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OVERVIEW
This report reviews the academic literature on risk aggregation 
and diversification as well as the regulatory approaches. We 
will point out the advantages and disadvantages of the different 
approaches with a focus on model risk issues.

We first discuss, in section 1, the basic fundamentals of mea-
suring aggregated risk. Specifically, we review the concept of a 
risk measure as a suitable way to measure the aggregate risk. We 
discuss desirable properties of risk measures and illustrate our 
discussion with the study of value-at-risk (VaR) and tail value-
at-risk (TVaR).

Section 2 explores the question of diversification benefits asso-
ciated with risk aggregation and the potential limitations of 
correlations as the only statistic to measure dependence. We go 
beyond correlations and explain that a full multivariate model 
is needed to obtain a correct description of the aggregate risk 
position.

We then explore the regulators approach to risk aggregation 
and diversification in section 3, and provide some observations 
on the implicit assumption made by international regulators and 
different approaches that can be taken.

We end our review by highlighting that model risk becomes a 
key issue in measuring risk aggregation and diversification. In 
section 4, we explore a framework that allows practical quan-
tification of model risk and which has been recently developed 
in Bernard and Vanduffel [2015a]1 (building further on ideas of 
Embrechts et al. [2013]2). Details are provided in appendices A 
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and B. Appendix C presents the definitions of the mathematical 
notations used throughout the research paper.

INTRODUCTION
The risk assessment of high-dimensional portfolios 
(X1, X2, . . . , Xd) is a core issue in risk management of finan-
cial institutions. In particular, this problem appears naturally 
for an insurance company. An insurer is typically exposed to 
different risk factors (e.g., non-life risk, longevity risk, credit 
risk, market risk, operational risk), has different business lines 
or has an exposure to several portfolios of clients. In this regard, 
one typically attempts to measure the risk of a random sum,  
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to a certain extent. For example, a sum S of dependent risks 
occurs when considering the aggregate claims amount of a non-
life insurance portfolio because the insured risks are subject to 
some common factors such as geography, climate or economic 
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longer be easily specified.

Standard approaches to estimating a multivariate distribution 
among dependent risks consist in using a multivariate Gaussian 
distribution or a multivariate Student t distribution, but there 
is ample evidence that these models are not always adequate. 
More precisely, while the multivariate Gaussian distribution can 
be suitable as a fit to a data set “on the whole”, it is usually a 
poor choice if one wants to use it to obtain accurate estimates 
of the probability of simultaneous extreme (tail) events, or, 
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[2015a]13 makes it possible to consider dependence information 
in a natural way and may lead to more narrow risk bounds. This 
framework is also supplemented with an algorithm allowing 
actuaries to deal with model risk in a very practical way, as we 
will show in full detail.  n

equivalently, if one wants to estimate the VaR of the aggregate 

portfolio 
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McNeil et al. [2010]4. The use of the multivariate Gaussian 
model is also based on the (wrong) intuition that correlations5

are enough to model dependence (Embrechts et al. [1999]6, 
Embrechts et al. [2002]7). This fallacy also underpins the 
variance-covariance standard approach that is used for capital 
aggregation in Basel III and Solvency II, and which also appears 
in many risk management frameworks in the industry. Further-
more, in practice, there are not enough observations that can be 
considered as tail events. In fact, there is always a level beyond 
which there is no observation. Therefore if one makes a choice 
for modelling tail dependence, it has to be somewhat arbitrary, 
at least not based on observed data.

There is recent literature on the development of flexible mul-
tivariate models that allow a much better fit to the data using, 
for example, pair-copula constructions and vines (see e.g., Aas 
et al. [2009]8 or Czado [2010]9 for an overview). While these 
models have theoretical and intuitive appeal, their successful use 
in practice requires a data set that is sufficiently rich. However, 
no model is perfect, and while such developments are clearly 
needed for an accurate assessment of portfolio risk, they are 
only useful to regulators and risk managers if they are able 
to significantly reduce the model risk that is inherent in risk 
assessments.

In this review, we provide a framework that allows practical 
quantification of model risk and which has been recently devel-
oped in Bernard and Vanduffel [2015a]10 (building further on 
ideas of Embrechts et al. [2013]11 and references herein). Tech-
nically, consider N observed vectors {(X1i , . . . , Xdi)}i=1, . . . , N and 
assume that a multivariate model has been fitted to this data 
set. However, one does not want to trust the fitted multivari-
ate model in areas of the support that do not contain enough 
data points (e.g., tail areas). The idea is thus to split 
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butions of the risky components are known but no dependence 
information is available. The approach of Bernard and Vanduffel 
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