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ABSTRACT

Risk assessment and management involves identjfgi@lgcting, and implementing measures
that can be applied to mitigate risk in a particgiduation [Better et al., 2008]. Many qualitative
and quantitative techniques have been developdxtlfo risk managers achieve this objective.
Optimization is an example of such a quantitataehhique.

The process of optimization aims at finding theiropt solution to a given problem. Generally
the solution must satisfy some constraints andatibge function. Optimization of a well-defined
function is solvable through standard determinigchniques. Howevewe often need to make
decisions under uncertaintin this case, we often cannot predict the exactaue of a decision
because the outcome depends on unknown fadthis.leads to the concept of fuzzy optimization,
which describes mathematical programming problemswvhich the functional relationship
between the decision variables and the objectivietfon is fuzzy (or known linguistically)
[Carlsson et al., 1998].

First, we will give an overview of fuzzy optimizati. Then, we will present some applications of

fuzzy optimization and investigate ways to extdmel methodology to risk assessment.

Keywords: Fuzzy logic, Optimization, Risk assessimen
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[. Introduction
The residential housing market catastrophe largehgributes, among other events, to the global
financial crisis of 2008 (Segal, 2011:330). Thisisrhas prompted policy makers and

practitioners to question the efficacy of the erigistandard for risk assessment and poficies

Risk is commonly associated with unexpected evire.terrorist attacks of September 11, 2001,
the August 2005 Hurricane Katrina in New Orl€ammd the April 2010 massive BP oil spill in
the Gulf of Mexico are examples of such unexpeetezhts. Knight (1921) started the discussion
about risk and uncertainty in his now classic btisk, uncertainty, and profit”. Generally, risk
refers to the possibility (or the possible conseges) of things going wrong (Panjer, 2006: 3).
Better et al. (2008)and Ostrom and Wilhelmsen (2012: 6) describedassthe probability of an
unexpected event that results in negative conseggetn many cases huge amounts of money
are involved. Risk also involves exposure. Holtd®97; 2004) defines risk as exposure to
uncertainty, and hence views uncertainty and exgoda that uncertainty as the risk’s
components. Often, a focus for policy makers asdsurance companies is on low probability
events with high consequences that lead to coratiedamage, loss, death, and environmental
impairment for example (Brillinger, 2002). From iakr assessment perspective, risk may also
involve unexpected events with positive consequerioe the firm. Ignoring this side of risk
leads to incomplete assessment, because downsitlepmide events may offset each other.
Therefore, a complete definition is of the typeegivby Segal (2011:19): risk is uncertainty,

deviation from expected, and includes both postineg negative deviation.

Generally, risk events are grouped within the fwilgg risk categories: hazard risk, financial
risk, strategic risk, and operational risk. A digtdidefinition and the composition of these
groups are provided by Segal (2011:116). Indepehdenthe risk categories, a risk assessment
(RA) is a systematic process for identifying andlaating potential risks and opportunities that
could positively or negatively affect the achievamef an enterprise's objectives (Price-
Waterhouse-Cooper, 2008). Generally, the RA prodellews three steps: identification,
analysis, and evaluation of risk. Detailed deswips of these steps are provided in the literature
(Segal (2011, p. 113) and Price-Waterhouse-Co@&8#)8)). The flowchart in Figure 1 gives the
components of the RA process.

! Louise Francis challenged the regulators’ position towards a “fraud friendly environment” in Francis, L., “The
Financial Crises: Why Won’t We use the F(raud) Word?”, SOA 2011, 44:47.

2Us Army Engineers estimated that Hurricane Katrina was a 1-in-396-year event (Segal, 2011: 9)

*The term opportunity is used for an unexpected event that would have a positive impact (Better et al. 2008)
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Figure 1. Risk Assessment Flowchart

A risk assessment process aims at providing a gedanre of what we know regarding the
nature of a particular risk and the degree of uag#ly surrounding any estimates. Kunreuther
(2002) suggested using an exceedance probabiRy ¢krve to measure experts’ knowledge (or
lack of knowledge) and projection about a risk évém EP curve shows the probabilities that
certain level of losses will be exceeded. Figurs 2n illustration of the EP curve for dollar

losses to homes in Los Angeles from an earthqlg@kenreuther, 2002).

