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Abstract	  
	  
This	   talk	   considers	   the	   impact	   of	   sampling	   variation	   on	   the	   calibration	   of	  
stochastic	   mortality	   models.	   Random	   variation	   in	   deaths	   counts	   results	   in	  
parameter	  uncertainty	  in	  estimates	  of	  age,	  period	  and	  cohort	  effect	  in	  the	  model.	  
In	  turn	  this	  has	  an	  impact	  on	  time	  series	  parameter	  estimates.	  
	  
With	   small	   populations,	   sampling	   variation	   causes	   an	   upwards	   bias	   in	   the	  
estimated	   volatility	   of	   period	   effects	   using	   standard	   maximum	   likelihood	  
methods.	  We	  seek	  to	  counteract	  this	  problem	  of	  bias	  using	  Bayesian	  inference.	  	  
	  
We	  use	  England	  and	  Wales	  (EW)	  males	  as	  a	  benchmark	  and	  then	  scale	  this	  down	  
to	  simulate	  small	  populations.	  We	  will	  discuss	  to	  what	  extent	  Bayesian	  methods	  
reduce	  bias	  in	  the	  model	  volatility,	  using	  full	  EW	  population	  as	  a	  benchmark.	  
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Stochastic Model
We select stochastic model “M7” to reflect the work of Cairns et al. (2009), which 

suggests it fits the males from England and Wales well.

Recall the formula for M7:

𝐷 𝑡, 𝑥 |𝜃1 ∼ 𝑃𝑜𝑖(𝑚 𝜃1, 𝑡, 𝑥 𝐸(𝑡, 𝑥))

logit 𝑞 𝜃1, 𝑥, 𝑡 = 𝜅𝑡
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• 𝜅𝑡
1

is a period effect in year 𝑡 = 𝑡1, … , 𝑡𝑛𝑦 for each 𝑖 = 1, 2, 3.

• γ𝑐
4

is the cohort effect for the cohort born in year 𝑐 = 𝑡 − 𝑥 for 𝑡 = 𝑡1, … , 𝑡𝑛𝑦 and 𝑥 =

𝑥1, … , 𝑥𝑛𝑎.

• ҧ𝑥 is the mean of the age range we use for our analysis.

• ො𝜎𝑥
2 is the mean of 𝑥 − ҧ𝑥 2.
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Two-Stage Approach

Stage 

1. Find the estimates for period and cohort effects, መ𝜃1 by maximising the Poisson 

likelihood.

2. Fit time series model to these effect. 

Most pension schemes are less than 1% of national population. 

Two-stage approach leads to biased estimates of volatility for small populations.

• Large sampling variation affects  latent parameter estimation, with significant noise 

obscuring the true signal (Cairns, Blake, Dowd et al. 2011).

• Results in non-negligible bias to the parameter estimation of the projecting model, 

given the assumed true rates (Chen, Cairns and Kleinow 2015).

• Over fit the cohorts with only one observation (a problem with the two-stage 

approach: see Cairns et al. 2009)
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Bayesian Approach

Bayesian approach offers a way to avoid or reduce this bias by

• Combining Poisson and time series likelihoods

• Using knowledge of larger England and Wales dataset to choose more informative 

priors than one might normally choose.

We use England and Wales death rates as a benchmark to test how well the Bayesian 

approach with informative priors performs.
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Data

• Benchmark exposure 𝐸0 𝑡, 𝑥 and corresponding deaths count 𝐷0 𝑡, 𝑥 of the males 

in England and Wales (EW) in the HMD database, during year 1961 to 2011, aged 

50-89 last birthday.

• Simulate 𝐷𝑤(𝑡, 𝑥), where 𝑤 = 0.01 based on 

𝐷𝑤 𝑡, 𝑥 | መ𝜃0 ∼ Poi(𝑚 መ𝜃0, 𝑡, 𝑥 𝑤𝐸0(𝑡, 𝑥))

where 

• መ𝜃0: parameter estimates for benchmark 𝐷0 𝑡, 𝑥 , i.e. EW

• 𝑚 መ𝜃0, 𝑡, 𝑥 is the fitted death rates given መ𝜃0, that is መ𝜃0 is the true rates for 𝐷𝑤 𝑡, 𝑥 .

