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Abstract.

Construction of many actuarial models is based on the knowledge of the probability

distribution of portfolio returns. Statistical description of financial data often assumes that

the returns are independent and identically distributed. This paper relaxes this assumption

and proposes a new approach based on nonparametric method of analysis. According to

the proposed methodology, calculation of returns is based on wavelet denoising of prices.

Under a heterscodastic regression model, returns are analyzed via estimation of the trend,

the volatility and the density of regression error. An appropriate ARMA model is selected

for detrended, deseasonalized and rescaled data and it is used for forecasting of returns.

Acturial applications involve evaluation of the dynamic value at risk (VaR) as well as the

dynamic distribution of returns. Analysis of real examples are presented.

1 Introduction

Construction of many actuarial models is based on the knowledge of the probability dis-

tribution of portfolio returns. Statistical description of financial data often assumes that

the returns are independent and identically distributed. See Kosta and Stepanova (2015),

Rapach and Zhou (2013), and Tan and Chu (2012). However, empirical finance has already

shown that the asset return series are subject to data dependence as well as the distribution

of returns tend to have heavy tails. See Campbell, Lo and MacKinlay(1997) and Chen and

Tang(2005). This paper relaxes this assumption and proposes a new approach based on

nonparametric method of analysis.

1



Conventionally, asset returns are assumed to be identically distributed over time. The

parametric distribution assumptions for returns include normal distribution, lognormal dis-

tribution and non-Gaussian stable distributions. The disadvantage of normal assumption is

that the simple return has lower bound −1, but there is no lower bound in the normal distri-

bution. The Lognormal distribution assumption solves this issue; however, it cannot capture

the characteristics of excess kurtosis and tail behavior in returns. Studies also attempted to

capture this excess kurtosis by modeling the distribution of continuously compounded re-

turns as a member of the stable distribution family. The issue is that the non-Gaussian stable

distribution has infinite moments. The empirical estimates of variance and kurtosis diverge

as the sample size increases. Besides the three conventional distributions, other paremetric

distribution assumptions of asset returns include the Student t, the skewed Student t, the

generalized t, and more sophisticated, autoregressive conditional heteroskedastic (ARCH) or

generalized ARCH (GARCH) models. See Campbell, Lo and MacKinlay(1997) and Tan and

Chu (2012).

There are also model-free nonparametric attempts in the distribution estimation of finan-

cial data. See Kosta and Stepanova (2015). Nonparametric estimation of the distribution

of asset returns has two advantages: (i) being free of distributional model assumptions on

data, and meanwhile being able to capture tail behavior automatically; (ii) requiring milder

assumptions on the dynamics of the asset return time series, which means being free of

identical distribution or stationarity assumption on asset returns.

This paper is motivated by these advances in nonparametric approaches. We propose a

novel nonparametric estimetor for the distribution of asset returns based on the estimation

of regression error density, with heteroscedastic regression model and nonparametric series

curve estimation. The approach can be applied to dependent and nonstationary financial

data and it captures the dynamics in the distribution of portfolio returns over time. To

do so, we first propose an aggregated wavelet estimator for the stock price series, based on

which the returns are computed. By doing this procedure, we reduce the noise in returns
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which is introduced by the sizable unpredictable component in the prices. We then consider

a nonparametric heteroscedastic regression model for the returns. In this regression model,

time is the predictor and asset return is the response. The regression function can be

considered as a trend (plus possibly a seasonal component) in return over time and the

noise scale function represents dynamics of the volatility over time. We propose an optimal

regression error density estimation based on the plugged-in residuals and also prove that we

can estimate the density of errors with the rate of the mean integrated squared error (MISE)

convergence known for the oracle that has a direct assess to the errors. Therefore, the

dynamic density estimation of return is obtained by integrating the estimation of regression

function, scale function and density of errors.

Calculating VaR is one of the most popular applications of the distribution of asset

return. VaR is the standard approach to quantifying the exprosure to market risk of a

financial asset, which is of great importance for risk management. It was made popular in

the early nineties by U.S. investment bank, J.P. Morgan and has since been implemented

worldwide by the Basel Committee on Banking Supervision. See Kosta and Stepanova (2015)

and Taylor(2008). It measures the expected loss of a portfolio over a pre-defined holding

period a given probability. Typically, the VaR is computed at short time horizons of one

hour, two hours, one day, or a few days, while the loss probability can range from 0.001 to

0.1. In this paper, we are interested in daily return. Thus, we pre-define the time horizon as

one day. In Section 6, we will show two examples of VaR at probability p = 0.1. Formally,

V aRt(p) is the p-th quantile of the distribution of portfolio returns over a given time horizon

h that satisfies the following expression:

P (R̂t ≤ V aRt(p)) = p

where R̂t is the asset return between time t − h and t. Since we assume the daily returns

are not necessrily identically distributed. Thus, the time-varying VaR of our interest has the

following expression

P (R̂t ≤ V aRt(p)|T = t) = p,
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where T is a random variable representing time. In this paper, time-varying VaR is calculated

using the nonparametric historical simulation method, the main strengths of which are its

simplicity and that it is free of distributional assumption.