Uncertainty in
Probability Probability
p(L) that
losses will

Uncertainty
exceed L ’

_________ in Loss

v

Loss, L (in Dollars)

Figure 2: Exceedance probability (EP) curve
(From Kunreuther, 2002)
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I[lI.  Standard Optimization as a Risk Assessment T ool

Various qualitative and quantitative risk assesgrehniques have been developed to help risk
managers achieve their objective. Optimizationnsgample of such a quantitative technique,
and includes many branches, such as linear / meailioptimization, convex optimization, conic
optimization, global optimization, discrete optimiion, eté. Optimization consists in finding
an optimal solution to a given problem, under gie@mcumstances. Progress in computational
techniqgue has made optimization more accessiblecasir to use, hence more attractive to a
larger number of practitioners. Optimization, agpa@werful modelling and problem solving
methodology, has a broad range of applicationsature for example, physical systems tend to
a state of minimum energy, while molecules in atai®d chemical system react with each other
until the total potential energy of their electrogsninimized, and rays of light follow paths that
minimize their travel time (Nocedal and Wright, B)0O Areas of application of optimization
also include engineerifgtransportation, production planning, design aathditting), industry
(where for example airline companies schedule crawgs aircraft to minimize cost aerospace),
and management science. Optimization is also widsesd in insurance and actuarial sciences
where, for example, investors will seek to buildpgstfolios that minimize risks while achieving

a high rate of return. Brockett and Xia (1995) giaveeview of operational research in insurance.

In the next section we the review the mathematicahulation of an optimization problem,
provide an example of optimization in insurance actuarial sciences, and then present an

application of optimization to risk assessment.

2.1 Introduction to Standard (Crispy) Optimization

The process of optimization aims at finding theirmpt solution to a given problem. Generally,
an optimization problem is of the form (Boyd andndanberghe, 2009):

Minimize ¢ {x)

Subjectta ()< b for i=1,..., m (1)

* Nocedal, J. and Wright, S., 2000, “Numerical Optimization”, Springer Series in Operations Research and Financial
Engineering, 2nd ed. provide a survey of the various branches in optimization.

> Rao, S., 2009, “Engineering Optimization: Theory and Practice”, John Wiley & Sons, 4th ed., present engineering
applications of optimization.

6 Ciriany, T., and Robert C. Leachman, R., 1993, “Optimization in industry” provide a survey of applications of
optimization in industry.
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where x = (%, . . ., %) is the optimization variableg f R" — R is the objective function, and the
functions f: R"— R, i=1,...,m are the set of inequality comisits. An optimal solutior” of
the optimization (1) satisfies: for any variablevith f1(z) < by, . . ., fi(2) < by, we have f(z) >
fo(x*). Depending on the properties of the objectivecfiom and the constraints, optimization (1)

can be a linear, quadratic, discrete, or a conydxnization problem.

Problem (1) is a linear optimization if the objgetiand the constraint functions are linear:
filax+ By) = afi(x)+ Bfi(y) for i=0,1,..., m (2)

forallx,ye R"and alla., B € R.

We obtain a convex optimization when the objectind the constraint functions are convex:
flax+ By)< afi(X)+ Bfi(y) for i=0,1,..., m 3

forall x,ye R"and alla, B € R. The parameters satisfy: + 3 =1, a >0, 8 >0

A gquadratic problem is obtained when the objecfiuaction is quadratic. The constraints are
usually linear functions (Rachev et al., 2008).