• Find the parameter estimates መ𝜃𝑤 for 𝐷𝑤 𝑡, 𝑥 .
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Notations

• 𝜽1, the vector of all the latent parameters

• 𝜽11 = 𝜅𝑡1
1
, 𝜅𝑡1

2
, 𝜅𝑡1

3
𝑇
, vector of period effects at year 𝑡1

• 𝜽12, vector of the rest of period effects

• 𝜽13 = γ𝑡1−𝑥𝑛𝑎
4

• 𝜽14, vector of cohort effect for the rest cohorts
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Prior for 𝜿 and 𝜸 𝟒

• 𝜽11 ∝ uniform distribution

• 𝜽12, multivariate random walk: 

𝜿𝒕 = 𝜿𝑡−1 + 𝝁 + 𝝐𝑡

where 

– 𝝁 = 𝜇1, 𝜇2, 𝜇3
T is the drift (hyper-parameter).

– 𝝐𝑡 ∼ 𝑀𝑉𝑁(𝟎, 𝑽𝝐), i.i.d three dimensional multivariate normal distribution 

independent of 𝑡.

• 𝜽14, AR(1) model: 

𝛾𝑐
4
= 𝛼γ𝛾𝑐−1

4
+ 𝜖𝑐, for 𝑐 > 𝑡1 − 𝑥𝑛𝑎,

where 𝜖𝑐 are i.i.d and 𝜖𝑐 ∼ 𝑁(0, 𝜎𝛾
2).

• 𝛾𝑐
4
|𝛾𝑐−1

4
∼ 𝑁(𝛼γ𝛾𝑐−1

4
, 𝜎𝛾

2)

• 𝛾𝑡1
4
∼ 𝑁(0,

𝜎𝛾
2

1−𝛼𝛾
2)



19 September 2016 8

Prior for Hyper-Parameters

• 𝑽𝜖 ∝ Inverse Wishart (𝜈, 𝚺)

– MCMC-Mean: Fix the mean of prior to 𝑽𝜖
𝐸𝑊

– MCMC-Mode: Fix the mode of prior to 𝑽𝜖
𝐸𝑊(sensitivity test)

• 𝝁 ∝ uniform 

• 𝛼𝛾 ∝ 1 − 𝛼𝛾
2 𝑔

for 𝛼 < 1

• 𝜎𝛾
2 ∼ Inverse Gamma (𝑎𝛾, 𝑏𝛾)
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𝑽𝝐 given MLE

መ𝜃𝑤 for w=0.01

መ𝜃0
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Credibility Interval for 𝜿 and 𝜸 𝟒
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CDF for 𝝁𝟏 with Sensitivity Test
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CDF for 𝑽𝝐(𝟏, 𝟏) with Sensitivity Test
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CDF for 𝝁𝟐 with Sensitivity Test
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CDF for 𝑽𝝐(𝟐, 𝟐) with Sensitivity Test
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CDF for 𝝁𝟑 with Sensitivity Test
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CDF for 𝑽𝝐(𝟑, 𝟑) with Sensitivity Test
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Conclusion
For small population

• The co-variance matrix estimated by MLE is significantly biased to the right of the 

assumed true value due to the Poisson model’s over fitting.

• We combined the two stages into one by adding time series likelihood for the latent 

parameters and gained the posterior distribution with the MCMC procedure.

• The Bayesian method provides an improved fit to the hyper parameter 𝑽𝜖.

• The low level information involved in short cohorts is balanced by the time series 

prior.

• The posterior distribution for small population is sensitive and fixing the mode of the 

prior for the co-variance matrix to the assumed true rates provides approximately 

unbiased fit to 𝑽𝜖
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Questions Comments