The paper is organized as follows. Section 2 presents the model of asset return as well

as the model of asset price based on which return is calculated. Section 3 gives a brief

overview of Wavelet denoising and block thresholding and demonstrates how to aggregate

estimators. The aggregated Wavelet estimator based on SureBlock of Cai and Zhow (2009)

and Universal of Efromovich (1999) is presented in Section 4 along with its minimax property.

Section 5 presents the density estimator of regression error based on data-driven blockwise-

shrinkage orthogonal series density estimator. In Section 6, we use the proposed method to

estimate the dynamic distribution of two stocks, GOOG (Google) and XOM (EXXOM), and

its application in asset return forecasting and time-varying Value at Risk (VaR) calculation.

Section 7 concludes the paper with a discussion of the results.

2 Methodology and Models

Stock prices inherently contain a sizable unpredictable component, which would cause large

deviation in the calculation of stock returns. See Rapach (2013). In particular, suppose

P̃t = Pt + νtεt, where P̃t is the observed stock price at time t, Pt is the underlying price, νt is

the volatility (standard deviation) of price and εt is a random variable with zero mean and

unit variance. According to the traditional definition of return,

Rt :=
P̃t − P̃t−1
P̃t−1

=
(Pt − Pt−1) + (νtεt − νt−1εt−1)

P̃t−1
∼ νtεt − νt−1εt−1

P̃t−1
, (2.1)

if σt+1 and σt are relatively large. In this case, the underlying stock return will be merely

explained by this calculation.

In order to overcome this issue, we propose to calculate the returns based on denoised

prices, obtained by wavelet analysis, instead of direct observations. Wavelets is a powerful

mathematical tool for approximation of spatially inhomogeneous curves. Section 3 gives us
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a brief overview of wavelet regression. In order to achieve even better approximation, we

propose a new estimator which aggregates two known wavelet estimators: SureBlock of Cai

and Zhow (2009) and Universal of Efromovich (1999). Section 4 presents the definition of

the aggregated estimator and proves its minimax rate of MISE convergence.

The aggregated wavelet denoised price estimator, denoted by P̂ (t), is defined in (3.2).

P̂ (t) is a good approximation of the underlying stock price, which largely reduces the affect

caused by price volatility in the traditional calculation of return. Return based on denoised

prices is defined as following

R̂t =
P̂t − P̂t−h
P̂t−h

, (2.2)

where h is a predefined time horizon of interest and R̂t is the return between time t− h and

t. In this paper, we are interested in the daily return so that the time horizon is equal to

one day.

We are interested in figuring out the dynamics in the distribution of the asset return. We

propose a nonparametric method to estimate the time-varying probability density of return.

The procedure is described as following.

Returns are analyzed under a nonparametric regression model

R̂t := R(t) + σ(t)εt (2.3)

where t is the predictor, R(t) is the regression function, which is the underlying return, σ(t)

is the volatility and εt’s are random components that may be dependent. Nonparametric

trigonometric series approaches are applied in the estimation of the two functions, R(t) and

σ(t) with the Universal estimator

R̂(t) :=
Ĵ∑
j=0

ŵj θ̂jϕj(t) +
cJMJn∑
j=Ĵ+1

I{θ̂2j>cT d̂ ln(n)/n}
θ̂jϕj(t).

where ϕj(x) forms a cosine basis {ϕ0(x) = 1, ϕj(x) =
√

2cos(πjx), j = 1, 2, ...}, θ̂j is the corre-

sponding Fourier coefficients, ŵj := (1−n−1d̃/θ̂2j )+ is the smoothing coefficients, Ĵ = argmin0≤J≤Jn∑J
j=0(2d̃n

−1 − θ̂2j ) is cutoff, and d̃ is the coefficient of difficulty.
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In this regression model for the returns, estimation of the probability density of the regression

error is another problem of interest, the construction of which is presented in Section 5. The

theorem on oracle inequality is also presented in Section 5. Finally, the time-varying probability

density estimation of return is given by

p̂R(x, t) =
1

σ̂(t)
p̂ε

(
x− R̂(t)

σ̂(t)

)
, (2.4)

where the function argument x represents the value of return, the argument t represents the time,

and p̂ε(x) is the estimator of the probability density of ε in (2.3).