H(x) = c'x + ¥ X Hx for all x¢ R (4)
where ¢ = (¢..., &) IS a vector of coefficients for the linear pafttioe objective function and
H={ci, i, ] =1, ...n}is an x n matrix defining the quadratic part of the objeetiEhapiro
(1986) provided an extensive survey of operatioredearch methodologies, and their
applications in insurance. For example, areas pfiegiion of quadratic optimization include

portfolio analysis and international re-insurance.

When there is no constraint on the set of feasduution, Equation (1) becomes an
unconstrained optimization. An unconstrained pnoblean be solved using the first-order and
the second-order conditiohsn the function gradient({f (x)) and the Hessian matrix (H) of

second order derivatives (see Appendix A-1). Fonst@ined optimization, the method of
Lagrange multipliers is often applied (Details dfieh can be found in Boyd and Vandenberghe,
2009; Rachev, 2008).

’ The first-order condition [f (x) =0 is a necessary condition for finding a function extrema (minimum/maximum),

and the second-order condition (sign of the Hessian) provides a sufficient additional condition for the extremum.
(Details can be found in Boyd and Vandenberghe, 2009; Rachev, 2008)
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2.2 Applications of Optimization in Insurance

Operation research in general and optimizationantigular have a long history in insurance and
actuarial sciences. In the applications to insugatite objective functiony) in Eq. (1) can be
such things as the expected value of the probghligtribution of the throughput (the average
guantity of non-defective parts produced per umg) at a factory, or the fifth percentile of the

distribution of the net present value (NPV) of atfmbio of investments (Better et al., 2008).

Brockett and Xia (1995) give a detailed and techinieview of applications of optimization in
insurance. For example, linear optimization (adétem Schleef, 1989) is used to measure the
cost of whole life insurance. The objective funotrepresents the discount cash flows associated
with the selected policy, and needs to be maximiZérw constraints are the amount that the
insured is willing to pay for his policy, and thequired yearly level of protection. The linear
programming corresponding to this problem is aovat.

Maximize

(W -2)
(1) Z(1+|)<”>
subjecttoF{u+w—zt<bl for t=1---,n;

%)
u+ - (W e - Z‘) 21|, for j=1.--,n; and
Sy =1 o T

u,vvt Z arenon-negative,

where w, z, and u are decision variables; i& the amount lent externally by the insured at th
beginning of year tz is the amount borrowed externally by the insurethatbeginning of year

t; u is the face value of insurance purchasedeatithe t=0; Pis the net premium rate in year t;

C. is the cash-value rate at the end of year ts bhe amount budgeted by the insured at the
beginning of year tl; is the insurance protection required at the begopoif year t; ana is the

number of years in the planning period.

Recently, Dhaene et al. (2012) use optimizatiorsatve a capital allocation problem. The
problem was formulated in the form of minimum diste, and a solution was obtained by
minimizing the weighted sum of measure for the d&ons of the business unit's losses from
their respective capitals.
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2.3. Optimization asa Risk Assessment Tool

In practice risk analysis often consists of (i)diimg the probability of occurrence of an event,
and (ii) computing the statistical distribution tfe (potential) damages. As a result of this

process, graphics or hazard risk maps can be eotaind used for prediction (Brillinger, 2002).

We present an example based on Better et al. (2@08)nsurer has a number of potential
projects for which the revenues for a horizon opragimatelyn periods (depending on the
project) are given as probability distributionsor Bach project, there is an initial investment and
a number of business development, engineering artth sciences personnel. As a constraint,
there is a budget limit for the investments, antimated number of personnel of each skill
category. A probability of success by project soahssigned. Following the authors, we assume
without loss of generality that Project A has abadaility of success 0.6. There is a window of
opportunity for each project, which may start irifetent time periods. The insurer aims at

selecting a set of optimal projects to invest it thill best further its corporate goals.

