

Article from

ARCH 2017.1 Proceedings

The optimal decumulation strategy during retirement with the purchase of deferred annuities

ANRAN CHEN

CASS BUSINESS SCHOOL, CITY UNIVERSITY LONDON

JULY 2016

Motivation

• Traditional DB pension scheme \rightarrow DC pension scheme

Low demand of annuities - "Annuity Puzzle"

- A decumulation strategy comprising
 - A deferred annuity purchased at retirement
 - Optimal consumptions before the commencement of the annuity

Previous Research – Deferred annuities

Major advantages of deferred annuities:

- It requires a smaller initial investment, which overcomes a potential psychological barrier to annuitisation
- It provides almost as much longevity insurance as an immediate annuity product
- It suffers much less actuarial unfairness
- It improves and simplifies the process of retirement wealth decumulation while retaining the chance to leave a bequest

Supporting literature:

Milevsky (2005); Gong and Webb (2010); Scott (2008); Sexauer and Siegel (2013).

Previous Research – Decumulation strategies

- A first year withdrawal of 4%, followed by inflation-adjusted withdrawals (Bengen, 1994)
- DCDB: a laddered Treasury Inflation Protected Securities (TIPS) for 20 years and a 20year deferred annuity (Sexauer et al., 2012)
- A annually recalculated virtual annuity (Waring and Siegel, 2015)

Objectives

- The Utility-maximisation decumulation strategy
 - The optimal fraction of wealth to be invested in a deferred annuity
 - The optimal consumption path that investors should follow
- The impact of following additions to the model: smooth consumption requirement, the state benefit, the target replacement ratio, the bequest motive.
- The optimal decumulation strategy for irrational retirees with:
 - Time-inconsistent preferences
 - Subjective mortality rates

Optimal decumulation strategies

Optimal decumulation strategies

A decumulation strategy comprising of

- (a) A deferred life annuity purchased at the point of retirement
- (b) Optimal consumptions before the annuity commences

$$V = \max_{C_{65}, C_{66}, \dots} \sum_{i=0}^{54} \delta(i) _{i} P_{65} u(C_{65+i})$$

Subject to
$$\sum_{i=0}^{d-1} C_{65+i} v^i + \sum_{i=d}^{54} C_{65+i} v^i {}_i P_{65}(1+L) = 1$$

where:
$$C_x$$
: consumption at age x , for $65 \le x \le 119$
 α : percentage of wealth to be invested in the deferred annuity
 r : deterministic risk free interest rate, $r = 3\%$
 v : one-period exponential discount rate, $v = 1/(1 + r)$
 $u(C_x)$: CRRA utilities, $u(C_x) = C_x^{1-\gamma}/(1-\gamma)$, $\gamma = 2$
 L : profit loading factor, $L = 10\%$

Optimal decumulation strategies – Fixed deferred annuity

M01: the available deferred annuity has a fixed deferred period *d*.

α	Deferred period					
	5	10	15	20	25	
Exponential discounting	67.62%	41.19%	21.60%	9.13%	2.83%	

The optimal percentage of wealth to be invested in the deferred annuities

Optimal decumulation strategies – Flexible deferred annuity

M02: the deferred period, *d*, is at the choice of investors.

α	Profit Loading					
	5%	10%	15%	20%	25%	
	Optimal deferred period					
	4	6	8	10	11	
Exponential discounting	73.2%	61.83%	51.54	42.25%	38.2%	

The optimal percentage of wealth to be invested in the deferred annuities

Model extensions

Optimal decumulation strategies – Smooth consumptions

$$V = \max_{c_{65}, c_{66}, \dots} \sum_{i=0}^{54} \delta(i) \, _{i}P_{65} \, u(c_{65+i}) - \kappa \sum_{i=0}^{53} (c_{65+i+1} - c_{65+i})^2$$

Subject to:

 $\sum_{i=0}^{d-1} C_{65+i} v^i + \sum_{i=d}^{54} C_{65+i} v^i {}_i P_{65}(1+L) = 1$

к	10 ²	10 ³	10^{4}	10^{5}	10 ⁶
α	21.58%	21.43%	21.06%	21.00%	21.25%
max C _i	6.8%	6.8%	6.7%	6.6%	6.4%
min C _i	5.7%	5.8%	6.1%	6.3%	6.4%
max-min	1.1%	1.0%	0.7%	0.3%	0.0%

The optimal percentage of wealth to be invested in a 15-year deferred annuity and a conclusion of consumption levels

Optimal decumulation strategies – State benefits

 $V = \max_{c_{65}, c_{66, \dots}} \sum_{i=0}^{54} \delta(i) \ _{i} P_{65} u(c_{65+i} + sb)$