Furthermore, we applied the time-varying distribution of returns in forecasting and risk assess-

ment. An appropriate ARMA model is selected for forecasting of return. Also, the time-varying

VaR is evaluated using Acceptance-Rejection Monte-Carlo simulation approach. Analysis of real

examples are presented in Section 6.

3 Wavelet Regression

Consider a time series

Y (tl) = f(tl) + εl, tl = vl, l = 1, 2, . . . , n. (3.1)

Here v is the period of collecting data and ε is additive zero mean noise. Note that we may refer

to the time series as equidistant regression with f(t) = E(Y (t)) and ε being regression error, and

hence we can consider f(t) as a trend (plus possibly a seasonal component) or a s a regression

function. Because no information about shape of an underlying signal f is available, it is natural to

use an adaptive nonparametric curve estimation which is based solely on data and requires neither

information about shape/smoothness of f nor a manual adjustment of estimators. A variety of

adaptive nonparametric procedures is described in the book Efromovich (1999).

For the considered setting, due to large number of observations and inhomogeneity of estimated

signal, it is natural to use a wavelet denoising. Wavelet denoising is a projection estimation based

on using a wavelet basis. To briefly describe a procedure, let us for simplicity assume that n is

dyadic. Then an estimated signal f can be approximated by a wavelet series with n terms, f ′(t) =∑n/2J

k=0 ξJkφJk(t) +
∑J
j=1

∑n/2j

k=0 θjkψjk(t). Here J is the number of multiresolution components (so-
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called scales) used. Functions φjk = 2−j/2φ(2−jt− k) and ψjk = 2−j/2ψ(2−jt− k) are generated by

dilation and translation of a scaling function φ (also referred to as father wavelet) and a wavelet

function ψ (also referred to as mother wavelet). A scale function is integrated to one and a wavelet

function is integrated to zero. Further, ξjk and θjk are called wavelet coefficients. There are many

wavelet bases to choose from; see Vidakovic (1999).

If observations Y1 := Y (t1), . . . , Yn := Y (tn) are given then any wavelet software allows us to

calculate empirical wavelet coefficients {s̃jk, d̃jk} which are unbiased estimates of underlying wavelet

coefficients. Next step is to estimate underlying wavelet coefficients by an estimator {ŝjk, d̂jk}.

Many estimation procedures have been suggested in the literature to solve the formulated

nonparametric regression problem including kernel, spline and orthogonal series estimators; see a

discussion in the books Efromovich (1999) and Izenman (2008). As a result, it is a natural idea to

combine known good estimators together in a suitable way to get even a better estimator. A new

estimator is called aggregate and its construction is called aggregation.

A traditional aggregation procedure, studied in the literature, is based on a given number K

of estimates {f̃1(t), f̃2(t), . . . , f̃K(t)} and then an aggregate is defined as f̃(t) :=
∑K
i=1 λif̃i(t). The

well accepted theoretical approach is to assume that the estimates are known and then the data is

used to find the aggregation weights λj . For applications ad hoc procedures of splitting data into

different subsets for calculating the nonparametric estimates and aggregation weights are proposed.

A discussion of the aggregation methodology and recent trends can be found in Bunea, Tsybakov

and Wegkamp (2007), Samarov and Tsybakov (2007), and Izenman (2008).

Wavelet-based methods have shown to be well suited for solving the regression problem (1) and

have demonstrated a well documented success. Traditionally wavelet nonparametric estimators of

the regression function are readily obtained by applying relatively simple shrinkage rules on the

wavelet-transformed data — so-called empirical wavelet coefficients. Standard wavelet estimators,

supported by rapidly growing wavelet-statistical software, threshold empirical coefficients term by

term based on their individual magnitude and the noise level. Both frequentist and Bayesian

approaches are used. A thorough discussion and illustration of these methods can be found in the

book Nason (2008).

Although classical wavelet estimators achieve good adaptivity to the spatial inhomogeneity
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of regression functions, in some cases their performance may be improved by processing wavelet

coefficients grouped into blocks. Block thresholding may increase the estimation precision and

visual appeal via combining together information about neighboring empirical wavelet coefficients.

The idea of using blocks for nonparametric adaptation goes back to Efromovich (1985) and it

has been intensively studied in the wavelet literature; see a discussion in Donoho and Johnstone

(1995), Cai (1999), Efromovich (1999), De Canditis and Vidakovic (2004), Chicken (2005) and

Zhang (2005).