The authors compare three risk assessment mettgpemlnamely the mean-variance approach
(Markowitz, 1952), the 8 percentile, and the value-at-risk (VaR) that walleimplemented

through optimization. The main optimization problenof quadratic form:
Maximize r"w-kw'Qw,

subjectto » cw, =b and (6)

i=1
w C{01}
where r is a vector of portfolio return® is a covariance matrix of returns, the coefficient
describes the insurer’s risk aversion, the constamefpresents the initiahvestment in projedt,
the termw; is a binary variable representing the decision tv¥eb invest in project, and the
constanb is the available budget.

With the mean-variance approach, the optimizatiosblem is as follows (assuming that the

objective is to maximize the expected NPV of thefpbo, while keeping the standard deviation
of the NPV below a specified threshold of for exéail40M):
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Maximize punpv (objective function),
Subject to onpy < $140M (requirement),

Z cir; < b (budget constraint),

i
E pijri < Pj ¥ (personnel constraints),
i

All projects must start in year 1,

x; € {0,1} ¥i (binary decisions).

(7)

When the risk is controlled by thd Percentile (assuming that the objective is to méze the
average return, as long as no more than 5% ofitideobservations fall below a level of $176M
for example), the optimization problem is as folfow

Maximize pNpvV,

Subject to P(5)npv > $176M (requirement).

Z c;x; < b (budget constraint),
i

Z pijri = P; Vj (personnel constraints).
i

E r; <1 Vi (mutual exclusivity).
mieM

x; £410,1} ¥I (binary decisions),

(8)

We often need to make decisions under uncertdimtyris case, we often cannot predict the
exact outcome of a decision because the outconendsmn unknown factors. This leads to the
concept of fuzzy optimization, which describes reathtical programming problems in which
the functional relationship between the decisiomnabdes and the objective function is fuzzy (or
known linguistically) [Carlsson et al., 1998]

1. Fuzzy Optimization as a Risk Assessment Tool

Zadeh (1965) introduced the notion of fuzzy logitjch has since then gained recognition and
was intensively applied in mathematics and compatEmces (Dubois and Prade, 1980; Kandel,
1986; Zimmerman, 1996). Various applications ofzfumgic exist in the insurance literature,

especially in insurance underwriting (DeWit, 198@gssification of insurance risk (Ebanks et

al., 1992; Derrig and Ostaszewski, 1995), projedtabilities (Cummins and Derrig, 1993;
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Sanchez and Gomez, 2003), future and present véwekley, 1987) and finance (Lemaire,
1990). Ostaszewski (1993) reviewed some applicatitm risk theory and Shapiro (2004)

provided an extensive overview of the possible iappbns of fuzzy logic in insurance.

3.1 Introduction to Fuzzy Logic

According to Zadeh, fuzzy logic has four facetsg@ho, 2004): (1) the logical facet which deals
with approximate reasoning, (2) the set theory tfagkich involves classes having unsharp
boundaries, (3) the relational facet which deal8hinguistic variables, and (4) the epistemic
facet which is concerned with knowledge, meaning] Anguistic. The studies we reviewed

involve the first three facets.

Fuzzy numbers are characterized by their memberBmptions which can be triangular,
trapezoidal, Gaussian, generalized bell or a coatioin of these basic classes (Shapiro, 2004).
A membership function describes the grade of meshiygerof each variable. As an example,
Figure 3 shows the membership function for a setliehts with high risk capacity: individuals
with a risk capacity of 50 percent, or less, argigieed a membership grade of zero and those
with a risk capacity of 80 percent, or more, arsigaeed a grade of one. Between those risk

capacities, (50%, 80%), the risk capacity categofyzzy.

Mhign(x)

0 ' ' ' : | | i | |
0 10 20 30 40 50 80 70 80 90 100

NOT high

Risk Capacity in %

Figure 3 (From Shapiro, 2004):

Membership function for set of clients with higekicapacity
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3.2 Fuzzy Optimization

Bellman and Zadeh (1970) introduce the conceptzdyf optimization in their seminal paper
“Decision Making in a Fuzzy Environment”. Fuzzytiopization differs from classical
optimization in the sense that the objective fumt&nd constraints are given the same
importance: objective function and constraintskarth (written in term of membership functions
if appropriate and) optimized simultaneously. Thenmbership functions are linked by a

linguistic conjunction: “and” (for maximization) drfor” (for minimization).