Subject to: $\sum_{i=0}^{d-1} C_{65+i} v^i + \sum_{i=d}^{54} C_{65+i} v^i {}_i P_{65}(1+L) = 1$

sb	0.0036	0.0072	0.0361	0.0721	0.1442
α	21.60%	21.62%	21.76%	21.92%	22.25%

The optimal percentage of wealth to be invested In a 15-year deferred annuity

Optimal decumulation strategies – Target replacement ratio

$$V = \max_{c_{65}, c_{66}, \dots} \sum_{i=0}^{54} \delta(i) _{i} P_{65} u(c_{65+i}) - \kappa \sum_{i=0}^{54} (c_{65+i} - target)^{2}$$

Subject to:

 $\sum_{i=0}^{d-1} C_{65+i} v^i + \sum_{i=d}^{54} C_{65+i} v^i {}_i P_{65}(1+L) = 1$

α		Replacement Ratio					
		0.5	0.6	0.7	0.8	1	
		target					
		0.0361	0.0433	0.0505	0.0577	0.0721	
	0	21.60%	21.60%	21.60%	21.60%	21.60%	
	10^2	20.88%	21.05%	21.22%	21.40%	21.78%	
14	10^3	18.72%	19.38%	20.07%	20.79%	22.32%	
ĸ	10^4	16.43%	17.66%	18.92%	20.20%	22.81%	
	10^5	15.83%	17.24%	18.65%	20.07%	22.92%	
	10^6	15.75%	17.19%	18.62%	20.06%	22.93%	

The optimal percentage of wealth to be invested in a 15-year deferred annuity

Optimal decumulation strategies –Bequest motives

 $V = \max_{c_{65}, c_{66}, \dots} \sum_{i=0}^{54} \left\{ \delta(i) \ _{i} P_{65} u(C_{i}) + \frac{\delta(i+1)}{\delta(i+1)} \ _{i} P_{65} q_{65+i} \ nW_{i+1} \right\}$

Subject to: $\sum_{i=0}^{d-1} C_{65+i} v^i + (1+L) \sum_{i=d}^{54} C_{65+i} v^i {}_i P_{65} = 1$

n	10	30	50	70	100
α	21.56%	21.47%	21.38%	21.28%	21.14%

The optimal percentage of wealth to be invested in a 15-year deferred annuity

The decumulation strategy for retirees with time-inconsistent preferences

Hyperbolic discount model vs Exponential discount model

Optimal decumulation strategies – Fixed deferred annuity

M01: the available deferred annuity has a fixed deferred period *d*.

The optimal percentage of wealth to be invested in the deferred annuities

Optimal decumulation strategies – Flexible deferred annuity

M02: the deferred period, *d*, is at the choice of investors.

	Profit Loading					
α	5%	10%	15%	20%	25%	
	Optimal deferred period					
	4	6	8	10	11	
Exponential discounting	73.2%	61.83%	51.54	42.25%	38.2%	
Hyperbolic discounting	71%	60.41%	50.84%	42.14%	38.33%	

The optimal percentage of wealth to be invested in the deferred annuities

Conclusions

Strategies	Asset allocation
M01	6.9% in a 20-year deferred annuity
M02	56.95% in a 6-year deferred annuity
DCDB	93.12% in 20-year TIPS + 6.88% in a 20-year deferred annuity

	M01	M02	DCDB
Reduce longevity risk	*	*	*
Reduce liquidity risk	*		*
Reduce inflation risk			*
Achieve higher utility	*	*	

Conclusions

•A target replacement ratio is an influential factor on wealth allocation.

- •Smooth consumption requirement, state benefits and bequest motives do not show significant impacts on wealth allocation.
- •Retirees with time-inconsistent preferences tend to prefer inflation protected deferred annuities.

References

Bengen, W. P., 1994. Determining withdrawal rates using historical data. Journal of Financial Planning 7 (4), 64-73.

Gong, G., Webb, A., 2010. Evaluating the advanced life deferred annuity - an annuity people might actually buy. Insurance: Mathematics and Economics 46 (210-221).

Milevsky, M. A., 2005. Real longevity insurance with a deductible: Introduction to advanced-life delayed annuities (ALDA). North American Actuarial Journal 9 (109-122).

Scott, J. S., 2008. The longevity annuity: An annuity for everyone? Financial Analysts Journal 64 (1).

Sexauer, S. C., Peskin, M. W., Cassidy, D., 2012. Making retirement income last a lifetime. Financial Analysts Journal 68 (1), 74–84.

Waring, M. B., Siegel, L. B., 2015. The only spending rule article you will ever need. Financial Analysts Journal 71 (1), 91–107.