The degree of adaptivity of any block thresholding procedure crucially depends on the choice of

block sizes and threshold levels for different multiresolution scales. Cai and Zhou (2009) proposed

an elegant data-driven approach to empirically select both the block size and threshold at individual

resolution levels. Their procedure, called SureBlock, chooses the block size and threshold level by

minimizing Stein’s Unbiased Risk Estimate (SURE). Intensive numerical simulations, presented by

the authors, indicate that SureBlock, due to its data-driven choice of block sizes and threshold

levels, has advantages over the above-mentioned conventional wavelet thresholding estimators in

terms of the smaller mean integrated squared error (MISE).

4 Aggregated Wavelet Estimator

The proposed estimator aggregates two known wavelet estimators: SureBlock of Cai and Zhow

(2009) and Universal of Efromovich (1999).

We are considering the regression model (3.1). It is assumed that an (inhomogeneous) periodized

wavelet basis on [0, 1] is given, {φj0k(x) = 2j0/2φ(2j0x − k), k = 0, 1, . . . , 2j0 − 1} and {ψjk(x) =

2j/2ψ(2jx− k), k = 0, 1, . . . , 2j − 1, j ≥ j0}. Here φ and ψ are the scaling function (also called as

the father wavelet) and the (mother) wavelet function, respectively. A wavelet ψ is called r-regular

if it has r vanishing moments and r continuous derivatives.

If an estimated regression function is square integrable on [0, 1], then it has a formal orthogonal

expansion

f(t) =
2j0∑
k=1

ξj0,kφj0,k(t) +
∑
j≥j0

2j∑
k=1

θj,kψj,k(t) (4.1)

where wavelet coefficients are ξj0,k =
∫ 1
0 f(t)φj0,k(t)dt and θj,k =

∫ 1
0 f(t)ψj,k(t)dt.
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Suppose that the sample size n is dyadic, that is n =: 2J for some integer J > 0. Then the

standard discrete wavelet transform, supported by any statistical software, allows one to calculate

n empirical wavelet coefficients {ξ̃j0,k, k = 1, . . . , 2j0 , yj,k, k = 1, . . . , 2j , j = j0, . . . , J − 1}. These

empirical wavelet coefficients are statistics used by wavelet estimators.

The proposed aggregated wavelet estimator (Aggregate) is

f̂A(t) := f̂SB,Ĵ(t) + f̂U,Ĵ(t). (4.2)

Here

f̂SB,s :=
2j0∑
k=1

ξ̃j0,kφj0,k(t) +
s∑

j=j0

2j∑
k=1

θ̂j,kψj,k(t) (4.3)

is the lower-frequency part of the SureBlock estimator with θ̂j,k defined in the Appendix, and

f̂U,s(t) :=
J−1∑
j=s+1

22s−j∑
k=1

yj,(k)I(|y(j,(k))| > (2j−s ∧ (2 log(n))1/2)σn−1/2)ψj,(k)(t) (4.4)

is the high-frequency part of the Universal estimator. Further, in (4.4) we use notation I(·) for the

indicator function, yj,(k) are ordered (descending) empirical wavelet coefficients on the jth scale

and ψj,(k)(t) are corresponding wavelet functions, and

Ĵ := argminj0≤s<J{2(2s+1 +Ns)σ
2n−1 −

s∑
j=j0

2j∑
k=1

y2j,k −
∫ 1

0
f̂2U,s(t)dt}, (4.5)

where Ns is the number of nonzero wavelet coefficients of f̂U,s(t).

Note that Ĵ is a data-driven procedure of finding a right boundary scale for aggregation of

the two known estimators. As a result, while classical aggregation procedures combine known

estimators in time domain, Aggregate combines known estimators in the wavelet resolution domain.

Further, note that no data-splitting is involved.

The following theoretical result shows that Aggregate is minimax over a wide class of Besov

spaces Bα
p,q(Q) studied in Cai and Zhou (2009),

Bα
p,q(Q) = {f : (

2j0∑
k=1

|ξj0,k|p)1/p + (
∑
j≥j0

(2j(α+1/2−1/p)(
2j∑
k=1

|θj,k|p)1/p)q)1/q ≤ Q} (4.6)

where

1 ≤ p, q ≤ ∞, r ≥ α > (4p−1 − 2)+ + 1/2,
2α2 − 1/6

1 + 2α
>

1

p
, Q <∞. (4.7)
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Theorem 4.1. Consider a Besov space (4.6) of regression functions with parameters satisfy-

ing (4.7), and suppose that regression errors are zero mean, unit variance, k-dependent and have

uniformly bounded eight moment. Then the minimax rate of the mean integrated squared error

(MISE) convergence is n−2α/(2α+1), and the MISE of the aggregated wavelet estimator (4.2) attains

this rate, namely

sup
f∈Bαp,q(Q)

E{
∫ 1

0
(f̂A(t)− f(t))2dt} ≤ Cn−2α/(2α+1, C <∞. (4.8)

This result is a theoretical (asymptotic) justification of the proposed aggregated wavelet esti-

mator. Typical UF fMRI signals have the number of observations in thousands, so this asymptotic

justification is feasible. It is possible to extend this result to some classical mixing time series.