For a maximization problem, where the optimal deaiss the option with the highest degree of
membership in the decision set, the optimal satuisdy

X = max [minfug(x), nc(x)}] 9)
If the optimal decision is the option with the Istelegree of membership in the decision set,
then the optimal solution is as follows

X = min [maxfuc(x), pc(x)}] (10
A representation of the relationship between thes ftiF the goal G, the constraint C and the
decision D is given in Fig. 4 (Shapiro, 2004, p 02

He(x) He(x)

Figure 4: Decision Making in Fuzzy Optimization

A fuzzy linear programming can be reformulated masquivalent crispy optimization problem
and the standard optimization tools can be useaibtain the optimal solution (see Brockett and
Xia, 1995; Shapiro, 2004). For example, given thowing fuzzy linear programming
(Zimmermann 1996: 289)

C=2¢x, <C, Objective

(1)
z=3a,x =h , %20 constraints
J
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where G is the aspiration level for the objective functiamd the coefficients;ab, and ¢ are
not necessarily crisp numbers. This fuzzy lineagpemming (LP) problem can be resolved by

reformulating it as a crisp LP problem. The essasfane approaého doing this is depicted in
Figure .

Figure 5: Equivalent Crisp Constraint

As indicated, zis a fuzzy number, whose membership function tie far z < b - A;, one for z=

b, and linearly increasing in the interval. Zimmamn refers t@ as a tolerance interval. Using
an a—cut to provide a minimum acceptable satisfactiorllethat is,u(z) = a is an acceptable
constraint, we see from the diagram that an egemtalonstraint isijz by - Aj + A; a. Similarly,
C<Cy+A-Aa.

Thus, given the values of, the equivalent crisp programming problem becoraoee of
maximizinga subject to the equivalent constraints, that is:

Maximize: d (2)
Subjectto: zZAazb-A;
C+Aa<Cy+A;and

O<ac<l.

8 Adapted from Brockett and Xia (1995), pp. 34-38.
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Basic stepsin fuzzy optimization problem

Generally, a fuzzy optimization problem can be edlthrough the following steps (Bellman and
Zadeh, 1970; DaSilva et al., 2002):
1. Fuzzification of the objective function: the mendigp associated with the objective
function f(x) is computed through the following foula:

f(x)-1
max(f (x)) —min(f (x))

we (X) = (11)

Note: max(f(x)) and min(f(x)) represémé maximum and minimum values in the
feasible interval for the function f(x).
2. Fuzzification of the constraints is done the sarmag.w

3. Membership of the optimal function: the memberdhipctions for all the constraints
and the objective function are combined, and tlegsdn making formulas (9) and (10)
are used depending on whether we have a minimizati@ maximization problem.

Example: The following example is adapted from DaSilvale{2002): Consider a (non-
linear) quadratic function f(x) and let's assumattive aim at maximizing f under the given
fuzzy constraints below.

Mgx)=10-x—25/>
Constraints:
C1: x must be equal or greater than 2 and equaksrtlean 6 = { X x<6}
C,: a good value for x is equal or less than 3 andcaeptable value is not much greater.
Solution: we will follow the three steps descdlabove.
1) Fuzzification of the objective function

f(2) =1.75 (min in [2,6]); f(3.68) =4.47= (max of f in [2,6]);

f(x)-1
max(f (x)) - min(f (x))

