclusion

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

- This work contributes to the **development of an integrated modelling framework for GAO** pricing and capital requirement determination.
- Each of the three risk factors has an affine structure specification and their correlations with one another is fully described.
- We employed iteratively the change of probability measure technique to efficiently and accurately compute GAO prices.
- We further evaluated seven different risk measures for GAO through the empirical CDF and moment-based density approximation methods.

Conclusion (cont'd)

Introduction

Modelling framework

Derivation of GAO prices

Risk measurement of GAO

Conclusion

• Our numerical results show efficiency and accuracy of our proposed methods GAO's valuation and risk measurement.

• Our results suggest that lapse rate's stochastic behaviour must be captured accurately and taken into account when designing, pricing and monitoring insurance products.