Proof of Theorem 4.1. The minimax rate n−2α/(2α+1) for the considered Besov spaces

is known; see Donoho and Johnstone (1995). Let fL,Ĵ denote the lower frequency part of the

regression function (4.1) corresponding to the resolution scales of the estimate (4.3). Further, let

fH,Ĵ(t) := f(t)−fL,Ĵ(t) be the remaining high-frequency part of the estimated regression function.

Using Parseval’s identity and a bit of algebra we establish that

sup
f∈Bαp,q(Q)

E{
∫ 1

0
(f̂A(t)− f(t))2dt} ≤ sup

f∈Bαp,q(Q)
E{
∫ 1

0
(f̂SB,Ĵ(t)− fL,Ĵ(t))2dt}

+ sup
f∈Bαp,q(Q)

E{
∫ 1

0
(f̂U,Ĵ(t)− fH,Ĵ(t))2dt} =: F1 + F2. (4.9)

The term F1 is bounded from above by Cn−2α/(2α+1) according to Theorem 5 in Cai and Zhou

(2009).

Estimation of the second term is more involved, but it can be converted into the setting of

Efromovich (1999) where instead of the regression model (3.1) a filtering from white noise model is

considered. Indeed, with the help of Lemma 4 in Cai and Zhou (2009), assumption (4.7), and a bit

of algebra it can be shown that the MISEs of these two settings (filtering and regression) are within

on(1)n−2α/(2α+1). Note that the latter is smaller in order than the minimax rate of convergence for

the Besov space.

Further, assumption (4.7) together with Efromovich (1999) allows us to choose specific coeffi-

cients aj = bj = 1 used in that paper in the definition of Universal estimator. Further, Donoho
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and Johnstone (1994) proved that there is no need to use threshold levels larger that [2 log(n)]1/2.

Further, there is one extra complication: assumption (4.7) about parameters of the Sobolev spaces

is different from the assumption used in Efromovich (1999). Nonetheless, it is straightforward to

check, using the aforementioned remarks, that assumption (4.7) is sufficient for establishing the

wished F2 ≤ Cn−2α/(2α+1). Using obtained inequalities in (4.9) proves Theorem 4.1.

Now let us explain how statistic θ̂j,k, used in (4.3), is calculated. For each scale j choose an

integer number mj := 2j/Lj of consecutive blocks of wavelet coefficients. Each block includes the

same number Lj of wavelet coefficients, and Lj is often referred to as the block’s length. Using

empirical wavelet coefficients from the jth scale, calculate for each b ∈ {1, 2, . . . ,mj} statistics

Ŝ2
j,b :=

∑bLj
k=(b−1)Lj+1 y

2
j,k, and then also calculate the statistic

SURE(λj , Lj) :=

mj∑
b=1

[
Lj + n−1σ2[λ2j − 2λj(Lj − 2)]S−2b I(S2

b > n−1σ2λj)

+(nσ−2S2
b − 2Lj)I(S2

b ≤ σ2n−1λj)
]
. (4.10)

Using these statistics, introduce the eventAj := {
∑2j

k=1(y
2
j,knσ

−2−1) > j3/22j/2} and then calculate

(λ∗j , L
∗
j ) :=

 argmin(Lj−2∨0)≤λj≤2jLj log(2), 1≤Lj≤2j/2SURE(λj , Lj) if Aj

((1− j2 log(2)σ2n−1/y2j,k)+, 1) otherwise.

Finally, choose the block-length L∗J for jth scale and then for k belonging to a bth block calculate

the shrinkage estimate

θ̂j,k := (1− λ∗jσ2n−1/Ŝ2
b )+yj,k. (4.11)

The SureBlock estimator is defined.

5 Estimation of the Regressioni Error Density

We begin with describing a considered regression model, then describe Pinsker oracle, define

plugged–in residuals, present a proposition about optimal error density estimation based on the

residuals, and finish with examples.

We are considering a general heteroscedastic regression model

Yl = m(Xl) + σ(Xl)ξl, l = 1, . . . , n (5.1)
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where observations are n iid realizations (X1, Y1), . . . , (Xn, Yn) from the pair (X,Y ) of the predictor

and the response. In general Xl are either deterministic (this is a simpler case) or the predictor X

is random and it is distributed according to an unknown design density p(x) supported on [0, 1].