F(X) =, (x) = =3.03 - (x/2.72) — (9.19%

2) The constraints are equivalent to the followingmbership

[:] for x<2 | fUI X< 3

1
Ao
G(x)=41 for2<x<6 Gx) |3+; forx> 3
[0 forx=>6 o
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3.3

By merging both constraintg &xd G, we obtain the followingf function

0} X<2

C(x) =11, 2<x<3
l+g, 3<X<6
3 X

3) The graphs of the objective function and the coedb constraints is then obtained

Cix)

i x)

Figure 6: Optimal Solution
(Adapted from DaSilva et al., 2002)

Fuzzy Optimization as RA tool

This section is based on the paper by Liu and ZIta@#2) which deals with the risk assessment

of natural disasters and sporadically occurringnessean general, and on risk analysis and

prediction for tropical cyclones in particular. Tharpose of this risk analyses is to identify a

functional relationship between the probability tdimitions of hazard causes (e.g., rainfall

amounts or surface wind strengths) and hazard itmgaq., on human-beings, buildings, crops)

using information matrices (i.e., inputs vs. ouf)uifhe hazard risk assessment model is done

through the steps below, which are summarized helow
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Steps in hazard risk assessment (Liu and Zhan@)201

1)

2)

3)

4)

5)

6)

7)

Start with available data: the hazard-impact inicenatrix
xj(i=1,2,...,5j=1,2,...,17), frame 17-year sample data.

Standardize the hazard-impact indicator matrix fgylyang a scaling factor
Xij

max {x;} + min {x;}’
lu':_:l?{ IJ'I' 1351?{ [f}

= E=T152 00055

We obtain the fuzzy weighted hazard-impact indicatatrix

R = l:ri.f-)ﬁ-r:]?
We determine the categorical weights of the haragphct indicators, using a genetic
projection pursuit algorithm.

a. For this we compute
5
Zi ;;.Zt’irﬁ U = 1.2.]7}
i=1

b. Then, S =standard deviation (z)

c. And the local density (P is given by
5 17
Dz = > (K —dyu(t)(K —dy)
i=1 1

i=1 j=
where K = 0.1Sdistance gi= |z -2z|, t=K- g, and the unit step function u(t) is

0 fort<0and 1 fort0

The associated objective function after projectfon

Qe = SZDZ-

The projection directions reflect the charactergsstf hazard-impact and cause indicators.
So the optimized projection direction of; @ obtained by maximizing the projected

objective function
maxQ, = SzDy,

5
s.t. Zef —1, and e; >0
i—1
Determine the ranking weights of the hazard-imjradicators, using the GAHP method
17
Sp= Z?‘zj.
j=1

and from the following expression, the C are olgdin
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= |f.fm 1} + 1-. 5i Esj-.

max {5; | —min{s;

-1
55 ~
([ =D +1) . si<s,

8) Determine the combined weights between the categjoaind ranking weights, and solve
the fuzzy optimization problem that follows,
min F=Y"%" (ulay — ary + (1 — p)lag — alry),
=1 i=1

s.t. Zm:l. andg; > 0. i=12.....5,
=1

to obtain the combined weights of thednd-impact indicators (HIIS).

Conclusion

The aim of this paper was to make an introductothé application of fuzzy optimization in risk

assessment. We present some applications of stangémization in risk assessment. Fuzzy
optimization differs from classical optimization the sense that the objective function and
constraints are given the same importance. In itk &éxample presented, fuzzy optimization
was applied to hazard risk assessment in ordetetatify a functional relationship between the

probability distributions of hazard causes andithzard impacts.
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Appendices
A-1
The gradient [Uf(x)) and the Hessian matrix (H) of second order déxiga of a

functionf (x) = f (x;, x,, -+, X, )are as follows.

- {ag)(:) ,__"a(f?)((x)J

2f(x) 9°f(0  0*f(x)

0,%  0X0X, 0X,0X,,

0°f(x) 0°f(x) 0% f ()

e e 2V
HO) =019 =| ax,0x,  9%x, 0%, 0%,

0’10 0% () 9*f(¥)
ox.0%,  0X 0X, 9°X,
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