Neither the regression function m(x) nor the scale function σ(x) nor the design density p(x) is

assumed to be known. The regression error ξ satisfies E{ξ|X} = 0 and Var(ξ|X) = 1, its marginal

distribution is stationary, and the error does not take values beyond a known finite interval [a, a+b],

and it may depend on the predictor according to an unknown conditional density b−1ψ([ν−a]/b|x),

ν ∈ [a, a+ b].

The problem of interest is to estimate the (in general marginal) probability density of the

regression error ξ and to show that, under a mild assumption, appropriately calculated residuals

can proxy underlying regression errors unavailable to the statistician. Without any loss of generality,

from now on we shall consider a transformed error ε := (ξ − a)/b as the object of interest, will

refer to ε as the error, and will be interested in the estimation of its (marginal) density f(u) =∫ 1
0 ψ(u|x)p(x)dx, u ∈ [0, 1]. (Let us note that due to the zero mean of ξ, we cannot assume that it

is supported on [0, 1].)

Now consider an oracle. The statistician needs to estimate the error density f based solely on

n pairs of observations (Xl, Yl), l = 1, . . . , n. If we look one more time at (5.1), then it becomes

clear that the problem is indirect and it involves nuisance functions. In such a complicated indirect

setting, it is reasonable to employ a popular in the nonparametric literature oracle approach where

an estimator is compared with an oracle (guru, pseudo–estimator) that knows underlying regression

errors. Note that formally the latter means that an oracle knows the regression and scale functions.

Then the oracle becomes a natural benchmark for any data-driven estimator of the error density.

Let us define an oracle. Assume that Zn1 := (Z1, . . . , Zn) is the vector of n observations dis-

tributed as the vector ε1, . . . , εn. Note that the density of Z is f(z) supported on [0, 1]. Then

the oracle is a data-driven (adaptive) blockwise–shrinkage orthogonal series density estimate de-

fined as follows. Consider a classical cosine basis {1, ϕj(z) := 21/2 cos(πjz), j = 1, 2, . . .} on [0, 1];

this is the place where the unit support becomes handy. Introduce an increasing to infinity se-

quence of positive integers 1 = q1 < q2 < . . . which divides frequencies of the basis into blocks

Bk := {qk, qk + 1, . . . , qk+1 − 1} having lengths Lk := qk+1 − qk, k = 1, 2, . . . Also a sequence
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of corresponding positive and finite thresholds tk is introduced. To be specific, set Lk = k2 and

tk = ln−2(2 + k). Then Pinsker oracle is

f̂P (z, Zn1 ) := 1 +
K∑
k=1

µ̄k
∑
j∈Bk

θ̄jϕj(z), z ∈ [0, 1] (5.2)

where K is a minimal integer such that
∑K
k=1 Lk ≥ n1/5bn, bn := 4+ln ln(n+20), {θ̄j} are empirical

Fourier coefficients (estimates of Fourier coefficients θj :=
∫ 1
0 f(z)ϕj(z)dz)

θ̄j := n−1
n∑
l=1

ϕj(Zl), (5.3)

and the shrinkage coefficients are

µ̄k :=
L−1k

∑
j∈Bk θ̄

2
j − n−1

L−1k
∑
j∈Bk θ̄

2
j

I
(
L−1k

∑
j∈Bk

θ̄2j > (1 + tk)n
−1
)
. (5.4)

This oracle, as a data-driven (adaptive) estimator based on n direct observations Zn1 , under

mild mixing assumptions is minimax for Sobolev and analytic densities, see Efromovich (1999).

There are two ways to explain why the oracle has such nice properties. The former is to note

that (5.4) mimics a familiar blockwise Wiener filter which employs optimal shrinkage coefficients

µ∗k := Θk/(Θk + n−1), Θk := L−1k
∑
j∈Bk θ

2
j ; because Wiener filter is based on Fourier coefficients

of the estimated (and unknown to the statistician) density of errors, it is the “ultimate” oracle.

The latter is to realize that if in (5.4) we replace the used hard thresholding by a soft thresholding,

then (5.2) is transformed into a classical Stein shrinkage procedure. This point of view was first

expressed in Donoho and Johnstone (1995), and the discussion of Stein shrinkage in nonparametric

curve estimation can be found, for instance, in Efromovich (1999).

If we set Zn1 = εn1 , then (5.2) can be referred to as the oracle for the considered error den-

sity estimation problem. Then the oracle, which knows “true” underlying regression errors, be-

comes a natural benchmark for any data-driven error density estimator based on observations

(X1, Y1), . . . , (Xn, Yn).

We need one assumption about the regression model and another about smoothness of the

conditional density ψ(u|x) which together with the design density p(x) defines the density of interest

f(u) =
∫ 1
0 ψ(u|x)p(x)dx, u ∈ [0, 1].
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Assumption A. Model (5.1) is considered where the regression error ξ may depend on the

predictor X, E{ξ|X} = 0, Var(ξ|X) = 1, the errors are k-dependent and P (ξ ∈ [a, a + b]) = 1

where a < b are two given real numbers. Pairs of observations (X1, Y1), . . . , (Xn, Yn) are iid. The

regression function m(x), the design density p(x) and the scale function σ(x) are differentiable

and their derivatives are bounded and integrable on [0, 1]. Also, minx∈[0,1] min(σ(x), p(x)) > 0 and∫ 1
0 p(x)dx = 1.

Assumption B. The conditional density ψ(u|x) is such that ∂
∂x

∂2

∂u2
ψ(u|x) exists, is bounded

and integrable on [0, 1]2, and ψ(u|x) = 0 for u 6∈ (0, 1), x ∈ [0, 1].

Let us explain how to find residuals that can proxy underlying regression errors. Recall notation

bn = 4 + ln ln(n + 20) and define several more sequences in n: n2 := n − 3n1; n1 is the smallest

integer larger than n/bn; S := Sn is the smallest integer larger than n1/3; o(1)→ 0 as n→∞. In

what follows we always consider sufficiently large n such that min(n1, n2) > 4, and integrals are

taken over [0, 1].

Now we can define the procedure. The first n1 observations are used to estimate the design

density p(x), the next n1 observations are used to estimate the regression function m(x), the next

n1 observations are used to estimate the scale function σ(x), and the last n2 observations are used

to estimate the error density of interest f(u). Note that n2 ≥ [1 − 3(b−1n + n−1)]n and thus using

either n2 or n observations implies the same MISE convergence. The three nuisance functions are

estimated using a truncated cosine series estimator. The design density estimator is

p̂(x) = max
(
b−1n , n−11

S∑
s=0

n1∑
l=1

ϕs(Xl)ϕs(x)
)
. (5.5)

For the case of smooth regression functions, the regression estimator is

m̂(x) =
S∑
s=0

κ̂sϕs(x), (5.6)

where

κ̂s = n−11

2n1∑
l=n1+1

Ylp̂
−1(Xl)ϕs(Xl). (5.7)

Otherwise the above-defined wavelet regression estimate may be used The scale estimator is

σ̂(x) = [min(max(σ̃2(x), b−2n ), b2n)]1/2, (5.8)
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where σ̃2(x) is a regression estimator defined identically to (5.7)–(5.8) only with pairs

{(Xl, Yl), l = n1 + 1, . . . , 2n1} being replaced by {(Xl, [Yl − m̂(Xl)]
2), l = 2n1 + 1, . . . , 3n1}.

Then transformed onto [0,1] residuals are defined as

ε̂l :=
Yl − m̂(Xl)

bσ̂(Xl)
− a

b
, l = n− n2 + 1, . . . , n. (5.9)

Denote by Ẑ a vector (ε̂n−n2+1, . . . , ε̂n) of residuals and by Z a vector of “true” errors (ε1, . . . , εn);

recall that the errors are known to the oracle. It is possible to show that, under the made assump-

tion, the MISE of plugged–in Pinsker oracle f̂P (u, Ẑ) asymptotically matches the MISE of Pinsker

oracle f̂P (u,Z).

Theorem 5.1. Suppose that Assumptions A and B hold. Then, for all sufficiently large samples

such that min(n1, n2) > 4, there exists a finite constant C such that the MISE of plugged-in oracle

f̂P (u, Ẑ) satisfies the following oracle inequality:

E

∫
(f̂P (u, Ẑ)− f(u))2du ≤ CE

∫
(f̂P (u,Z)− f(u))2du. (5.10)

The conclusion is that we can estimate the density of errors with the rate of the MISE conver-

gence known for the oracle that has a direct access to the errors.

6 Results and Applications

We apply our method on several real stocks and we present the results in this section.

In Figure 1, we use the stock ‘GOOG’ as an example. The daily adjusted close prices of ‘GOOG’

from 2016-05-06 to 2016-07-07 are obtained and denoised using the aggregated wavelet estimator

proposed in Section 4, presented in the bottom subfigure, where is the blue curve represents the

observed prices and the red curve represents the wavelet estimation. We can see that the observed

price curve is spatially inhomogeneous, while the wavelet estimation curve is a good approximation

of the observation but much smoother. The top subfigure presents the daily returns based on

the classical definition (2.1). The middle subfigure presents the daily returns calculated using the

denoised prices (2.2). If we pay attention to the y-axis, we see that the volatility in the return is

almost reduced to half after using the proposed calculation method.
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We then analyzed the return under the nonparametric regression model (2.3) and present the

classical decomposition procedure in Figure 2.

While performing the decomposition procedure on the returns, we notice an interesting phe-

nomenon which can be illustrated by Figure 3. The top subfigure in Figure 3 presents the observed

daily prices, denoised prices. The middle subfigure presents the daily returns based on the classical

definition (2.1). The bottom subfigure presents the estimator of trend of return, which is obtained

in the decompostition procedure shown in Figure 2. With the assistance of the three vertical lines

in Figure 3, we conclude that when the trend of return is positive, the stock price tends to increase;

and when the trend of return is negative, the stock price tends to go down. This conclusion is very

intuitive but neither trivial or straightforward, because we can hardly gain critical information

about stock price by just glancing the dynamics in returns in the middle subfigure. The proposed

estimator of the trend of return captures the characteristic of the underlying dynamics in the return

and thus makes the relationship between price and return visualizable.

ARMA process is a good tool to model series of dependent random variable. An appropriate

ARMA model is selected for the detrended, deseasonalized and rescaled returns of stock ‘GOOG’

from 2015-05-05 to 2016-07-06 using R package ‘forecast’, and we make a forecasting of 15 trading

days’ returns based on the selected ARMA model. Figure 4 presents the results of forecasting and

compares that with the real data. Roughly speaking, both the point forecast and 95% prediction

interval give a good approximation of future returns, except the first two days and the last two days

during the 15 trading days’ time horizon. We apply the same forecasting procedure on another

stock ‘XOM’ and its result is shown in Figure 5. Again, we see the ARMA model produce a good

forecasting on returns except last few days in this 15 trading days’ time horizon.

Figure 6 presents the estimator of the time-varying probability density function for stock ’XOM’,

which is obtained based on the historical daily prices from 2012-07-03 to 2016-07-27. The x-axis

corresponds to the value of return, the y-axis corresponds to the time t and z-axis corresponds to

the value of the time-varying probability density function. With the assistance of the 3-D figure,

we can see the estimator captures the dynamics in the distribution of return over time.

Figure 7 and Figure 8 present two example of the time-varying VaR at the significance level

p=10%, which is obtained from the dynamic probability density function estimation using historical
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simulation method. The time-varying VaR curve for the two examples, ’XOM’ and ’GOOG’, have

quite different format. Investment in ’XOM’ turned out to be most risky around the end of the

year 2015, during which the ’XOM’ investors could lose about 1.4% daily with probability 10%.

While investment in ’GOOG’ was becoming more and more risky from the end of 2012 to the end

of 2014, and after that the risk turned out to be more stable. During the whole year 2015 and the

first half year of 2016, the ’GOOG’ investors could lose about 1.95% daily with probability 10%.

7 Conclusion

The paper introduces a nonparametric method of the time-varying probability density estimation on

asset returns. The approach relaxes the conventional i.i.d. assumption in the statistical inferences

of financial data. The proposed methodology can be applied to both stationary and nonstationary

returns. Asset returns are proposed to be computed using Aggregated Wavelet estimator of asset

prices, which reduces the volatility in return as well as the difficulty in statistical analysis of

return. Considering the returns under a heteroscedastic regression model, we derive the time-

varying density estimator of return based on the estimation of the regression function, noise scale

function and the estimation of regression error density. The estimator captures the dynamics in

returns over time and can be used in many populer financial applications.
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Figure 1: Example of ‘GOOG’. The figure presents the observed daily prices, denoised

prices, returns calculated based on observed daily prices and returns calculated based on the

denoised prices.
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Figure 2: Example of ‘GOOG’. The figure presents the observed daily prices, denoised

prices, and the decompositon procedure of the daily returns (detrending, deseasonalizing

and rescaling).
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Figure 3: Example of ‘GOOG’. The figure presents the observed daily prices, denoised prices,

returns calculated based on observed daily prices, and the estimation of trend in daily return.
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Figure 4: Example of ‘GOOG’. Making a forecasting of 15 trading days’ return using his-

torical daily prices from 2015-05-05 to 2016-07-06.

Figure 5: Example of ‘XOM’. Making a forecasting of 15 trading days’ return using historical

daily prices from 2015-05-05 to 2016-07-06.
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Figure 6: Example of ‘XOM’. Time-varying probability density function estimation using

historical daily prices from 2012-07-03 to 2016-07-27.
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Figure 7: Example of ‘XOM’. Time-varying VaR from 2012-11-26 to 2016-07-27.

Figure 8: Example of ‘GOOG’. Time-varying VaR from 2012-11-26 to 2016-07-27.
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